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Zero-set intersection graph on C,(X)
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Abstract. For any Tychonoff space X we have introduced the zero-set intersection graph on I'(C. (X)) and
studied the graph properties in connection with the algebraic properties of the semiring C.(X). We have
shown that for any two realcompact spaces X and Y, I'(C. (X)) is isomorphic to I'(C,(Y)) if and only if C,(X)

is isomorphic to C,(Y) if and only if X is homeomorphic to Y if and only if C(X) is isomorphic to C(Y) if and
only if I'(C(X)) is isomorphic to I'(C(Y)).

1. Introduction

In 1993, the structure of C.(X) was first studied by S. K. Acharyya, K. C. Chattopadhyay and G. G. Ray
[1]. The collection C,(X) of all non-negative real valued continuous functions over a topological space X
forms a semiring with respect to pointwise addition and multiplication of functions (Roughly speaking,
semirings are rings without the requirement of the additive inverses). In 2019, E. M. Vechtomov et. al. in
their paper [30], reviewed all the results intensively studied by them and many other authors on the theory
of semirings of continuous functions, which exhibit sustained research interest in this structure. All such
study on C,(X) is totally focused on two types of findings: one is the effect of the topological properties
of X on the algebraic structure of C,(X) and vice-versa. Many aspects of these dual study has helped to
dig into the deeper area of research and we refer to [1], [29], [30] for one who wants to study further on
this topic. To investigate whether the study of the algebraic structures is the only approach to characterize
the corresponding topological spaces and vice-versa, we introduce the graph structure in C.(X) with an
intention to study its connection with the algebraic structure of the semiring C. (X) and topological structure
of X.

Study of the graph structure on rings is not at all a new area of research. Beck [15] introduced the zero
divisor graph of a commutative ring with unity and later on many researches have been done in this area,
see [3, 59, 12, 13, 17-21, 27]. In case of the ring of real valued continuous functions C(X) on a topological
space X, Azarpanah et. al. [10] studied the zero divisor graph of C(X). They obtained the conditions on X
under which the associated graph is triangulated, connected etc. However, as their work was a follow up
of zero divisor graph of a ring, the main topological ingredients of characterizing the graph was missing.
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Apart from that Amini ef. al. [4] also studied another graph structure on C(X) from the co-maximal ideal
point of view. Later in [16], B. Bose and A. Das introduced the zero-set intersection graph I'(C(X)) on C(X)
with a view to interrelate the topological properties of X, the algebraic properties of C(X) and the graph
properties of I'(C(X)). Recently, Acharyya et. al. studied the Zero-Divisor graph of the rings C”(X) and
C%(X) [2]. But the study of the graph structure of C.(X) is not yet done and we initiate this program.

At first in Section 2, we recall some definitions and results related to graphs, rings and semirings. In
Section 3, we define the zero-set intersection graph of C.(X) and study a few graph properties. Then we
study the cliques, maximal cliques and prime cliques of I'(C, (X)) and their relations with the ideals, maximal
ideals, prime ideals of C.(X) respectively. We show that the maximal cliques of I'(C, (X)) can be obtained
from the maximal cliques of I'(C(X)) and establish their connections with those of the graph I'(C(X)). The
precise form of maximal cliques have been obtained (see Theorem 3.6). Results connecting maximal (prime)
ideals of C,(X) to maximal (respectively, prime) cliques of I'(C.(X)) have been proved (see Theorems 3.7,
3.10, 3.11, 3.12, 3.15) analogous to those proved in the context of the graph I'(C(X)) of C(X) in [16]. Also the
neighbourhood properties of I'(C, (X)) are studied and it has been shown that the neighbourhood properties
are preserved under the graph isomorphism (see Theorem 3.19). Finally, in Section 4, the inter-relationships
between graph isomorphisms, ring isomorphism, semiring isomorphisms and homeomorphisms of spaces
have been studied and the desired equivalence of those has been established (see Theorem 4.11). We
obtain that the space X is homeomorphic to the space Y if and only if the graphs I'(C. (X)) and I'(C.(Y)) are
isomorphic, which says that the graph structure on C.(X) essentially makes distinction between the spaces
belonging to the class of all Hewitt spaces. For proving the equivalence in Theorem 4.11, the result that
plays a key role is Theorem 4.8, which tells us that for topological spaces X and Y, if the subgraphs I'(C, (X))
and I'(C,(Y)) are isomorphic then the graphs I'(C(X)) and I'(C(Y)) are isomorphic. Also a combined picture
of main results of section 4 is given.

2. Preliminaries

For clarity and to make the paper self sufficient, we want to recall some preliminary facts about graph
theory and semiring that will be used in the sequel.

For a non-empty set V and a symmetric binary relation (possibly empty) E on V, G = (V,E) is called a
graph. The set V is called the set of vertices and E is called the set of edges of G. Two elements ¥ and vin V
are said to be adjacent if (u,v) € E. H = (W, F) is called a subgraph of G if H itself is a graphand ¢ # W C V
and F C E. G is said to be complete if all the vertices of G are pairwise adjacent. A complete subgraph of
a graph G is called a clique. A clique which is maximal with respect to inclusion is called a maximal clique.
Two graphs G = (V,E) and G’ = (V’, E’) are said to be isomorphic if there exists a bijection ¢p : V' — V’ such
that (1,v) € E if and only if (¢(u), p(v)) € E’. A path of length k in a graph is an alternating sequence of
vertices and edges, vy, ey, v1, €1, V2, ..., Uk-1, €k-1, Uk, Where v}s are distinct and ¢; is the edge joining v; and vj41.
This is called a path joining vy and vx. A path with vy = vy is called cycle. A cycle of length 3 is called a
triangle. A graph is connected if for any pair of vertices u, v € V, there exists a path joining u and v. A graph
is said to be triangulated if for any vertex u € V, there exists v,w € V such that (u,v,w) is a triangle. The
distance between two vertices u, v € V, d(u, v) is defined as the length of the shortest path joining u and v, if
it exists. Otherwise d(u,v) is defined as co. The diameter of a graph is defined as diam(G) = max,, yeyd(u, v),
the largest distance between pairs of vertices of the graph, if it exists. Otherwise diam(G) is defined as co.
The girth of a graph is the length of its shortest cycle. The neighbourhood of a vertex v of a graph G is the
induced subgraph of G consisting of all vertices adjacent to v. We assume the neighbourhood to be closed,
i.e., the vertex v is included in it and denote it by N[v]. A vertex v is called simplicial if N[v] is a clique.

A topological space X is called Eg-space if each point of X is a Gs-set. Ep-space is a countable pseu-
docharacter, i.e., first countable spaces are Ey though there are examples of Ey-spaces which are not first
countable (see [26]). Suppose C,,(X) stands for the space C(X) with m-topology and C, (X) is the space C(X)
with the graph topology. Then C,,(X) and C,(X) are both Eq-spaces without being first countable unless X
is pseudocompact (respectively, X is countable compact) [see Corollary 2.3, Theorem 2.1, Theorem 2.3 in
the monograph [28]).
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Let S be anon-empty setand '+’ and “.” be two binary operations on S, called addition and multiplication
respectively. Then (S, +, .) is called a semiring if
(i) (S, +) is a commutative semigroup,
(i) (S, .) is a semigroup,
(iii)a.b+c)=ab+acand (b+c)a=ba+ca, forallab,ceS.
If there exists an element 0 € S such thata + 0 = a for all @ € S then 0 is called additive neutral element or
the zero of S and S is called a semiring with zero. Moreover, if 4.0 = 0.a = 0 for all a € S then S is called a
semiring with absorbing zero. Again if there exists an element 1 € S such thata.1 = la =aforalla € Sthen 1
is called multiplicative identity or simply identity element of S and S is called a semiring with identity.
Further if a.b = b.a for alla, b € S then S is called a commutative semiring.
An ideal | of a semiring S is a nonempty subset of S such thata + b,as,sa € [ foralla,b €l ands € S.
A proper ideal I of a semiring S is called prime if ab € I implies a € I or b € I for any elements a,b € S.
A proper ideal I of a semiring S is called maximal if it is not contained in any other proper ideal of the
semiring S.

We refer to the book of Golan [23] for more definitions and results of semirings and mention few results
that are taken from [30] and which will be used later.

Remark 2.1. ([30]) Let C.(X) be the set of all non-negative valued continuous functions over a topological
space X. This set with pointwise addition and multiplication forms a semiring. It is easy to see that the ring
C(X) = C+(X) — C+(X) is a ring of differences of the semiring C.(X) and the semiring C.(X) coincides with
the set of all squares of elements of the ring C(X).

Proposition 2.2. ([30]) Prime (maximal) ideals of the semiring C.(X) are precisely the ideals P N C.(X) for the
prime (maximal) ideals P of the ring C(X).

Proposition 2.3. ([30]) For any Tychonoff space X, the maximal ideals of the semiring C.(X) coincide with the ideals
of the form MP = {f € C.(X) : p € Z(f)gx},p € BX.

Proposition 2.4. ([30]) Any prime ideal of a semiring C(X) is contained in a unique maximal ideal.

Theorem 2.5. ([29]) Let the topological spaces X and Y be realcompact spaces. Then X is homeomorphic to Y if and
only if C(X) is isomorphic to C.(Y).

3. Zero-set intersection graph of C.(X)

In this section we initiate the study of zero-set intersection graph of the semiring C, (X) for a Tychonoff
space X, by adopting the definition of the Zero-set intersection graph introduced in [16] on C(X).
First we introduce few notions on C. (X).

Definition 3.1. An element f € C.(X) is called a unit of C.(X) if there exists g € C.(X) such that fg =1,
where 1(x) = 1 for all x € X. Equivalently, the units of C,(X) are all such functions that do not attain zero at
any point in X.

Definition 3.2. Let N’(X) be the set of all non-units in the semiring (C.(X), +,.) (N'(X) = N(X) N C+(X),
where N(X) is the set of all non-units in C(X)). By zero-set intersection graph I'(C.(X)), we mean the graph
whose set of vertices is N’(X) and there is an edge between distinct vertices f and g if Z(f) N Z(g) # 0, where
Z(f)y={xeX: f(x) =0}

In [16] the authors observed the graph properties of the graph I'(C(X)) of C(X) viz., connectedness,
diameter, girth etc. Throughout this study we have considered the graph of C,(X) as a subgraph of the
zero-set intersection graph of C(X). As a consequence, the graph I'(C.(X)) inherits some of the graph
properties of I'(C(X)) which are as follows:

(i) T(C+(X)) is connected
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(if) T(C+(X)) is triangulated
(iii) diam(T(C+(X))) =2
(iv) girth of I(C4(X)) is 3

3.1. Maximal cligues in I'(C,(X)):

In this subsection we study the cliques and maximal cliques in I'(C.(X)) and their relations with ideals,
maximal ideals of C,(X). We characterize the maximal cliques in I'(C. (X)) and study some results on those.

Theorem 3.3. (1) Every ideal in the semiring C.(X) is a clique in N’ (X).
(2) If A is a cligue in T(C(X)) then A N C+(X) is a cligue in T(C4+(X)).
(3) If A is a clique in T'(C4(X)) then A is a clique in T'(C(X)).

Proof. The proofs are trivial and hence omitted. [J
Theorem 3.4. No maximal clique in T'(C(X)) is a maximal clique in I'(C(X)).

Proof. For every nonzero continuous function f belonging to a maximal clique M in I'(C, (X)), the function
(=f)(€ C(X)) does not belong to M, where (—f)(x) = —f(x),x € X. So M U {-f} is again a clique in I'(C(X))
containing M. Hence the result. 0O

From Theorem 3.3 (2) we see that for any maximal clique M in I'(C(X)), M N C.(X) is a clique in I'(C,(X)).
The next result additionally shows that M N C,(X) is a maximal clique in I'(C, (X)) as well.

Theorem 3.5. If M is a maximal clique in T'(C(X)) then M N C4(X) is a maximal clique in I'(C,(X)).

Proof. Let M be a maximal clique in I'(C(X)). Then M N C,(X) is a clique in I'(C.(X)). Let us suppose that
M N C,(X) is not a maximal clique in I'(C,(X)). Then there exists f € C.(X) \ M such that f is adjacent to
every element of M N C4(X). Now, for all h € M, I € M N C.(X) and also Z(h) = Z(h?). Therefore if for all
g€ MNCi(X), Z(f) N Z(g) # 0 then it implies that Z(f) N Z(h) # 0 for all h € M. Hence it follows that f is
adjacent to every element of M. So by maximality of M, f € M, which is a contradiction to our assumption.
Therefore M N C.(X) is a maximal clique in I'(C+(X)). O

In Remark 3.4 of [16], the classification of the maximal cliques in I'(C(X)) into three different categories,
viz., fixed ideal, freeideal and non-ideal form, has been made. Here in the following theorem we characterize
the precise form of the maximal cliques in I'(C. (X)) via the maximal cliques in I'(C(X)), applying which it
is easy to classify the maximal cliques in I'(C, (X)) as well.

Theorem 3.6. Any maximal clique in T'(C, (X)) is of the form M N C(X), where M is a maximal clique in I'(C(X)).

Proof. Let N be a maximal clique in I'(C,(X)). Then N is also a clique in I'(C(X)) which is contained in some
maximal clique M in I'(C(X)) (say). Therefore N is contained in M N C.(X), which is a maximal clique in
I'(C.+(X)) by Theorem 3.5. Hence N = M N C.(X). O

We have seen that ideals of C.(X) are cliques in I'(C.(X)) (Theorem 3.3). Also we obtain the maximal
cliques of I'(C+(X)) from the maximal cliques of I'(C(X)). In the next theorem we find that the maximal
ideals of C,(X) are maximal cliques in I'(C,(X)).

Theorem 3.7. Maximal ideals of C,(X) are maximal cliques in I'(C.(X)).

Proof. Clearly, every maximal ideal of C,(X) is a clique. Let P be a maximal ideal of C,(X). Then P =
M N C4(X), where M is a maximal ideal of C(X) (see Proposition 2.2). Therefore using Theorem 3.2 of [16]
we have, M is a maximal clique in I'(C(X)), whence it follows that M N C,(X) = P is a maximal clique in
I'(C.(X)) by Theorem 3.5. Hence the proof. O
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The converse of the above theorem is not true in general. The following example exhibits that.

Example 3.8. Let X = SIN with its usual topology. Let Mj,, M, 3, M 3 be the collection of all real valued
continuous functions which vanish at {1, 2}, {2, 3}, {1, 3} respectively. Now if we denote Mb = M, NCi(X),
M;,3 = M3 N Ci(X), Mfﬁ = M3 N Ci(X) then M* = M{z U M;B U Mfﬁ is a maximal clique which is not a
maximal ideal in C(X).

Every clique is contained in a maximal clique. But that may not be unique. The following example
shows that.

Example 3.9. If we take the same X as Example 3.8 then M, is a clique contained in two different maximal
cliques My = My, UM; UMy, and My = My, UMy, UM;,, where M is the collection of all non-negative
valued continuous function which vanishes at {i, j}, fori,j =1,2,3,4.

The following Theorems 3.10, 3.11 are the I'(C.(X)) counterparts of Theorems 3.6 and 3.11 of [16] and
deal with the characterization of the structure of the maximal cliques in I'(C, (X)) via the maximal ideals of
C+(X).

Theorem 3.10. Let M be a maximal clique in T'(C(X)). Then M always contains an ideal of C.(X).

Proof. If M is a maximal clique in I'(C, (X)) then it follows from Theorem 3.6 that M = N N C,(X) for some
maximal clique N in I'(C(X)). So N contains an ideal I (say) of C(X) by Theorem 3.6 of [16]. Therefore it
implies that N N C.(X) = M contains the ideal I N C,(X) of C.(X). Hence the theorem. O

Theorem 3.11. Every maximal clique in I'(C. (X)) can be expressed as union of intersection of some maximal ideals
in C(X).

Proof. Let M be a maximal clique in I'(C+(X)). Then M = N N C.(X), for some maximal clique N in
I'(C(X)) (see Theorem 3.6). So by Theorem 3.11 of [16], N can be expressed as union of intersection of
some maximal ideals in C(X), i.e., N = UU;(,, No;, where each N, is a maximal ideal in C(X). Therefore
M = NN Ci(X) = U; Ny (Na; N C1(X)), where each Ny, N C(X) is a maximal ideal in C,(X) (see Theorem
2.2). This completes the proof. [

3.2. Prime ideals and prime cliques:

Every prime ideal in C(X) is always contained in a unique maximal ideal whose analogue is true for
C.(X) too (cf. Proposition 2.4 of [30]). Again prime ideals of C,(X) are cliques (in Theorem 3.15, we
prove that the prime ideals are prime cliques (Definition 3.13)) in I'(C.(X)). Also the existence of non-ideal
maximal cliques in I'(C, (X)) may insist a prime ideal, as a clique, to be contained in two different maximal
cliques in I'(C4(X)). Therefore, these facts prompt us to investigate whether the prime ideals in C.(X), as a
clique, are contained in a unique maximal clique in I'(C, (X)) or not. In the next few results we are concerned
about prime cliques in I'(C,(X)) and their properties.

Theorem 3.12. Every prime ideal in C.(X) is contained in a unique maximal clique in I'(C,(X)).

Proof. Let Qbe a primeidealin C,(X). Then Q = PNC,(X), where P is a prime ideal in C(X) (see Proposition
2.2). As a consequence of Theorem 3.5 of [16], P is contained in a unique maximal clique M (say) of I'(C(X)).
Let P N C.(X) = Q which is contained in the maximal clique M N C,(X) of I'(C.+(X)). For uniqueness note
that if M is a maximal clique in T'(C(X)) then for f € C(X), f2 € M implies f € M. Now if Q € M’ for some
maximal clique M’ in I'(C, (X)), then M’ = M*NC,(X) for some maximal clique M* of I'(C(X)). Consequently,
PN Cy(X) € M* N C4(X) which implies P C M, for if f € P then f% € PN C.(X) € M* N C,(X) which implies
f? e M. So f € M*. Hence M = M". This completes the proof. []

Now we introduce the notion of the prime cliques in I'(C, (X)), adopting the same from [16].
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Definition 3.13. A clique I in a graph G is defined to be a prime cligue if any two vertices f, g € G\ I, which
are adjacent with all elements of I, are adjacent to each other.

The following theorem shows a connection between the prime cliques of I'(C(X)) and those of I'(C..(X)).
Theorem 3.14. If P is a prime clique of I'(C(X)) then P N C.(X) is a prime clique of T(C.(X)).

Proof. Let f,g € T'(C+(X)) \ (P N C4(X)) such that f, g are adjacent with all elements of P N C,(X). Then it
implies that f,g € I'(C(X)) \ P and f, g are adjacent with all elements of P. Since P is a prime clique in
I'(C(X)), f and g are adjacent to each other. Therefore P N C.(X) is a prime clique of I'(C.(X)). O

The next theorem is the semiring counterpart of Theorem 3.13 of [16].
Theorem 3.15. Every prime ideal in C.(X) is a prime clique.

Proof. Let Pbea primeideal of C,(X). Then P is of the form KNC,(X) for a prime ideal K of C(X) (cf. Theorem
2.2). Now, by Theorem 3.13 of [16], the K being a prime ideal, is a prime clique in I'(C(X)). Therefore in
view of Theorem 3.14, P = KN C4(X) is a prime clique in I'(C(X)). This completes the proof. [

Recall that in [16] authors have constructed prime cliques in terms of maximal ideals of C(X). They
considered for any maximal clique M of N (X),

Om = Unea(Npenr OF), where A is the collection of maximal ideals contained in M and for each N € A,
N’ is the collection of all maximal ideals of C(X) in which N can be extended and O is the ideal consisting
of all f € C(X) such that clgxZ(f) is a neighbourhood of p € X.

They proved that for each maximal clique M of N(X), Om € M and hence Oy is a clique (cf. Theorem
3.14 of [16]). Not only that also they proved that for every maximal clique M of N(X), Oy is a prime clique
(cf. Theorem 3.16 of [16]).

Let us define Oy, = Oum N C4(X) = Unea(MNapen(OF N C1(X))), where M" = M N C,(X) is a maximal
clique in N’(X), with the intention to obtain Oy, as an example of prime clique for each maximal clique M’
in N’(X).

Theorem 3.16. For every maximal cliqgue M’ in N’ (X), Oy, is a prime clique in I'(C,(X)).

Proof. Let M’ be a maximal clique in N’(X). Then by Theorem 3.6, M’ = M N C.(X), where M is a maximal
clique in N(X). Now by Theorem 3.14 of [16], Oy is a clique in N(X). So Oy N C4(X) is a clique in N’ (X) (by
Theorem 3.3 (2)). Again by Theorem 3.16 of [16], Oy is a prime clique in N(X). Therefore using Theorem
3.14 we conclude that Oy, is a prime clique, for every maximal clique M in N’(X). O

At this point one may think that only prime ideals are the examples of prime cliques. But there are
plenty of prime cliques which are not ideals. Following example establishes our claim.

Example 3.17. Consider the set Oy, in C,(X), for a maximal clique M’ in N’(X), defined above. Oj,, is not
an ideal of C,(X).
But by Theorem 3.16, Oy, is a prime clique in N’(X).

3.3. Neighbourhood properties of zero set intersection graph

In this subsection we explore some properties of the neighbourhood of a vertex of the graph I'(C, (X))
and also its connection with the semiring properties of C.(X) and topological properties of X.

The following result establishes a relation between graph neighbourhood of a vertex of I'(C. (X)) and
zero set of the corresponding function of C.(X).

Lemma 3.18. Forany two f,g € N'(X), N[f] C Nlgl if and only if Z(f) C Z(g), where N[ f] represents the closed
neighbourhood of f in T'(C.(X)).
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Proof. Let N[f] € Nlg]. If possible, let Z(f) € Z(g). Then there exists p € Z(f) such that p ¢ Z(g). Since X is
completely regular, there exists € C(X) such that h(p) = 0 and h(Z(g)) = 1, meaning that /? is adjacent to f
but not to g, i.e., h? € N[f] but h* ¢ N[g] which contradicts the fact that N[f] C N[g]. Therefore Z(f) C Z(g).

Conversely, let Z(f) € Z(g). Let x € N[f]. Then Z(x) N Z(f) # 0 implies Z(x) N Z(g) # @ whence it follows
that x € N[g]. Hence N[f] € N[g]. O

As a consequence of Lemma 3.18, we have the following theorem which establishes that the graph
isomorphism preserves the neighbourhood properties of the vertices of the graph I'(C.(X)).

Theorem 3.19. If ¢ : I'(C.(X)) — I'(C.(Y)) is a graph isomorphism then for any f,g € C(X), Z(f) € Z(g) if and
only if Z($(f)) < Z(P(9))-

Proof. Let Z(f) € Z(g). Then by Lemma 3.18, N[f] C N[g]. We are to show that N[¢(f)] € N[¢(g)]. For
this, let us suppose that for x € I'(C.(X)), ¢(x) € N[p(f)], i.e., Pp(x) is adjacent to ¢(f). Since ¢ is a graph
isomorphism, x € N[f] € N[g] which again implies that ¢(x) is adjacent to ¢(g). Therefore ¢(x) € N[¢p(f)].
Hence it follows that N[¢(f)] € N[¢(g)]. By reversing the argument we can similarly prove the converse. [

In the next theorem we characterize simplicial property of a vertex in I'(C,(X)).
Theorem 3.20. A vertex f € N'(X) is simplicial if and only if Z(f) is singleton.

Proof. Suppose f € N'(X) is simplicial, i.e., N[f] is a clique. If not and if possible suppose Z(f) is not a
singleton set. Then there exists at least two distinct points p, g € Z(f) and hence due to complete regularity
of X, there exists g,h € C.(X) such that Z(g) = {p}, g9(q) = 1 and Z(h) = {g}, h(p) = 1. Therefore g,h € N[f]
though g and /h are not adjacent, which contradicts our initial assumption. The converse part follows
trivially. O

Recall that a topological space X is called Ey-space if each point of X is a Gs-set. Then the immediate
consequence of Theorem 3.20 is the following result.

Corollary 3.21. Each vertex of the graph I'(C.(X)) is simplicial if and only if X is an Eq-space.

In the next theorem, using the neighbourhood property, we find that for any prime clique there exists a
maximal clique containing it.

Theorem 3.22. For a given prime clique P of I(C+ (X)), M = ({NI[f] : f € P} is a maximal clique containing P.

Proof. P C M is trivial. First we prove that M is a clique. Let i,k € M. That means h, k are adjacent with
all the elements of P. Since P is a prime clique then there is an edge between & and k. For maximality, let
M c N where N is a maximal clique containing P. Let g € N\ M. Then g ¢ N[f] for some f € P. This
contradicts that N is a clique containing P. Hence the theorem follows. [

4. I'(C4+(X)) and graph isomorphisms

In this section for two topological spaces X and Y, we study the inter-relationships between graph
isomorphisms of I'(C. (X)) and I'(C.(Y)), semiring isomorphisms of C.(X) and C.(Y) and homeomorphisms
of X and Y. Also we show that I'(C, (X)) and I'(C.(Y)) are graph isomorphic if and only if I'(C(X)) and
I'(C(Y)) are isomorphic as graphs (Theorem 4.9). Finally, we show that graph isomorphisms of I'(C. (X)) is
equivalent to semiring isomorphisms of C.(X) as well as homeomorphism of X.

Theorem 4.1. Let X and Y be two topological spaces such that C..(X) and C.(Y) are isomorphic as semirings. Then
I'(C+(X)) and I'(C.(Y)) are graph isomorphic.
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Proof. Let ¢ : C.(X) — C.(Y)be a semiring isomorphism. Clearly, the restriction of ¢ on the set of non-units
in C,(X) is also a bijection from I'(C, (X)) onto I'(C. (X)) and without loss of generality we denote it by ¢.
The only thing left to be proved is that ¢ preserves adjacency. Let f and g be adjacent in I'(C.(X)), i.e.,
Z(f)NZ(g) # 0. Since Z(f) N Z(g) = Z(f + g) and f + g is a non-unit, ¢p(f + g) is also a non-unit, i.e,,
Z(p(f + g)) # 0. Then Z(p(f)) N Z(P(g)) = Z(P(f) + P(g)) = Z(P(f + g)) # 0. Similarly it can be shown that if
¢(f) and ¢(g) are adjacent in I'(C.(Y)) then f and g are adjacent in I'(C4(X)). Hence I'(C.(X)) and I'(C.(Y))
are graph isomorphic. [

Theorem 4.2. For two topological spaces X,Y if T(C(X)) and T'(C(Y)) are graph isomorphic then I'(C.(X)) and
I'(C.(Y)) are graph isomorphic.

Proof. Let I'(C(X)) and I'(C(Y)) be graph isomorphic. Then by Theorem 5.7 of [16], the ring C(X)) is
isomorphic to the ring C(Y). Any such isomorphism ¢ from C(X) to C(Y) sends non-negative functions
to non-negative functions. So we deduce that ¢(C.+(X)) = C.(Y). Therefore by Theorem 4.1, I'(C. (X)) and
I'(C.(Y)) are graph isomorphic. [

Let f € I'(C(X)). Then f can be represented as f = (f vV 0) + (f A 0), where f V 0 = max{f,0} and
f A0 =min{f,0}. We willdenote f V0as ffand f AQas f~,ie, f=f*+f".
From the above definition, we observe the following facts.

Lemma 4.3. Let f e T(C(X)) and f = f* + f~, where f*, f~ have their usual meaning as above. Then
(i) f*,—f €T(C.(X)).

(if) NIf*]UN[-f"] = T(C,(X)).

(iii) Z(f) U Z(~f) = X.

(iv) f*.f~=0.

Lemma 4.4. Let f € I'(C(X)) (f # 0) such that f = g + h satisfying (i) g,—h € C+(X), (ii) g-h = 0. Then g = f*
and h = f~.

Proof. If not and if possible let g # f* or h # f~. Suppose that g # f*. Then there exists x € X such that
g(x) # f*(x). So g(x) +c = f*(x), for some real number c. Then f(x) = f*(x) + f~(x) = g(x) + c + [~ (x).
Therefore f(x) = g(x) + h(x) implies that i(x) = f~(x) +c. Now, by our assumption that g(x)h(x) = 0, we have,
(f*(x) = O)(f~(x) + ¢) = 0 which implies that c(f*(x) — f~(x)) = ¢ (since f*(x)f~(x) = 0). Hence it follows that
either c = 0 or f*(x) — f~(x) = c. If c = 0 then g(x) = f*(x) which contradicts our assumption that g # f™.
Again if f*(x) — f~(x) = c then f*(x) = g(x) + ¢ = g(x) + f*(x) — f~(x) which implies that g(x) = f~(x). It
implies that g(x) < 0 whence it follows that g(x) = 0, since g € C4(X). So f(x) = h(x) < 0 which implies
f*(x) = 0 = g(x). This is again a contradiction to our assumption that g(x) # f*(x). Hence g = f*. So
h=f-g=f—-f*=f".Thereforeg= ffandh=f". O

Now, we will establish the converse of Theorem 4.2, i.e., if I'(C, (X)) and I'(C.(Y)) are graph isomorphic
then I'(C(X)) and I'(C(Y)) are graph isomorphic. For each graph isomorphism ¢ between I'(C.(X)) and
[(C+(Y)) we define ¢ : T(C(X)) — T(C(Y)) as follows:

P(f) = P(f) = p(=f),
where f = f* + f~ € [(C(X)). Then in view of Lemma 4.3 and Lemma 4.4, we prove the following.
Lemma 4.5. For any f € T[(C(X)),
(©) N[(f)IUN[P(=f7)] = [(C(Y)).
(iD) ¢(f1)-p(=f7) =0.
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@ii) (P()* = (f*) and (P(f)~ = =P(=f").
(iv) Z(p(fM) LV Z(@(=f7)) =Y.

Proof. (i) Clearly N[¢(f*)] U N[p(—f7)] € T(C+(Y)). Now, let y € T(C.(Y)). As ¢ is a graph isomorphism
between I'(C.(X)) and I'(C.(Y)), there exists x € I'(C.(x)) such that ¢(x) = y. Now, by Lemma 4.3 (ii),
N[f*]UN[-f7] = I(C+(X)) implies x € N[f*] U N[-f"]. Then x € N[f*] or x € N[—f"] which further
implies that ¢(x) € N[p(f*)] or p(x) € N[¢p(—f7)]. Hence it follows that y € N[¢(f")]UN[P(—f)]. Therefore
NIG(f)] U N[$(~f)] = T(C,(Y)).

(il) N[ (f)]UNIP(~ )] = T(C.(Y)) implies that N[¢(f).cp(~ )] = T(C.(¥)). Therefore p(f*).p(~f") =
0.

(iii) It follows from (ii) together with the definition of the mapping ¢ and Lemma 4.4.

(iv) We omit the proof as it follows immediately from (ii). [

In the following results we will show that the mapping ¢ defined above is a graph isomorphism between
I'(C(X)) and T(C(Y)).

Proposition 4.6. Let ¢ : T(C.(X)) = T(C.(Y)) be a graph isomorphism. Then the mapping ¢ is bijective.

Proof. Let h e T'(C(Y)). Then h = h* + h™, where h*,—h~ € I'(C.(Y)). Therefore there exist hy, hy € I'(C4(X))
such that (1) = h* and ¢(hp) = h~. Now h*.h~ = 0. Therefore by Lemma 4.5 (ii) and the fact that ¢! is also
a graph isomorphism, it follows that ¢p~!(h*).p"'(=h~) = 0 which implies h;.h, = 0. Let g = hy — hp. Then
applying Lemma 4.4 we get, g* = hy and g~ = —hy. So ¢(9) = ¢(g%) — Pp(=g7) = (1) — p(ha) = h* + h™ = h.
Hence ¢ is onto. The one-oneness of ¢ follows directly from Lemma 4.5 (ii), (iii) and Lemma 4.4. Therefore

¢ is bijective. [

Proposition 4.7. Let ¢ : T(C.(X)) — [(C.(Y)) be a graph isomorphism. Then the mapping ¢ is a graph homomor-
phism.

Proof. let us assume that f, g € I'(C(X)) such that f is adjacent to g. Then Z(f) N Z(g) # ® which implies
(Z(F) N Z(F) N (2" N Zg) # 0. Also Z(f) N Z(g) = Z(F> + %) # 0. So f*,—~f,q",~g, f* + &
are pairwise adjacent and N[f? + ¢%] is contained in N[f*],N[-f"],N[g*],N[-g"]. Since ¢ is a graph
isomorphism, by the neighbourhood property (see Theorem 3.19) it follows that N[¢(f? + g°)] is contained
in N[$(F)], N[$(~f )], N[g(g")], N[p(~g)]. Then Z((f* + %)) € Z((f) N Z(-p(~f) N Z(bg)
Z(—=¢(=g7)) # 0. It implies that Z(¢p(f)) N Z(¢p(g)) # O (using Lemma 4.5 (1)). Therefore ¢(f) and ¢(g) are
adjacent.

Now, let us assume that for f,g € T(C(X)), ¢(f) and ¢(g) be adjacent, i.e., Z(P(f)) N Z(P(g)) # 0. Then
Z(@(FNY) N Z(@(H)) N Z(B@)) N Z((@(g))") # 0 which implies Z(G(f*)) N Z(-p(~f)) N Z(b(g*) N
Z(~p(~g7)) # 0. Also Z(B(F)) N Z(3(@) = Z(GN) + B@)P) # 0. So G(F), p(—f), d(g*), (=9,

(P(f))* + (P(9))? are all adjacent and N[(P(f))? + (¢(g))*] is contained in

N[o(fM)], Nlop(—=f )], Nlgp(g)], Nlp(—g7)]. Since ¢ is a graph isomorphism, by the neighbourhood property
it follows that N[¢1 ((¢(f))* + (¢(9))*)] is contained in N[f*], N[-f~],N[g*],N[-g~]. Then Z(f*) N Z(f") N
Z(g*) N Z(g~) # 0. This implies Z(f) N Z(g) # 0. So f,g are adjacent to each other. Hence ¢ is a graph
homomorphism. [

Combining Propositions 4.6, 4.7, we have the following theorem.

Theorem 4.8. If I'(C. (X)) and I'(C.(Y)) are graph isomorphic then I'(C(X)) and T'(C(Y)) are graph isomorphic.
Therefore in view of Theorems 4.2 and 4.8 we have the following.

Theorem 4.9. I'(C. (X)) and I'(C.(Y)) are graph isomorphic if and only if T(C(X)) and I (C(Y)) are graph isomorphic.

Theorem 4.10. Let X and Y be two Hewitt spaces. X is homeomorphic to Y if and only if the graph T'(C.(X)) is
isomorphic to the graph I'(C.(Y)).
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Proof. By Theorem 5.8 and Corollary 5.11 of [16] it follows that X is homeomorphic to Y if and only if
I'(C(X)) is graph isomorphic to I'(C(Y)). Also by Theorem 4.9, I'(C(X)) and I'(C(Y)) are graph isomorphic if
and only if I'(C, (X)) and I'(C.(Y)) are graph isomorphic. Hence the result follows. [

Therefore combining Theorems 4.9, 4.10 and 2.5, we have the following result, which establishes the fact
that the graph structure of I'(C. (X)) is sensitive enough to distinguish the spaces belonging to the class of
all Hewitt spaces.

Theorem 4.11. Let X, Y be Hewitt spaces. Then the following are equivalent:
(1) X is homeomorphic to Y.
(i1) The semirings C.(X) and C,(Y) are isomorphic.
(iii) T(C+(X)) and T'(C(Y)) are graph isomorphic.
(iv) T(C(X)) and I'(C(Y)) are graph isomorphic.
(v) The rings C(X) and C(Y) are isomorphic.

X =Y (as hewitt spaces)

(as graphs) I'(C(X)) = I'(C(Y)) & » ['(C(X)) = I'(C.(Y)) (as graphs)

(as rings)C(X) = C(Y) &——» C.(X) = C.(Y) (as semirings)

The Combined Picture

5. Concluding remarks

To extend our work, it would be nice if one can try to characterize those subcollections of functions
(not necessarily forming any particular algebraic structure like rings or semirings) from I'(C(X)), which
preserves the graph structure of I'(C(X)). To be specific, let A(X) and A(Y) be two subcollections of functions
of I'(C(X)) and I'(C(Y)) respectively. Then we are two find those A(X) and A(Y) for which I'(C(X)) and
I'(C(Y)) are graph isomorphic if and only if A(X) and A(Y) are graph isomorphic.
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