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Abstract. In this paper, the notion of direct sum of a family of convex spaces is generalized to that of
a family of (L,M)-fuzzy convex spaces. Firstly, the related properties between the direct sum of a family
of (L,M)-convex spaces and its factor spaces are discussed. Secondly, the (L,M)-fuzzy direct sum convex
spaces are characterized by means of its some level L-direct sum convex spaces. Finally, the additivity of
separability (S−1, sub-S0, S0, S1, S2) are investigated.

1. Introduction

Convex set is a specific mathematical concept derived from convexity, which generally exists in many
mathematical structures such as vector spaces, metric spaces, median algebras, graphs, posets, and topolog-
ical spaces, etc [2]. Although the definition of convex sets varies in different mathematical structures, they
share certain properties in some aspects. Specifically, both empty set and universe set are convex sets; the
intersection of any family of non-empty convex sets is a convex set; the union of a family of totally ordered
convex sets is a convex set. These characteristics of convex sets inspire people to study the properties of
convexity in different mathematical structures from an axiomatic perspective, resulting in the theory of
abstract convex structures [24].

With the development of fuzzy mathematics, fuzzy convex theory has attracted the attention of re-
searchers. In 1994, Rosa [14] first proposed the concept of fuzzy convex spaces by combining fuzzy set
theory and convex structure theory. In 2009, based on Rosa’s work, Marugama [8] further proposed the
notion of L-convex spaces, where L is a completely distributive lattice. Recently, many scholars have con-
ducted research on L-convex spaces and obtained rich results. For example, Pang and Shi [9] introduced
various types of L-convex spaces and established internal relationships among them and classical convex
spaces from a categorical viewpoint. Pang and Xiu [9] established an axiom system for the basis and
subbases of L-convex spaces and provided their related applications. Shen and Shi [17] gave some novel
characterizations of L-convex structures based on way-below relations in a continuous lattice. Zhou and
Shi [35, 36] introuced some separability of L-convex spaces and proposed the concept of the sum of a family

2020 Mathematics Subject Classification. Primary 52A01; Secondary 54A40.
Keywords. Direct sum, (L,M)-convex space, L-convex space, M-fuzzifying spaces, separability, additivit.y
Received: 17 July 2024; Revised: 19 April 2025; Accepted: 24 April 2025
Communicated by Ljubiša D. R. Kočinac
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of L-convex spaces. Specifically, they proved that the separability of L-convex spaces satisfies additivity.
There are also some more comprehensive research on L-convex spaces [1, 13, 16, 29, 34].

In the framework of L-convex spaces, the convex structure on a set is a classical subset of its fuzzy
power set, that is, the convex structure is distinct. From the viewpoint of degree, in 2014, Shi and Xiu
[20] first proposed the concept of M-fuzzifying convex spaces. They discussed the basic properties of
M-fuzzifying convex spaces such as convexity preserving mapping, convex to convex mapping, subspaces,
product spaces and quotient spaces. After the concept of M-fuzzifying convex spaces was proposed, many
related research results have been generated. Xiu and Shi [30] proposed the notion of M-fuzzifying interval
operators, and discussed the relationship between the categories of M-fuzzifying convex spaces and M-
fuzzifying interval spaces. Liu and Shi [7] provided a method for inducing M-fuzzifying convex structures
using M-hazy lattices, and studied their related properties. Dong and Shi [3] studied the properties of
disjoint sums of a family of M-fuzzifying convex spaces. Shi [22] established equivalent axioms of M-
fuzzifying convex matroids. The latest research progress of M-fuzzifying convex spaces can be found in
[19, 23, 27, 28, 31].

Combining the ideas and methods of L-convex spaces and M-fuzzifying convex spaces, Shi and Xiu
[21] introduced a new approach to fuzzification of convex spaces, namely an (L,M)-fuzzy convex space. In
the framework of (L,M)-fuzzy convex spaces, Liang et.al. [6] used the properties of implication operators
to study the separability of (L,M)-fuzzy convex spaces. Subsequently, Zhao et.al. [33] gave some new
investigations on separation axioms in (L,M)-fuzzy convex spaces by L-fuzzy hull operators and r-L-
fuzzy biconvex. Pang [12] established axioms for bases,subbases,convex hull operators, and interval
operators, and used them to study the related properties of (L,M)-fuzzy convex spaces. Zhang and Pang
[32] presented the concepts of (L,M)-remotehood spaces and (L,M)-convergence spaces, and studied their
related properties. Due to the fact that classical convex spaces, L-convex spaces, and M-fuzzifying convex
spaces can all be treated as special cases of (L,M)-fuzzy convex spaces, studying this more general case of
fuzzy convex spaces becomes more complex.

The direct sum of a family of convex spaces is a basic and very useful operation [24]. At present, there
are no researchers discussing the problem of the direct sum of (L,M)-fuzzy convex spaces. Therefore,
studying the direct sum of a family of (L,M)-fuzzy convex spaces has important theoretical value. It can
further improve the theory of fuzzy convex spaces. In this paper, on the idea of [36], we shall generalize
the direct sum of a family of L-convex spaces to (L,M)-fuzzy setting. This paper is organized as follows.
In Section 2, we recall some basic and necessary concepts that are required in subsequence sections. In
Section 3, the direct sum of a family of (L,M)-fuzzy convex spaces is introduced and some basic properties
are discussed. In Section 4, we characterize an (L,M)-fuzzy direct sum convex space by its level L-direct
sum convex space. In Section 5, we examine the additivity of S−1, sub-S0, S0, S1 and S2 separability for
(L,M)-fuzzy convex spaces.

2. Preliminaries

Throughout this paper, both L and M denote completely distributive lattices with order-reversing
involution ′, unless otherwise stated. For a nonempty set X, LX denotes the family of all L-sets on X. The
smallest element and the largest element(called also the zero-element and the unit element)in L are denoted
by ⊥L and ⊤L, respectively. Obviously, LX is also a completely distributive lattice with an order-reversing
involution ′ under the pointwise order. The two L-sets ⊥LX and ⊤LX are smallest and largest elements of LX,
respectively.

An element a ∈ L is called a prime element if a ⩾ b ∧ c implies a ⩾ b or a ⩾ c. a in L is called co-prime
element provided that a ⩽ b ∨ c implies a ⩽ b or a ⩽ c for all b, c ∈ L. The set of non-unit prime elements
in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by J(L). From [25] we know
that in a completely distributive lattice, each element is the sup of co-prime elements and the inf of prime
elements.

In the sequel, the binary relation ≺ on L can be used to define two new cut sets of an L-set. The binary
relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if for every subset D ⊆ L, the relation
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b ⩽ sup D always implies the existence of d ∈ D with a ⩽ d. Moreover, the binary relation ≺op in L is defined
as follows: for a, b ∈ L, a ≺op b if and only if for every subset D ⊆ L, the relation b ⩾ inf D always implies
the existence of d ∈ D with a ⩾ d. {a ∈ L : a ≺op b} is called the greatest maximal family of b in sense of [25],
denoted by α(b). In a completely distributive lattice L, b = ∧α(b).

Let A ∈ LX and a ∈ L. Define A[a] = {x ∈ X : A(x) ⩾ a}, A[a] = {x ∈ X : a < α
(
A(x)
)
} and A(a) = {x ∈ X :

A(x) ⩽̸ a}. Some properties of these cut sets can be found in [4].
For each x ∈ X and λ ∈ L, the L-set xλ, defined by

∀y ∈ X, xλ(y) =
{
λ, y = x;
⊥L, y , x.

is called an L-fuzzy point of X.
Let X and Y be two nonempty sets. For a mapping f : X −→ Y, we define f→L : LX

−→ LY and
f←L : LY

−→ LX as follows:

∀A ∈ LX, y ∈ Y, f→L (A)(y) =
∨

f (x)=y A(x);

and

∀B ∈ LY, x ∈ X, f←L (B)(x) = B( f (x)).

Definition 2.1. ([25]) Let A ∈ LX and ∅ , Y ⊆ X. The L-set A|Y ∈ LY defined by

(A|Y)(y) = A(y) for all y ∈ Y,

is called the restriction of A to Y.

Proposition 2.2. ([25]) For each {At}t∈T ⊆ LX, A ∈ LX, ∅ , Y ⊆ X. We have the following results:

(1) (
∨

t∈T At)|Y =
∨

t∈T(At|Y).
(2) (
∧

t∈T At)|Y =
∧

t∈T(At|Y).
(3) A′|Y = (A|Y)′.

Definition 2.3. ([25]) Let ∅ , Y ⊆ X and A ∈ LY. Define two L-sets A∗,A⋆ ∈ LX as follows:

∀x ∈ X, A∗(x) =
{

A(x), x ∈ Y;
⊥L, x < Y,

∀x ∈ X, A⋆(x) =
{

A(x), x ∈ Y;
⊤L, x < Y.

Clearly, xλ ∈ J(LY) implies x∗λ ∈ J(LX). In particular, A∗|Y = A and A⋆|Y = A .

In [12, 21], the authors extended the notion of classical convex structures to the notion of (L,M)-fuzzy
convex structures as follows.

Definition 2.4. ([12, 21]) A mapping C : LX
−→M is called an (L,M)-fuzzy convex structure on X if it fulfills

the following assertions:

(LMFC1) C(⊥LX ) = C(⊤LX ) = ⊤M;
(LMFC2) If {Ai}i∈I ⊆ LX is nonempty, then C(

∧
i∈I

Ai) ⩾
∧
i∈I
C(Ai);

(LMFC3) If {A j} j∈J ⊆ LX is nonempty and totally ordered by inclusion, then C(
∨
j∈J

A j) ⩾
∧
j∈J
C(A j).

If C is an (L,M)-fuzzy convex structure on X, then (X,C) is called an (L,M)-fuzzy convex space. In this
case, C(A) can be regarded as the degree to which A is an L-convex set.
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Remark 2.5. From Definition 2.4, we know that an (L, 2)-fuzzy convex space is also called an L-convex
space. A (2,M)-fuzzy convex space is also called an M-fuzzifying convex space which has been considered
in [20]. A crisp convex space can be regarded as a (2, 2)-fuzzy convex space.

Proposition 2.6. ([21]) Let (X,C) be an (L,M)-fuzzy convex space and ∅ , Y ∈ 2X. Then (Y,C|Y) is an (L,M)-fuzzy
convex structure on Y, where for each A ∈ LY,

(C|Y)(A) =
∨
{C(B) : B ∈ LX,B|Y = A}.

We call (Y,C|Y) an (L,M)-fuzzy subspace of (X,C).

Definition 2.7. ([12, 21]) Let f : (X,C) −→ (Y,D) be a mapping between (L,M)-fuzzy convex spaces. Then
(1) f is called (L,M)-fuzzy convexity preserving if C( f←L (B)) ⩾ D(B) for all B ∈ LY;
(2) f is called (L,M)-fuzzy convex-to-convex if C(A) ⩽ D( f→L (A)) for all A ∈ LX.

Based on the above definitions, we have the following concepts.

Definition 2.8. Let f : (X,C) −→ (Y,D) be a mapping between (L,M)-fuzzy convex spaces.
(1) If f is a bijective (L,M)-fuzzy convexity preserving and (L,M)-fuzzy convex-to-convex mapping, then

f is (L,M)-fuzzy isomorphic.
(2) If f | f→(X) : (X,C) −→ ( f→(X),D| f→(X)) is an (L,M)-fuzzy isomorphism, then f is called (L,M)-emdedding.

3. Direct sums of (L,M)-fuzzy convex spaces

In this section, we will establish the connections between the sum of a family of (L,M)-fuzzy convex
spaces and its factor spaces. These results will be useful in the following sections. First of all, we give
a lemma to show that a family of (L,M)-fuzzy convex structures can induce a new (L,M)-fuzzy convex
structure with respect to a mapping family.

Lemma 3.1. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces and X be a nonempty set. If ft : Xt −→ X is
a mapping for all t ∈ T, then the mapping C : LX

−→M defined by

∀B ∈ LX,C(B) =
∧
t∈T

Ct

(
( ft)←L (B)

)
is an (L,M)-fuzzy convex structure on X.

Proof. It suffices to verify that C satisfies (LMFC1)-(LMFC3). In fact,
(LMFC1) For each t ∈ T, we can easily obtain that ( ft)←L (⊥LX ) = ⊥LXt and ( ft)←L (⊤LX ) = ⊤LXt .
Since (Xt,Ct) is an (L,M)-fuzzy convex space for all t ∈ T, we have

C(⊥LX ) =
∧
t∈T

Ct

(
( ft)←L (⊥LX )

)
=
∧
t∈T

Ct(⊥LX ) = ⊤M

and
C(⊤LX ) =

∧
t∈T

Ct

(
( ft)←L (⊤LX )

)
=
∧
t∈T

Ct(⊤LX ) = ⊤M.

(LMFC2) Let {Ai}i∈I ⊆ LX be nonempty. Then we obtain∧
i∈I
C(Ai) =

∧
i∈I

∧
t∈T
Ct

(
( ft)←L (Ai)

)
=
∧
t∈T

∧
i∈I
Ct

(
( ft)←L (Ai)

)
⩽
∧
t∈T
Ct

(∧
i∈I

( ft)←L (Ai)
)

=
∧
t∈T
Ct

(
( ft)←L (

∧
i∈I

Ai)
)

= C(
∧
i∈I

Ai).
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(LMFC3) Let {A j} j∈J be a totally ordered subset of LX. Then {( ft)←L (A j)} j∈J is totally ordered subset of LXt

for all t ∈ T. It follows that ∧
j∈J
C(A j) =

∧
j∈J

∧
t∈T
Ct

(
( ft)←L (A j)

)
=
∧
t∈T

∧
j∈J
Ct

(
( ft)←L (A j)

)
⩽
∧
t∈T
Ct

(∨
j∈J

( ft)←L (A j)
)

=
∧
t∈T
Ct

(
( ft)←L (

∨
j∈J

A j)
)

= C(
∨
j∈J

A j).

This shows that C is an (L,M)-fuzzy convex structure on X.

Based on the above lemma, we introduce the definition of the direct sum of a family of (L,M)-fuzzy
convex spaces. .

Definition 3.2. Let {(Xt,Ct)}t∈T be a family of pairwise disjoint (L,M)-fuzzy convex spaces, i.e., Xt1 ∩Xt2 = ∅
for t1 , t2. Consider the set X =

⋃
t∈T Xt and ∀t ∈ T, jt : Xt −→ X is the usual inclusion mapping (i.e.,

∀x ∈ Xt, jt(x) = x). Define
∀B ∈ LX,C(B) =

∧
t∈T

Ct

(
( jt)←L (B)

)
Then C is called the (L,M)-fuzzy sum convex structure of {Ct}t∈T and denoted by

∑
t∈T Ct, briefly

∑
Ct. The

(L,M)-fuzzy convex space (X,
∑
Ct) is called the (L,M)-fuzzy sum convex space of {(Xt,Ct)}t∈T, written as∑

t∈T(Xt,Ct) and briefly
∑

(Xt,Ct).

Remark 3.3. The preceding definition requires that Xt’s (t ∈ T) must be disjoint. In fact, this requirement
will not limit us seriously. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces. Let Yt = Xt × {t} for all
t ∈ T. Then Yt ∩ Ys = ∅ for t , s. For each t ∈ T, we know that the usual mapping ft : Yt −→ Xt, (x, t) 7→ x
is bijective. Define Dt : LYt −→M such that Dt(A) = Ct

(
( ft)→L (A)

)
for all A ∈ LYt . One can readily verify that

Dt is an (L,M)-fuzzy convex structure on Yt and ft : (Yt,Dt) −→ (Xt,Ct) is an (L,M)-fuzzy isomorphism.
Therefore, there is no difference between (Yt,Dt) and (Xt,Ct) from the point of view of isomorphism, and
we can define the sum of any family of (L,M)-fuzzy convex spaces (up to an (L,M)-fuzzy isomorphism).
For convenience, we still use Definition 3.2 to study the related problems in later discussions.

The following propositions shows the close relationships between the direct sum of a family of (L,M)-
fuzzy convex spaces and its factor spaces.

Proposition 3.4. Let (X,C) =
∑

(Xt,Ct). Then for any A ∈ LX, we have

(1) C(A) =
∧
t∈T
Ct(A|Xt ).

(2) C(A) =
∨

A=
∨

t∈T A∗t

∧
t∈T
Ct(At).

Proof. (1) It is easy to verify that ( jt)←L (A) = A|Xt for all t ∈ T and A ∈ LX. By Definition 3.2, we obtain

C(A) =
∧
t∈T

Ct

(
( jt)←L (A)

)
=
∧
t∈T

Ct(A|Xt ).

(2) For each x ∈ X =
⋃

t∈T Xt, there exists s ∈ T such that x ∈ Xs and x < Xt(t , s). Let At = ( jt)←L (A) for all
t ∈ T. Then we have

A∗t =
(
( jt)←L (A)

)∗
= (A|Xt )

∗.

It follows that
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(
∨

t∈T A∗t)(x) =
(∨

t∈T

(
( jt)←L (A)

)∗)
(x)

=
(∨

t∈T,t,s

(
( jt)←L (A)

)∗)
(x) ∨

(
( js)←L (A)

)∗
(x)

=
(∨

t∈T,t,s(A|Xt )
∗
)
(x) ∨ (A|Xs )

∗(x)
= (A|Xs )

∗(x)
= A(x).

It implies that
∨

t∈T A∗t = A. Thus, we obtain that∨
A=
∨

t∈T A∗t

∧
t∈T

Ct(At) ⩾
∧
t∈T

Ct

(
( jt)←L (A)

)
= C(A).

Conversely, let a be any element in L with the property of

a ≺
∨

A=
∨

t∈T A∗t

∧
t∈T

Ct(At).

Then there exists a family of {At}t∈T such that A =
∨

t∈T A∗t and Ct(At) ⩾ a for all t ∈ T. Note that
∀k ∈ T, ( jk)←L (A) = Ak, so we obtain that

Ck(Ak) = Ck

(
( jk)←L (A)

)
⩾ a

for all k ∈ T. Finally we get C(A) =
∧
t∈T
Ct(At) ≥ a. This shows that

C(A) ⩾
∨

A=
∨

t∈T A∗t

∧
t∈T

Ct(At).

Therefore the equality (2) holds.

Proposition 3.5. Let (X,C) =
∑

(Xt,Ct). Then we have the following assertions:

(1) ∀t ∈ T, C(⊤∗
LXt

) = C(⊥∗
LXt

) = ⊤M.
(2) ∀t ∈ T, C(⊤⋆

LXt
) = C(⊥⋆

LXt
) = ⊤M.

(3) ∀t ∈ T and At ∈ LXt , C(A∗t) = Ct(At).
(4) C is the unique (L,M)-fuzzy convex structure on X which possess the following properties:

(i) ∀t ∈ T, (Xt,Ct) is a subspace of (X,C), i.e., C|Xt = Ct,
(ii) ∀t ∈ T and At ∈ LXt , C(A⋆t ) = Ct(At).

Proof. (1) Fixing any k ∈ T, then C(⊤∗
LXk

) =
∧
t∈T
Ct

(
j←t (⊤∗

LXk
)
)
. Since j←k (⊤∗

LXk
) = ⊤LXk and when t ∈ T − {k},

j←k (⊤∗
LXk

) = ⊥LXt , we have

C(⊤∗
LXk

) =
∧
t∈T

Ct

(
j←t (⊤∗

LXk
)
)
= Ck(⊤LXk ) = ⊤M.

Analogously, we obtain C(⊥∗
LXk

) = ⊤M. This indicates that the conclusion (1) is true.
(2) The proof process is similar to (1).
(3) Fixing any s ∈ T, since j←s (A∗s) = As and when t , t0, j←s (A∗s) = ⊥LXt , we obtain

C(A∗s) =
∧
t∈T

Ct

(
j←s (A∗s)

)
= Cs(As).

It follows that C(A∗t) = Ct(At) for all t ∈ T and At ∈ LXt .
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(4) Firstly, we prove that C satisfies the properties of (i) and (ii). In fact, let a ≺ (C|Xt )(A), where A ∈ LXt

and a ∈ L. Since
(C|Xt )(A) =

∨
B|Xt=A

C(B),

it follows that there exists B ∈ LX such that B|Xt = A and a ⩽ C(B). Notice that

C(B) =
∧
t∈T

Ct

(
j←t (B)

)
=
∧
t∈T

Ct(B|Xt ),

so we obtain that Ct(A) = Ct(B|Xt ) ⩾ a for all t ∈ T. It implies that C|Xt ⩽ Ct.
Conversely, let s ∈ T and A ∈ LXs . Suppose that B =

∨
t∈T

A∗t , where ∀t ∈ T − {s},At = ⊥Xt and As = A, then

C(B) =
∨

B=
∨

t∈T A∗t

∧
t∈T

Ct(At) ⩾ Cs(A)

by Proposition 3.4. Notice that B|Xs = A, so we obtain that

(C|Xt )(A) =
∨

B|Xt=A

C(B) ⩾ C(B) ⩾ Cs(A)

for all s ∈ T, i.e., C|Xs ⩾ Cs. It shows that C possesses the property (i).
Furthermore, taking any k ∈ T, we obtain

j←k (A⋆k ) =
{

Ak, t = k;
⊤LXt , t , k.

Therefore, we have
C(A⋆k ) =

∧
t∈T

Ct

(
j←k (A⋆k )

)
= Ck(Ak).

for all k ∈ T. This means that C possesses the property (ii).
Secondly, suppose that D is an arbitrary (L,M)-fuzzy convex structure on X with properties (i) and (ii).

We need to prove that D = C. In fact, let D(A) ⩾ a for a ∈ L,A ∈ LX. Then we obtain that

Ct(A|Xt ) = (D|Xt )(A|Xt ) =
∨

B∈LX ,B|Xt=A|Xt

D(B) ⩾ D(A) ⩾ a.

It follows that
C(A) =

∧
t∈T

Ct

(
j←t (A)

)
=
∧
t∈T

Ct(A|Xt ) ⩾ a

It implies that D(A) ⩽ C(A). Thus, D ⩽ C.
Conversely, let a ≺ C(A) for a ∈ L, A ∈ LX. Then

∀t ∈ T, a ≺ Ct(A|Xt ) = Ct

(
j←t (A)

)
.

Moreover, we obtain that
a ≺ Ct(A|Xt ) = (D|Xt )(A|Xt ) =

∨
B∈LX ,B|Xt=A|Xt

D(B)

for all t ∈ T. Hence, there exists B(t) ∈ LX such that B(t)|Xt = A|Xt and a ⩽ D
(
B(t)
)

for all t ∈ T.
For each x ∈ X, there exists s ∈ T such that x ∈ Xs and x < Xt(t , s). Thus, we obtain

A(x) = (A|Xs )(x) = A⋆s (x) = (
∧
t∈T

A⋆t )(x).
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This means that A =
∧
t∈T

A⋆t . It follows that

D(A) = D(
∧
t∈T

A⋆t ) ⩾
∧
t∈T
D(A⋆t )

=
∧
t∈T
Ct(At) =

∧
t∈T
Ct(A|Xt )

=
∧
t∈T
Ct

(
B(t)|Xt

)
=
∧
t∈T

∨
B∈LX ,B|Xt=B(t)|Xt

D(B)

⩾
∧
t∈T
D
(
B(t)
)

⩾ a.

This shows that C(A) ⩽ D(A). Consequently, we obtain D = C. This completes the proof.

Proposition 3.6. Let (X,C) =
∑

(Xt,Ct). Then we have the following assertions:

(1) C is the finest (L,M)-fuzzy convex structure on X such that jt is an (L,M)-fuzzy convexity preserving mapping
for all t ∈ T.

(2) For each (L,M)-fuzzy convex space (Y,D), 1 : (X,C) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping
if and only if 1 ◦ jt : (Xt,Ct) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping for all t ∈ T.

(3) jt : (Xt,Ct) −→ (X,C) is an (L,M)-fuzzy embedding mapping for all t ∈ T.
(4) Let (Y,D) be an (L,M)-fuzzy convex space and {1t : (Xt,Ct) −→ (Y,D)} be a family of (L,M)-fuzzy convexity

preserving mappings. Then there exists an (L,M)-fuzzy convexity preserving mapping h : (X,C) −→ (Y,D) such
that h ◦ jt = 1t for all t ∈ T.

Proof. (1) LetD be an (L,M)-fuzzy convex structure on X such that jt is an (L,M)-fuzzy convexity preserving
mapping for all t ∈ T. Then we obtain

∀t ∈ T,A ∈ LX,D(A) ⩽ Ct

(
( jt)←L (A)

)
.

It follows that D(A) ⩽
∧
t∈T
Ct

(
( jt)←L (A)

)
= C(A). Hence, D ⩽ C.

(2) Since 1 : (X,C) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping, it follows that

D(B) ⩽ C
(
1←L (B)

)
=
∧
t∈T

Ct

(
( jt)←L (1←L (B))

)
⩽ Ct

(
(1 ◦ jt)←L (B)

)
for all B ∈ D and t ∈ T. This means that 1 ◦ jt : (Xt,Ct) −→ (Y,D) is an (L,M)-fuzzy convexity preserving
mapping for all t ∈ T.

Conversely, notice that 1 ◦ jt : (Xt,Ct) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping, so we
obtain

∀A ∈ LY,D(A) ⩽ Ct

(
(1 ◦ jt)←L (A)

)
= Ct

(
( jt)←L (1←L (A))

)
for all t ∈ T. Thus

D(A) ⩽
∧
t∈T

Ct

(
( jt)←L (1←L (A))

)
= C
(
1←L (A)

)
.

It implies that 1 : (X,C) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping.
(3) We need to show that

jt| j
→

t (Xt) : (Xt,Ct) −→ ( j→t (Xt),C| j→t (Xt))

is an (L,M)-fuzzy isomorphism. Note that

j→t (Xt) = Xt, C|Xt = Ct
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and

idXt : (Xt,Ct) −→ (Xt,Ct)

is an (L,M)-fuzzy isomorphism, so we obtain that jt| j
→

t (Xt) = idXt is an (L,M)-fuzzy isomorphism. Hence
jt : (Xt,Ct) −→ (X,C) is (L,M)-fuzzy embedding for all t ∈ T.

(4) For each x ∈ X =
⋃

t∈T Xt, there exists t ∈ T such that x ∈ Xt. We define h(x) = 1t(x). Obviously,
h ◦ jt = 1t for all t ∈ T. Since 1t : (Xt,Ct) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping for all
t ∈ T, it follows that D(D) ⩽ Ct

(
(1t)←L (D)

)
for all D ∈ LY. Thus, we have

D(D) ⩽ Ct

(
(1t)←L (D)

)
= Ct

(
( jt)←L (h←L (D))

)
= Ct

(
(h ◦ jt)←L (D)

)
for all t ∈ T. Hence

D(D) ⩽
∧
t∈T
Ct

(
(h ◦ jt)←L (D)

)
= Ct

(
( jt)←L (h←L (B))

)
.

This means that h : (X,C) −→ (Y,D) is an (L,M)-fuzzy convexity preserving mapping.

Proposition 3.7. Let (X,C) =
∑

(Xt,Ct). For each t ∈ T, if Yt ⊆ Xt and Y =
⋃

t∈T Yt, then C|Y =
∑

t∈T(Ct|Yt ).

Proof. Let jt : Xt −→ X =
⋃

t∈T Xt be the usual inclusion mapping and jt|Yt : Yt −→ Y =
⋃

t∈T Yt be
the restriction of jt to Yt for all t ∈ T. We shall first prove C|Y ≤

∑
t∈T(Ct|Yt ). It is easy to verity that

( jt|Yt )
←

L (B) = B|Yt for all B ∈ LY.
From Definition 3.2, we obtain∑

t∈T(Ct|Yt )(B) =
∧
t∈T

(Ct|Yt )
(
( jt|Yt )

←

L (B)
)

=
∧
t∈T

(Ct|Yt )(B|Yt )

=
∧
t∈T

∨
{Ct(D) : D ∈ LXt ,D|Yt = B|Yt }

for all B ∈ LY.
Furthermore, for any B ∈ LY, we have

(C|Y)(B) =
∨
{C(C) : C ∈ LX,C|Y = B}

=
∨
{
∧
t∈T
Ct

(
( jt)←L (C)

)
: C ∈ LX,C|Y = B}

=
∨
{
∧
t∈T
Ct(C|Xt ) : C ∈ LX,C|Y = B}

Note that for any C ∈ LX with C|Y = B and Yt ⊆ Xt for all t ∈ T, so we obtain (C|Xt )|Yt = C|Yt = B|Yt . It
follows that

Ct(C|Xt ) ⩽
∨
{Ct(D) : D ∈ LXt ,D|Yt = B|Yt }.

Hence
(C|Y)(B) =

∨
{
∧
t∈T
Ct(C|Xt ) : C ∈ LX,D|Y = B)}

⩽
∧
t∈T

∨
{Ct(D) : D ∈ LXt ,D|Yt = B|Yt }

=
∑

t∈T(Ct|Yt )(B)

for all B ∈ LY. It implies that C|Y ⩽
∑

t∈T(Ct|Yt ).
Next, we need to show that

∑
t∈T(Ct|Yt ) ⩽ C|Y. Suppose that

a ≺
∑

t∈T(Ct|Yt )(B) =
∧
t∈T

∨
{Ct(D) : D ∈ LXt ,D|Yt = B|Yt }

for B ∈ LY. For any t ∈ T, there exists Dt ∈ LXt such that Dt|Yt = B|Yt and a ⩽ Ct(Dt). Let C =
∨
t∈T

D∗t ∈ LX.

Then
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C|Y = C|(⋃
t∈T

Yt) =
∨
t∈T

(C|Yt ) =
∨
t∈T

(B|Yt ) = B.

Note that a ⩽ Ct(Dt) = Ct(C|Xt ) for all t ∈ T, so we obtain a ⩽
∧
t∈T
Ct(C|Xt ), where C|Y = B. Thus,

(C|Y)(B) =
∨
{
∧
t∈T
Ct(C|Xt ) : C ∈ LX,C|Y = B} ⩾ a.

This means that
∑

t∈T(Ct|Yt )(B) ≤ (C|Y)(B) for all B ∈ LY. Therefore, we obtain C|Y =
∑

t∈T(Ct|Yt ).

4. Characterizations of direct sums of (L,M)-fuzzy convex spaces

In[36], Zhou and Shi studied the related properties of direct sums of a family of L-convex spaces. In
this section, based on the relevant conclusions in[36], we use the cut sets of (L,M)-fuzzy convex spaces to
characterize their direct sum properties. For this purpose, we first provide the following lemma.

Lemma 4.1. Let X be a nonempty set and let C : LX
→ M be a mapping. Then the following conditions are

equivalent:

(1) (X,C) is an (L,M)-fuzzy convex space;
(2) For each a ∈ J(M), (X,C[a]) is an L-convex space;
(3) For each a ∈ α(⊥M), (X,C[a]) is an L-convex space;
(4) For each a ∈ P(M), (X,C(a)) is an L-convex space.
(5) For each a ∈ β(⊤M), if β(∧i∈Iai) = ∩i∈Iβ(ai) for all {ai}i∈I ⊆M, then (X,C(a) is an L-convex space.

Proof. (1)⇔ (2)⇔ (3) have been proved in [21]. Now we prove (1)⇔ (4) and (1)⇔ (5).
(1) ⇒ (4). Suppose that (X,C) is an (L,M)-fuzzy convex space. Then C(⊥LX ) = C(⊤LX ) = ⊤M, it follows

that C(⊥LX ) ⩽̸ a, C(⊤LX ) ⩽̸ a for any a ∈ P(M). Therefore ⊥LX ,⊤LX ∈ C(a) for any a ∈ P(M).
If {Ai}i∈I ⊆ C

(a), then C(Ai) ⩽̸ a for all i ∈ I. It implies that
∧

i∈I C(Ai) ⩽̸ a. By C(
∧

i∈I Ai) ⩾
∧

i∈I C(Ai), we
obtain C(

∧
i∈I Ai) ⩽̸ a, i.e.,

∧
i∈I Ai ∈ C

(a).
If {A j} j∈J ⊆ C

(a) is totally ordered, then C(A j) ⩽̸ a for all j ∈ J. It follows that
∨

j∈J C(A j) ⩽̸ a. Thus∨
j∈J A j ∈ C

(a).
(4) ⇒ (1). Suppose that (X,C(a)) is an L-convex space for each a ∈ P(M). Then we know that ⊥LX ∈ C(a)

and ⊤LX ∈ C(a) for each a ∈ P(M). This implies that C(⊥LX ) ⩽̸ a and C(⊤LX ) ⩽̸ a for each a ∈ P(M). Therefore
C(⊥LX ) = C(⊤LX ) = ⊤M.

If {Ai}i∈I is nonempty, take any a ∈ P(M) with
∧

i∈I C(Ai) ⩽̸ a. Then C(Ai) ⩽̸ a for any i ∈ I. It follows that
Ai ∈ C

(a) for all i ∈ I. Thus
∧

i∈I Ai ∈ C
(a). This means that C(

∧
i∈I Ai) ⩽̸ a. By the arbitrariness of a, we obtain

C(
∧

i∈I Ai) ⩾
∧

i∈I C(Ai).
Let {A j} j∈J be totally ordered. Take any a ∈ P(M) with

∧
j∈J C(A j) ⩽̸ a. Then C(A j) ⩽̸ a for any j ∈ J. It

follows that A j ∈ C
(a) for all j ∈ J. Thus

∨
j∈J A j ∈ C

(a). This means that C(
∨

j∈J A j) ⩽̸ a. By the arbitrariness
of a, we obtain C(

∧
j∈J) ⩾

∧
j∈J C(A j).

(1) ⇒ (5). Suppose that (X,C) is an (L,M)-fuzzy convex space. Then C(⊥LX ) = C(⊤LX ) = ⊤M. It follows
that ⊥LX ,⊤LX ∈ C(a) for all a ∈ β(⊤M).

If {Ai}i∈I ⊆ C(a), then a ∈ β
(
C(Ai)

)
for all i ∈ I. Since C is an (L,M)-fuzzy convex space and β(∧i∈Iai) =

∩i∈Iβ(ai), it follows that
a ∈ ∩i∈Iβ

(
C(Ai)

)
= β
(
∧i∈I C(Ai)

)
⊆ β
(
C(∧i∈IAi)

)
.

This means that ∧i∈IAi ∈ C(a).
If {A j} j∈J ⊆ C(a) is totally ordered, then we obtain a ∈ β

(
C(A j)

)
for all j ∈ J. It follows that

a ∈ ∩ j∈Jβ
(
C(A j)

)
= β
(
∧ j∈J C(A j)

)
⊆ β
(
C(∨ j∈IAJ)

)
.

It implies that ∨ j∈JA j ∈ C(a).
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(5) ⇒ (1). Let β(∧i∈Iai) = ∩i∈Iβ(ai) and a ∈ β(⊤M). If (X,C(a)) is an L-convex space, then ⊥LLX ,⊤LLX ∈ C(a)

for all a ∈ β(⊤M). It implies that a ∈ β
(
C(⊥LX ) and a ∈ β

(
C(⊤LX ). Therefore C(⊥LX ) = C(⊤LX ) = ⊤M.

Let {Ai}i∈I ⊆ LX be nonempty and β(∧i∈Iai) = ∩i∈Iβ(ai), take any a ∈ β(⊤M) with a ≺
∧

i∈I C(Ai). Then
a ≺ C(Ai) for all i ∈ I, i.e., a ∈ β

(
(Ai)
)
. This means that Ai ∈ C(a) for all i ∈ I. It follows that

∧
i∈I Ai ∈ C(a).

Therefore a ∈ β
(
C(∧i∈IAi)

)
, i.e., a ≺ C(

∧
i∈I Ai). By the arbitrariness of a, we obtain C(

∧
i∈I Ai) ⩾

∧
i∈I C(Ai).

Let {A j} j∈J ⊆ LX be totally ordered and β(∧i∈Iai) = ∩i∈Iβ(ai), take any a ∈ β(⊤M) with a ≺
∧

j∈J C(A j).

Then a ≺ C(A j) for all j ∈ J, i.e., a ∈ β
(
(A j)
)
. This means that A j ∈ C(a) for all j ∈ J. It follows that∨

j∈J A j ∈ C(a). Therefore a ∈ β
(
C(
∨

j∈J A j)
)
, i.e., a ≺ C(

∨
j∈J A j)

)
. By the arbitrariness of a, we obtain

C(
∨

i∈I Ai) ⩾
∧

i∈I C(Ai).

An (L,M)-fuzzy direct sum convex space can be characterized by means of its level L-direct sum convex
spaces as follows:

Theorem 4.2. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces and C : LX
→M be a mapping, where X is

the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ J(M), (X,C[a]) is the L-direct sum convex space of {(Xt, (Ct)[a])}t∈T.

Proof. (1) ⇒ (2). By Lemma 4.1(2), we know that {(Xt, (Ct)[a])}t∈T is a family of L-convex spaces for each
a ∈ J(M). Since (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T, C(A) =

∧
t∈T
Ct

(
( ft)←L (A)

)
for

each A ∈ LX. For each a ∈ J(M), we obtain

A ∈ C[a] ⇔ C(A) =
∧
t∈T
Ct

(
( ft)←L (A)

)
⩾ a

⇔ ∀t ∈ T,Ct

(
( ft)←L (A)

)
⩾ a

⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a].

Thus C[a] = {A ∈ LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a]} for each a ∈ J(M). Hence (X,C[a]) is the L-direct sum convex
space of {(Xt, (Ct)[a])}t∈T for each a ∈ J(M).

(2)⇒ (1). Since (X,C[a]) is the L-direct sum convex space of {(Xt, (Ct)[a])}t∈T for each a ∈ J(M), C[a] = {A ∈
LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a]} for each a ∈ J(M). Thus we obtain

C(A) ⩾ a⇔ A ∈ C[a] ⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a] ⇔
∧
t∈T
Ct

(
( ft)←L (A)

)
⩾ a

It follows that
C(A) =

∨
{a ∈ J(M) : C(A) ⩾ a}

=
∨
{a ∈ J(M) :

∧
t∈T
Ct

(
( ft)←L (A)

)
⩾ a}

=
∧
t∈T
Ct

(
( ft)←L (A)

)
.

This implies that (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T.

Corollary 4.3. Let {(Xt,Ct)}t∈T be a family of M-fuzzifying convex spaces and C : 2X
→ M be a mapping, where X

is the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the M-fuzzifying convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ J(M), (X,C[a]) is the direct sum convex space of {(Xt, (Ct)[a])}t∈T.

Theorem 4.4. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces and C : LX
→M be a mapping, where X is

the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T;
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(2) For each a ∈ α(⊥M), (X,C[a]) is the L-direct sum convex space of {(Xt, (Ct)[a])}t∈T.

Proof. (1) ⇒ (2). By Lemma 4.1(3), we know that {(Xt,Ct
[a])}t∈T is a family of L-convex spaces for each

a ∈ α(⊥M). Since (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T, it follows that C(A) =∧
t∈T
Ct

(
( ft)←L (A)

)
for each A ∈ LX. For each a ∈ α(⊥M), we obtain

A ∈ C[a]
⇔ a < α((A)) = α

( ∧
t∈T
Ct

(
( ft)←L (A)

)
⇔ a <

⋃
t∈T
α
(
Ct(( ft)←L (A))

)
⇔ ∀t ∈ T, a < α

(
Ct(( ft)←L (A))

)
⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a].

Thus C[a] = {A ∈ LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a]
} for each a ∈ α(⊥M). Hence (X,C[a]) is the L-direct sum convex

space of {(Xt, (Ct)[a])}t∈T for each α(⊥M).
(2)⇒ (1). Since (X,C[a]) is the L-direct sum convex space of {(Xt, (Ct)[a])}t∈T for each, C[a] = {A ∈ LX : ∀t ∈

T, ( ft)←L (A) ∈ (Ct)[a]
} for each a ∈ α(⊥M). Thus we obtain

a < α(C(A)) ⇔ A ∈ C[a]

⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)[a]

⇔ a <
⋃
t∈T
α
(
Ct(( ft)←L (A))

)
⇔ a < α

(∧
t∈T Ct(( ft)←L (A))

)
.

Hence α(C(A)) = α
(∧

t∈T Ct(( ft)←L (A))
)
,and thus

C(A) =
∧
α(C(A)) =

∧
α
(∧

t∈T Ct(( ft)←L (A))
)
=
∧

t∈T Ct(( ft)←L (A))

This implies that (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T.

Corollary 4.5. Let {(Xt,Ct)}t∈T be a family of M-fuzzifying convex spaces and C : 2X
→ M be a mapping, where X

is the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the M-fuzzifying convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ α(⊥M), (X,C[a]) is the direct sum convex space of {(Xt, (Ct)[a])}t∈T.

Theorem 4.6. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces and C : LX
→M be a mapping, where X is

the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ P(M), (X,C(a)) is the L-direct sum convex space {(Xt, (Ct)(a))}t∈T.

Proof. (1) ⇒ (2). By Lemma 4.1(4), we know that {(Xt, (Ct)(a))}t∈T is a family of L-convex spaces for each
a ∈ P(M). Since (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T, C(A) =

∧
t∈T
Ct

(
( ft)←L (A)

)
for

each A ∈ LX. For each a ∈ P(M), we obtain

A ∈ C(a)
⇔ C(A) =

∧
t∈T
Ct

(
( ft)←L (A)

)
⩽̸ a

⇔ ∀t ∈ T,Ct

(
( ft)←L (A)

)
⩽̸ a

⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a).

Thus C(a) = {A ∈ LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a)
} for each a ∈ P(M). Hence (X,C(a)) is the L-direct sum convex

space of {(Xt, (Ct)(a))}t∈T for each a ∈ P(M).
(2)⇒ (1). Since (X,C(a)) is the L-direct sum convex space of {(Xt, (Ct)(a))}t∈T for each a ∈ P(M), C(a) = {A ∈

LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a)
} for each a ∈ P(M). Thus we obtain
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C(A) ⩽̸ a⇔ A ∈ C(a)
⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a)

⇔
∧
t∈T
Ct

(
( ft)←L (A)

)
⩽̸ a

It follows that
C(A) =

∧
{a ∈ P(M) : C(A) ⩽̸ a}

=
∧
{a ∈ P(M) :

∧
t∈T
Ct

(
( ft)←L (A)

)
⩽̸ a}

=
∧
t∈T
Ct

(
( ft)←L (A)

)
.

This implies that (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T.

Corollary 4.7. Let {(Xt,Ct)}t∈T be a family of M-fuzzifying convex spaces and C : 2X
→ M be a mapping, where X

is the disjoint union of {Xt}t∈T. Then the following conditions are equivalent:

(1) (X,C) is the M-fuzzifying convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ P(M), (X,C(a)) is the direct sum convex space of {(Xt, (Ct)(a))}t∈T.

Theorem 4.8. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex spaces and C : LX
→M be a mapping, where X is

the disjoint union of {Xt}t∈T. If β(∧i∈Iai) = ∩i∈Iβ(ai) for all {ai} ⊆M, then the following conditions are equivalent:

(1) (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ β(⊤M), (X,C(a)) is the L-direct sum convex space {(Xt, (Ct)(a))}t∈T.

Proof. (1) ⇒ (2). By Lemma 4.1(5), we know that {(Xt,Ct(a))}t∈T is a family of L-convex spaces for each
a ∈ β(⊤M). Since (X,C) is the (L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T, it follows that C(A) =∧
t∈T
Ct

(
( ft)←L (A)

)
for each A ∈ LX. For each a ∈ β(⊤M), we obtain

A ∈ C(a) ⇔ a ∈ β
(
(A)
)
= β
( ∧

t∈T
Ct

(
( ft)←L (A)

)
⇔ a ∈

⋂
t∈T
β
(
Ct(( ft)←L (A))

)
⇔ ∀t ∈ T, a ∈ β

(
Ct(( ft)←L (A))

)
⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a).

Thus C(a) = {A ∈ LX : ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a)} for each a ∈ β(⊤M). Hence (X,C(a)) is the L-direct sum convex
space of {(Xt, (Ct)(a))}t∈T for each a ∈ β(⊤M).

(2) ⇒ (1). Since (X,C(a)) is the L-direct sum convex space of {(Xt, (Ct)(a))}t∈T, C(a) = {A ∈ LX : ∀t ∈
T, ( ft)←L (A) ∈ (Ct)(a)} for each a ∈ β(⊤M). Thus we obtain

a ∈ β(C(A)) ⇔ A ∈ C(a)
⇔ ∀t ∈ T, ( ft)←L (A) ∈ (Ct)(a)

⇔ a ∈
⋂
t∈T
β
(
Ct(( ft)←L (A))

)
⇔ a ∈ β

(∧
t∈T Ct(( ft)←L (A))

)
.

Hence β(C(A)) = β
(∧

t∈T Ct(( ft)←L (A))
)
, and thus C(A) =

∧
t∈T Ct(( ft)←L (A)). This implies that (X,C) is the

(L,M)-fuzzy direct sum convex space of {(Xt,Ct)}t∈T.

Corollary 4.9. Let {(Xt,Ct)}t∈T be a family of M-fuzzifying convex spaces and C : 2X
→ M be a mapping, where X

is the disjoint union of {Xt}t∈T. If β(∧i∈Iai) = ∩i∈Iβ(ai) for all {ai} ⊆M, then the following conditions are equivalent:

(1) (X,C) is the M-fuzzifying convex space of {(Xt,Ct)}t∈T;
(2) For each a ∈ β(⊤M), (X,C(a)) is the direct sum convex space of {(Xt, (Ct)(a))}t∈T.
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5. The additivity of separability

In this section, we first introduce the definitions of some low-level separability (S−1, sub-S0, S0, S1 and S2)
of (L,M)-convex spaces, which is different from the concepts in [6, 33]. Then we will discuss the hereditary
and additivity of these separability. These results bring convenience for further research on the theory of
(L,M)-fuzzy convex spaces in the future.

Definition 5.1. Let (X,C) be an (L,M)-fuzzy convex space.

(1) The degree to which two distinguished fuzzy points xλ, xµ ∈ J(LX) are (L,M)-fuzzy S−1, is defined as
follows:

S−1(xλ, xµ) =
∨

xµ⩽̸A⩾xλ

C(A)

for all A ∈ LX.
The degree to which (X,C) is S−1, is defined by

S−1(X,C) =
∧
{S−1(xλ, xµ) : xλ, xµ ∈ J(LX), µ ⩽̸ λ}.

(2) The degree to which two distinguished fuzzy points xλ, yλ ∈ J(LX) are (L,M)-fuzzy sub-S0, is defined as
follows:

sub-S0(xλ, yλ) =
∨

xλ⩽̸A⩾yλ
C(A) ∨

∨
yλ⩽̸B⩾xλ

C(B)

for all A,B ∈ LX.
The degree to which (X,C) is sub-S0, is defined by

sub-S0(X,C) =
∧
{sub-S0(xλ, yλ) : x, y ∈ X, λ ∈ J(L), x , y}.

(3) The degree to which two distinguished fuzzy points xλ, yµ ∈ J(LX) are (L,M)-fuzzy S0, is defined as
follows:

S0(xλ, yµ) =
∨

xλ⩽̸A⩾yµ

C(A) ∨
∨

yµ⩽̸B⩾xλ

C(B)

for all A,B ∈ LX.
The degree to which (X,C) is S0, is defined by

S0(X,C) =
∧
{S0(xλ, yµ) : xλ, yµ ∈ J(LX), xλ , yµ}.

(4) The degree to which two distinguished fuzzy points xλ, yµ ∈ J(LX) are (L,M)-fuzzy S1, is defined as
follows:

S1(xλ, yµ) =
∨

xλ⩽̸A⩾yµ

C(A)

for all A ∈ LX.
The degree to which (X,C) is S1, is defined by

S1(X,C) =
∧
{S1(xλ, yλ) : xλ, yµ ∈ J(LX), xλ ⩽̸ yµ}.

(5) The degree to which two distinguished fuzzy points xλ, yµ ∈ J(LX) are (L,M)-fuzzy S2, is defined as
follows:

S2(xλ, yµ) =
∨

xλ⩽A⩽(yµ)′
C(A) ∧ C(A′)

for all A ∈ LX.
The degree to which (X,C) is S2, is defined by

S2(X,C) =
∧
{S2(xλ, yµ) : xλ, yµ ∈ J(LX), xλ ⩽ (yµ)′}.
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In the following, we provide an important lemma that is indispensable in subsequent proofs.

Lemma 5.2. Let (X,C) be an (L,M)-fuzzy convex space and ∅ ⊆ Y ⊆ X. Then we obtain
(1) ∀A ∈ LY, xλ, yµ ∈ J(LY) implies

∨
xλ⩽̸A⩾yµ

(C|Y)(A) ⩽
∨

x∗λ⩽̸A⋆⩾y∗µ
C(A⋆).

(2) ∀A ∈ LX,xλ ∈ J(LX), yµ ∈ J(LY) implies
∨

xλ⩽̸A⩾yµ
C(A) ⩽

∨
xλ |Y⩽̸A|Y⩾yµ |Y

(C|Y)(A|Y).

Proof. (1) Notice that for any A ∈ LY, xλ, yµ ∈ J(LY) with xλ ⩽̸ A ⩾ yµ,

{C ∈ LX : C|Y = A} ⊆ {C ∈ LY : C ⩽ A⋆, x∗λ ⩽̸ A⋆ ⩾ y∗µ},

so we obtain ∨
xλ⩽̸A⩾yµ

(C|Y)(A) =
∨

xλ⩽̸A⩾yµ

∨
C|Y=A

C(C) ⩽
∨

x∗λ⩽̸A⋆⩾y∗µ

C(A⋆).

(2) For any A ∈ LX, xλ ∈ J(LX), yµ ∈ J(LY) with xλ ⩽̸ A ⩾ yµ, it follows that xλ|Y ⩽̸ A|Y ⩾ yµ|Y. Thus we
obtain ∨

xλ |Y⩽̸A|Y⩾yµ |Y
(C|Y)(A|Y) ⩾

∨
xλ⩽̸A⩾yµ

(C|Y)(A|Y)

=
∨

xλ⩽̸A⩾yµ

∨
B|Y=A|Y

C(B)

=
∨

xλ⩽̸A⩾yµ
C(A).

Proposition 5.3. Let (X,C) be an (L,M)-fuzzy convex space and ∅ , Y ⊆ X. Then the following inequalities are
hold:

(1) SX
−1(X,C) ⩽ SY

−1(Y,C|Y);
(2) sub-SX

0 (X,C) ⩽ sub-SY
0 (Y,C|Y);

(3) SX
0 (X,C) ⩽ SY

0 (Y,C|Y);
(4) SX

1 (X,C) ⩽ SY
1 (Y,C|Y).

Proof. We prove only (3) and the others can be proved in a similar way and therefore their proofs are
omitted. For any xλ, yµ ∈ J(LY) with xλ , yµ, we obtain

SY
0 (xλ, yµ) =

∨
xλ⩽̸A⩾yµ

(C|Y)(A) ∨
∨

yµ⩽̸B⩾xλ

(C|Y)(B)

and
SX

0 (x∗λ, y
∗

µ) =
∨

xλ∗⩽̸C⩾yµ∗

C(C) ∨
∨

yµ∗⩽̸D⩾xλ∗

C(D).

Let A ∈ LY with xλ ⩽̸ A ⩾ yµ and B ∈ LY with yµ ⩽̸ B ⩾ xλ. Then x∗λ ⩽̸ A⋆ ⩾ y∗µ and y∗µ ⩽̸ B⋆ ⩾ x∗λ from
Definition 2.3. Thus we can obtain that

SY
0 (xλ, yµ) =

∨
xλ⩽̸A⩾yµ

(C|Y)(A) ∨
∨

yµ⩽̸B⩾xλ
(C|Y)(B)

⩽
∨

x∗λ⩽̸A⋆⩾y∗µ
C(A⋆) ∨

∨
y∗µ⩽̸B⋆⩾x∗λ

C(B⋆) (Lemma 5.2(1))

⩽
∨

x∗λ⩽̸C⩾y∗µ
C(C) ∨

∨
y∗µ⩽̸D⩾x∗λ

C(D)

= SX
0 (x∗λ, y

∗
µ).
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Moreover, let C ∈ LX with x∗λ ⩽̸ C ⩾ y∗µ and D ∈ LX with y∗µ ⩽̸ D ⩾ x∗λ. Then we obtain x∗λ|Y ⩽̸ C|Y ⩾ y∗µ|Y
and y∗µ|Y ⩽̸ D|Y ⩾ x∗λ|Y. Thus, by Lemma 5.2(2), we obtain

SX
0 (x∗λ, y

∗
µ) =

∨
x∗λ⩽̸C⩾y∗µ

C(C) ∨
∨

y∗µ⩽̸D⩾x∗λ

C(D)

⩽
∨

x∗λ |Y⩽̸C|Y⩾y∗µ |Y
(C|Y)(C|Y) ∨

∨
y∗µ |Y⩽̸D|Y⩾x∗λ |Y

(C|Y)(D|Y)

=
∨

xλ⩽̸C|Y⩾yµ
(C|Y)(C|Y) ∨

∨
yµ⩽̸D|Y⩾xλ

(C|Y)(D|Y)

⩽
∨

xλ⩽̸A⩾xλ
(C|Y)(A) ∨

∨
yµ⩽̸B⩾xλ

(C|Y)(B)

= SY
0 (xλ, yµ).

This means that SY
0 (xλ, yµ) = SX

0 (x∗λ, y
∗
µ). Hence we obtain

SY
0 (Y,C|Y) =

∧
{SY

0 (xλ, yµ) : xλ, yµ ∈ J(LY), xλ , yµ}
=
∧
{SX

0 (x∗λ, y
∗
µ) : xλ, yµ ∈ J(LY), xλ , yµ}

⩾
∧
{SX

0 (pλ, qµ) : pλ, qµ ∈ J(LX), pλ , qµ}
= SX

0 (X,C).

This proof is completed.

Proposition 5.4. Let (X,C) =
∑

(Xt,Ct). Then S−1(X,C) =
∧

t∈T S−1(Xt,Ct).

Proof. By Proposition 3.5 and ∀t ∈ T,C|Xt = Ct, we always obtain that S−1(X,C) ⩽
∧

t∈T S−1(Xt,Ct).
Now we need to prove that the converse inequality∧

t∈T

S−1(Xt,Ct) ⩽ S−1(X,C)

holds. Let a ∈M be any element with the property of a ≺
∧

t∈T S−1(Xt,Ct). Then we obtain

a ≺ S−1(Xt,Ct) =
∧
{SXt
−1(xλ, xµ) : xλ, xµ ∈ J(LXt ), µ ⩽̸ λ}

for all t ∈ T.
Let xλ, xµ ∈ J(LX) with µ ⩽̸ λ. Then there exists r ∈ T such that x ∈ Xr. From a ≺ SXr

−1(Xr,Cr), we know
that there exists Ar ∈ LXr such that

xµ|Xr ⩽̸ Ar ⩾ xλ|Xr and Cr(Ar) ⩾ a.

It implies that xµ = (xµ|Xr )
∗ ⩽̸ A∗r ⩾ (xλ|Xr )

∗ = xλ. Hence, we obtain

SX
−1(xλ, xµ) =

∨
xµ⩽̸B⩾xλ C(B)

⩾
∨

xµ⩽̸A∗r⩾xλ C(A∗r)
=
∨

xµ⩽̸A∗r⩾xλ Cr(Ar) (Proposition3.5(3))
⩾
∨

xµ |Xr⩽̸Ar⩾xλ |Xr
Cr(Ar)

⩾ a.

This shows that S−1(X,C) =
∧
{S−1(xλ, xµ) : xλ, xµ ∈ J(LX), µ ⩽̸ λ} ⩾ a.Therefore, we obtain that

∧
t∈T S−1(Xt,Ct) ⩽

S−1(X,C) for all t ∈ T.

Proposition 5.5. Let (X,C) =
∑

(Xt,Ct). Then sub-S0(X,C) =
∧

t∈T sub-S0(Xt,Ct).

Proof. From Proposition 5.3, we obtain sub-S0(X,C) ⩽
∧

t∈T sub-S0(Xt,Ct) since C|Xt = Ct by Proposition 3.5.
In the following, we need to prove
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t∈T sub-S0(Xt,Ct) ⩽ sub-S0(X,C).

Let a ∈ J(M) be any element with a ≺
∧

t∈T sub-S0(Xt,Ct). Then we have

a ≺ sub-S0(Xt,Ct) =
∧
{sub-SXt

0 (xλ, yλ) : x, y ∈ Xt, λ ∈ J(L), x , y}

for all t ∈ T. Let xλ, yλ ∈ J(LX) with x , y and consider two cases below:
Case1: x, y ∈ Xr for some r ∈ T. Thus we obtain xλ|Xr , yλ|Xr ∈ J(LXr ) with x , y. From a ≺ sub-S0(Xr,Cr),

there exists Ar ∈ LXr such that
xλ|Xr ⩽̸ Ar ⩾ yλ|Xr and Cr(Ar) ⩾ a.

or Br ∈ LXr such that
yλ|Xr ⩽̸ Br ⩾ xλ|Xr and Cr(Br) ⩾ a.

It implies that
xλ = (xλ|Xr )

∗ ⩽̸ A∗r ⩾ (yλ|Xr )
∗ = yλ,C(A∗r) = Cr(Ar) ⩾ a

or
yλ = (yλ|Xr )

∗ ⩽̸ B∗r ⩾ (xλ|Xr )
∗ = xλ,C(B∗r) = Cr(Br) ⩾ a.

Thus, we obtain

sub-S0(xλ, yλ) =
∨

xλ⩽̸A⩾yλ
C(A) ∨

∨
yλ⩽̸B⩾xλ

C(B) ⩾ C(A∗r) ∨ C(B∗r) ⩾ a.

Case 2: If x ∈ Xt, y ∈ Xs and s, t ∈ T with s , t, then xλ ⩽̸ ⊤∗LXs ⩾ yλ and yλ ⩽̸ ⊤∗LXt
⩾ xλ. From Proposition

5.3, we obtain that

sub-S0(xλ, yλ) =
∨

xλ⩽̸A⩾yλ
C(A) ∨

∨
yλ⩽̸B⩾xλ

C(B) ⩾ C(⊤∗LXs ) ∨ C(⊤∗
LXt

) ⩾ a.

This shows that

sub-S0(X,C) =
∧
{sub-S0(xλ, yλ) : x, y ∈ X, λ ∈ J(L), x , y} ⩾ a.

This proof is completed.

Proposition 5.6. Let (X,C) =
∑

(Xt,Ct). Then S0(X,C) =
∧

t∈T S0(Xt,Ct).

Proof. It is similar to Proposition 5.5 and omitted.

Proposition 5.7. Let (X,C) =
∑

(Xt,Ct). Then S1(X,C) =
∧

t∈T S1(Xt,Ct).

Proof. It is similar to Proposition 5.5 and omitted.

Lemma 5.8. Let (X,C) be an (L,M)-fuzzy convex space and ∅ ⊆ Y ⊆ X. Then SX
2 (X,C) ⩽ SY

2 (Y,C|Y).

Proof. For any xλ, yµ ∈ J(LY) with xλ ⩽ (yµ)′, we have

SY
2 (xλ, yµ) =

∨
xλ⩽A⩽(yµ)′

(C|Y)(A) ∧ (C|Y)(A′)

and
SX

2 (x∗λ, y
∗

µ) =
∨

x∗λ⩽B⩽(y∗µ)′
C(B) ∧ C(B′)

from Definition 5.1.
If B ∈ LX with x∗λ ⩽ B ⩽ (y∗µ)′, letting A = B|Y, then

xλ = x∗λ|Y ⩽ A ⩽ (y∗µ)
′
|Y = (y∗µ|Y) = (yµ)′
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and
(C|Y)(A) = (C|Y)(B|Y) =

∨
C|Y=B|Y

C(C) ⩾ C(B),

(C|Y)(A′) ⩾ C(B′) in a similar way. It follows that

C(B) ∧ C(B′) ⩽ (C|Y)(A) ∧ (C|Y)(A′).

Thus SX
2 (x∗λ, y

∗
µ) ⩽ SY

2 (xλ, yµ) for all xλ, yµ ∈ J(LY) with xλ ⩽ (yµ)′. Moreover it follows that SX
2 (X,C) ⩽

SY
2 (Y,C|Y).

Proposition 5.9. Let (X,C) =
∑

(Xt,Ct). Then S2(X,C) =
∧

t∈T S2(Xt,Ct).

Proof. From Proposition 5.3, we obtain S2(X,C) ⩽
∧

t∈T S2(Xt,Ct) since C|Xt = Ct by Proposition 3.5. In the
following, we need to prove ∧

t∈T S2(Xt,Ct) ⩽ S2(X,C).

For this purpose, suppose xλ, yµ ∈ J(LX) with xλ ⩽ (yµ)′ and a ∈ M be any element such that a ≺∧
t∈T S2(Xt,Ct). Then ∀t ∈ T, a ≺ S2(Xt,Ct). We are going to show a ⩽ S2(X,C). The following two

cases must be considered:
Case 1: ∃r ∈ T, x, y ∈ Xr. Thus we obtain xλ|Xr , yµ|Xr ∈ J(LXr ) with xλ|Xr ⩽ (yµ|Xr )

′. Since a ⩽ S2(X,C), there
exists Ar ∈ LXr such that

xλ|Xr ⩽ Ar ⩽ (yµ|Xr )
′ and Cr(Ar) ∧ Cr(A′r) ⩾ a.

Note that Cr(Ar) = C(A∗r) ⩾ a and Cr(A′r) = C((A′r)⋆) = C((A∗r)′) ⩾ a from Proposition 3.5, we obtain

xλ = (xλ|Xr )
∗ ⩽ A∗r ⩽ ((yµ|Xr )

′)∗ = (yµ)′ and Cr(A∗r) ∧ C((A∗r)′) ⩾ a.

It follows that

S2(xλ, yµ) =
∨

xλ⩽A⩽(yµ)′
C(A) ∧ C(A′) ⩾ Cr(A∗r) ∧ C((A∗r)′) ⩾ a

Case 2: If x ∈ Xt, y ∈ Xs and s, t ∈ T with s , t, then xλ ⩽ ⊥⋆LXs ⩾ (yµ)′ From Proposition 3.5, we obtain
that

C(⊥⋆LXs ) = ⊤M and C((⊥⋆LXs )′) = C(⊤∗LXs ) = ⊤M.

It follows that

S2(xλ, yµ) =
∨

xλ⩽A⩽(yµ)′
C(A) ∧ C(A′) ⩾ Cr(⊥⋆LXs ) ∧ C((⊥⋆LXs )′) = ⊤M ⩾ a

This shows that

S2(X,C) =
∧
{S2(xλ, yµ) : xλ, yµ ∈ J(LX), xλ ⩽ (yµ)′} ⩾ a.

Finally a ⩽ S2(X,C), as desired.
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6. Conclusions

As we all know, the direct sum of a family of convex spaces is a basic and very useful operation [24]. In
this paper, we first generalized the direct sum of a family of convex spaces to the (L,M)-fuzzy case. Then
we discussed the relationships between the direct sum of a family of (L,M)-convex spaces and its factor
spaces. Secondly, we characterize the (L,M)-fuzzy direct sum convex space by means of its level L-direct
sum convex spaces. Furthermore, we considered the hereditary and additivity of S−1, sub-S0, S0, S1 and
S2 separability. These research results can further enrich and develop the theory of (L,M)-fuzzy convex
spaces. Following this paper, we will consider the following problems in the future.

(1) The additivity of some special L-convex spaces (arity ⩽ n, CUP and JHC, respectively.) has been
studied in [36]. The notion of (L,M)-fuzzy convex spaces can be seen as a broader form of L-convex spaces,
so we will consider the additivity of arity ⩽ n, CUP and JHC in the framework of (L,M)-fuzzy convex
spaces.

(2) In the framework of M-fuzzifying convex spaces, the additivity of S3 and S4 separability have been
discussed. The notion of (L,M)-fuzzy convex spaces can be seen as a broader form of M-fuzzifying convex
spaces, so we will extend it to the (L,M)-fuzzy case and study the additivity of S3 and S4 separability of
(L,M)-fuzzy convex spaces.

(3) According to the monograph [24], convex structures exist in many mathematical structures, such
as vector spaces, partially ordered sets, and metric spaces, etc. Therefore, we can study the properties of
(L,M)-fuzzy convex structures in a specific mathematical structure. This can further enrich and develop
the theory of fuzzy convex spaces.
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