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Slant helices along an isotropic Riemannian maps

Abdussamet Caliskan®

®Fatsa Vocational School, Accounting and Tax Applications Ordu University, Ordu, Turkiye

Abstract. This paper aims to introduce the notion of slant helix along an isotropic Riemannian map.
The necessary conditions for a curve along an isotropic Riemannian maps to be a slant helix are obtained
in terms of differential equations. In addition, certain conditions were found for the slant helix along an
isotropic Riemannian map to be a slant helix in the ambient space. The characterizations are obtained for the
transportation of slant helices and helices on the total manifold to the target manifold along a Riemannian
map (or vice versa).

1. Introduction

Curves are fundamental geometric structures, and analyzing their behavior under specific maps is a
crucial technique for reaching geometric conclusions. Nomizu and Yano first utilized this method for circu-
lar and isometric immersions in their work cited as reference [9]. They demonstrated that submanifolds are
umbilical and have a parallel mean curvature vector field when a circle on the submanifolds is transported
along the immersion to the ambient manifold. The concept of isotropic immersions has been studied in
various geometric contexts, including Kéhler geometry, as shown by O’'Neill [2]. In reference [23], Ikawa
obtained a similar characterization for helices. The result has been expanded to the semi-Riemannian
situation in references [5], [8], [19], [20] and [24]. The papers demonstrate that analyzing how a certain
curve behaves under transformation provides valuable insights when comparing the geometry of two
manifolds. Tiikel et al. explore isotropic Riemannian maps as a generalization of isotropic immersions and
helices along Riemannian maps [3]. In recent years, various generalizations of Riemannian maps between
almost some manifolds have been introduced and systematically studied. These include pointwise slant,
hemi-slant, semi-slant, and bi-slant Riemannian maps [12-15, 25, 26, 28], as well as their conformal counter-
parts such as conformal anti-invariant, semi-invariant, and slant Riemannian maps to Kaehler manifolds
[16-18, 27]. Furthermore, several of these works also focus on associated geometric inequalities, including
Casorati-type estimates [14, 28].

Izumiya and Takeuchi have established definitions for slant helices and conical geodesic curves in three-
dimensional Euclidean space. Those concepts are abstractions of cylindrical helices. Kula et al. [10] (see
also [11]) identified space curves as slant helices by analyzing specific differential equations. Slant helices’
geometry has been examined in semi-Riemannian geometry by many researchers cited in references [4],
[7], and [22]. Caliskan and $Sahin introduce the notion of slant helix on Riemannian manifolds, obtaining
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necessary conditions for curves and slant helix along immersions, and providing criteria for immersions
[1].

The main aim is to provide a precise definition of a horizontal slant helix along an isotropic Riemannian
maps and explore its fundamental characteristics. In section 2, the fundamental concepts relevant to the
focus of this study are introduced. The third section introduces the definition of a horizontal slant helix
along an isotropic Riemannian maps. This term aligns with the horizontal slant helix concept described in
ambient spaces. This section provides a characterization for a curve on the manifold to be classified as a
horizontal slant helix. The submanifold’s characterization is achieved by ensuring that the curve on a certain
base manifold is converted into the ambient manifold as a horizontal slant helix. Section 4 discusses the
transformation of a horizontal helix and a horizontal slant helix into each other by an isotropic Riemannian
map. When a horizontal slant helix is mapped into a horizontal helix using an isometric Riemannian map,
the map is proven to be completely geodesic.

2. Preliminaries

Let ¢ be immersed unit speed curve in a n-dimensional Riemannian manifold. We denote the unit
tangent vector field, the unit normal vector field, and the binormal vector field of the curve by X, Y, and Z,
respectively. T = (VxZ,Y) is the torsion of the curve. The curve has also curvatures x > 0, 7, k3, ks, ..., kn—1
and Frenet frame Ny = X, N1 = Y, N, = Z,N3, Ny, ..N,,_1. Then, the Frenet equations are given by

VxN; = =kiNi_1 + kis1Njy1, 0<i<n—1
In this case, c is called a Frenet curve of order n, [6]. An helix satisfies the following equation

V%X +KVxX =0 (1)
where K is constant [23].

Definition 2.1. [21] Let a(s) be a Frenet curve and denote the tangent vector field of a(s) by &. A regular Frenet
curve o = a(s) parameterized by arc length s with x # 0 is called a slant helix if there are unit vector fields V5, V3
along a such that

Ve és = xVo,
Vgs Vo = —xé&+ TV3, (2)
Vgs V3 = _TVZ,

2(zY
and % is non-zero constant. The numbers « and T are called curvature and torsion of the slant helix, respectively.
K=+1%)2

Definition 2.2. [1] Let c(s) be a Frenet curve with curvatures x,t # 0 on a Riemannian manifold M (dimM>3). If
c(s) is a slant helix, then the unit tangent vector field X and the unit vector field Y of the curve satisfy

, ™ 3x(tY ’
VAxX = 26V Y + V3 Y + (T -3= (;) (In(i2 + %) )vxx. 3)

T (M1, gm,) = (Ma, gm,) is a map from the Riemannian manifold M; with dimM; = m to the Riemannian
manifold M, with dimM, = n, where 0 < rank7” < min{m, n}. Thus, we represent the kernel space of 7. by
ker 7. and H = (ker7.)* is orthogonal complementary space to ker 7. So, we have

TM; = kerT. & (kerT.)*"

where TM; is the tangent bundle of M;. range7. denotes the range of 7. and (range7.)* denotes the
orthogonal complementary space to range7 . in TM,. The tangent bundle TM, of M, is given by

TM, = rangeT., & (rangeT.)*.
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Now, a smooth map T : (M7", gum,) — (M}, gu,) is called Riemannian map if 7, satisfies
I, (T X1, T2 X2) = gm, (X1, X2)

for X3, X, vector fields tangent to H.

Assume that (M1, gp,) and (Ma, gm,) are Riemannian manifolds, 7 : (M1, gm,) — (Ma, gum,) a smooth
map between them, and y a curve on M. ) is called a horizontal curve if y(t) € (ker7.)* for any t € I. If y
is an helix with y(t) € (ker7-)* for any ¢ € I, then it is called a horizontal helix.

Let 7~ be a Riemannian map between the manifolds (Mi, gu,) and (Mp, gu, ), p2 = T(p1) for each p; € M.
Suppose that VM2 and VM represent the connections on (M, gi,) and (Mj, g, ) respectively. The second
fundamental form of 7~ can be given as follows:

M, M
(VT)(X1, X2) = V7 x, To(X2) = To(V x,X2) 4)

M, M
for Xq,X, € T(TM,), where V7 is the pullback connection of VZ For all Xy, X, € I'((kerT.,)"), (VT.) is
symmetric and has no components in range 7. So, we can write the following:

Im, (VT (X1, X2), T4(X3)) = 0 (5)

for all X;, X5, X3 € I'((ker 7,)") [3].
Now, we give some basic formulas for Riemannian maps defined from the total manifold (Mj, gu,) to
the target manifold (M, gu,). For X1, X5 € (T'(ker T ,,)*) and U; € I'((range 7.)*), we have:

M,
Vi Up = =Sy, T2 X1 + Vi, U (6)

Mz MZ
where Sy, 7.X; is the tangential component of V7 x, Uy, and VZ; is the orthogonal projection of V7, on

I'((range 7-)*). Then, we have
Im, (St T-X1, T2 X2) = g, (Un, (VT2) (X4, X2)). 7)

Since (V7.) is symmetric, Sy, is a symmetric linear transformation of range 7. On the other hand, we
have the following covariant derivatives:

(Vi (VTN (X2, Xa) = VI (VT)(X2, X3) - (VT*)(VN;; X2, X3) = (VT)(Xz, V]V;l X3),
8)
— M; M,
(VX1 S)Ulfr;(XZ) = Tf(v)ﬁ *TF(SU17~*(X2))) - sz('l Ul(r;(XZ) - SUlvaXle(XZ)
©)

where P denotes the projection morphism on range 7. and *7 is the adjoint map of 7~ [3].
In the following lemma, we give a relation obtained from (8) and (9).

Lemma 2.3. [3] Let (M1, gm,), (M2, gm,) be Riemannian manifolds, and T~ a Riemannian map between them. For
all X1, X, € T((kerT.p1)*) and Uy € T((rangeT)*), we have

gu, (Vi (VT)) (X2, X3), Un) = g, ((Vx, S)u, T=(X2), To(X3)) (10)

ARiemannianmap 7 : (M, gm,) — (Mz, gu,) is said to be h-isotropicatp € My if A(X3) = [((VT) (X, X)II/NT-Xall
doesn’t depend upon the selection of Xj. If the map is h-isotropic at all points, the map is called h-isotropic.
The following lemma gives a criteria for a h-isotropic Riemannian map.
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Lemma 2.4. [3] Let (M1, g9nm,), (Ma, gum,) be Riemannian manifolds, and T~ is h-isotropic at p € M; the second
fundamental form VT, satisfies

gm, (VT)(X1, X1), (VT)(X1, X2)) = 0 (11)
for an arbitrary orthogonal couple X1, Xo € T'((kerT.p1)™*).

Corollary 2.5. A totally umbilical Riemannian map T is a h-isotropic at the point pi. Conversely a h-isotropic
Riemannian map T is totally umbilical at p, if it satisfies (VT.)(X,Y) = 0 for orthonormal vector fields X and Y at
p1 in T((kerTp1)*).

3. Slant Helices Along An Isotropic Riemannian Maps

Let a(s) be a be a horizontal curve with curvature x in M; and y = 7 o a a curve with curvature % in
M, along y = 7 o a. We denote a vector field 7. along 7 o a by 7.&(s) = T..&(s), for each vector field &;
along @, where & is the unit tangent vector field along @ and s is the arc length parameter. Unless otherwise
stated, a unit speed curve a will be considered in this paper.

We first give the necessary definition for a horizontal slant helix curve along an isotropic Riemannian
maps.

Definition 3.1. Let a(s) be horizantal curve with curvatures x,t # 0 on a Riemannian manifold My (dimM=>3). If
a(s) is a horizontal slant helix, then the unit tangent vector field & and the unit vector field V, of the curve satisfy

3

M ,M1 M2 T 3x/(tV ) Y M
V& =20 Ve Vs + 1V, V) +(T - EE(E) (In(x2 + ) ) Ve, (12)

We give the following proposition which allows that 7 is an isotropic Riemannian map under certain
conditions.

Proposition 3.2. Let 7 : My — M, be a smooth map between Riemannian manifolds (M, gar,) and (Mi, gur,)-
For each pair (u,v) of orthonormal tangent vectors, there is a horizontal slant helix o in My which is not a general
horizontal helix and that is a slant helix in M, satisfying the following:

i) @/(0) = u, (Vora)(0) = x(0)v,
ii) 6x(0) # ®(0),x, & >0,7,7#0

where x, T and &, T are curvatures of a in My and that in My, respectively. T is h-isotropic Riemannian map.

Proof. We assume that p € M; and af(s) is a horizontal slant helix with curvature x > 0 and torsion 7 # 0 on
the base manifold My, 7 o a : I — M, is the corresponding curve and we can define a vector field 7.¢ along
T oaby T.&(s) = Teas)Es, for each vector field &; along a, where &; is the unit tangent vector field along «
and s is the arc length parameter. Now we consider that 7 o « is a horizontal slant helix with the curvature
% and T on M»:

(gﬂ)B’/':(cSQ - 21%'(94% v+ 1%(34'2% )27:<Vz> + K(éd”f‘ e 13)

M, 2 M; \2 My
(V&) 7o) = 7-((Ve ) v2) + (VToe Vv

=Swre v (&) + VL (VT)(E, V2) (14)
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and
3

(Af?) ()

M; My \2
TUVePe) + (0T (Ve ) -5 Ti(E)
(VT )&,V 6,&s)

n My My N
+VI (Vs Ve &s) = To(V & ToS e, e0 T+(E5))
_(V(T;)(ES/ S(Vﬁ)(is,és)(r;(és)) - SV\{TL(V%)(.{,‘,;)(]:(ES)

2
HVI) VT 0. (15)
Substituting (14) and (15) into (13), we obtain
M, 3 M \2 P M
TUVePe) + (T (Ve ) =5 7o)+ VI (7, Vi)
(V(]—*)(és/vés és)
M,
_(T:‘(Vés*ﬁs(vﬁ)(észés)ﬂ(gs)) - (V(T;)(ES/ S(V%)(g,,&)(]:(és)) - SVZ'L(V'T,)(&,&)(T;(ES)
. 2 M; >M1 2
HVI) 07 £) = 20 (T (Ve Va) + (VT V) + A 74 (Ve V2

M; n _ M,
HVT)E Ve V) = Serme v TH€) + VI (VT(E Vo) | + KTV &) + (VT)E £9)

(16)
By looking at range7 . and range7 ;- components of (16), we have
M1 Ml
3 .
ﬂ((vgs) Es) - S(V‘/Z)(és,’\%lgsés)ﬂ(ES) - ﬂ(vés ﬂS(V%)(SS,éS)ﬁ(ES)) - SVZ;L(Vﬁ)(éSIES)Tf(ES)
M, M, 2 _ M,
= 20TV Va) + & 75V ) V2) = Stwmpe v o] + KTV )
(17)

and
My \2 et M,
(V(]:)(ésr (vés) 55) + Vés (V(T;)(ES/ Vésés) - (V(]:)(ésr S(Vﬁ)(és,és)(]-;(és))

2 1 N
HVE) (V70 £ = 20 VT, V) + /| (VT0(E, Vv + VI (Ve V)
+R(VT)(Es ). (18)

Using (9) and Frenet formulas in range7 ., we get
(=3xK" + 28Kk + ®K )T (&) + (=2 + &7 = k72 + R(K* + 12) — KK)T(V2)

+H2K'T+ KT = KT = 2R DT2(V3) = kSvrye vy T=(Es) = (Ve S)wryee) To(Es)
My
= ZSVZ:(V‘]Z)(&/éS)TF(éS) + S(Vﬂ)(és,és)PVTés(r;(gs) - RS(VT»)(&,W)(T;(&S)’ (19)

Putting (8) in (19), we derive
(=3xK" + 28"k + ®K )T (&) + (=1 + &7 = k7% + R(K> + 12) — K)T(V2)
KT+ kT~ R = 2R DTL(V3) = (Ve S)wrye, e T-(E)
=255, wrye.enT+(Es) + 5KSwr e, v) TH(Es)

&s

M,
+SvT e e) PV & To(Es) = RSvrye, va) T(Es)- (20)
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Changing V; into —V; in (20) and subtracting each other, it follows that
(=13 + & = k7 + R + 72) = Ki)T(Vy)

M,
= 5kSvren v T+(Es) + Svrye,ea PV . T2 (Es) — RSwvrye, vy T (&s).
(21)

Taking inner product with the unit vector field 7.(;), we have

0 = 5xgm, (Svr) &, V) T(Es), To(Es)) — Rant, (Sevrye, v T+(Es), To(Es))
M,
+90, STy, e PYT 6 T (&), To(&s))

and

0 = (6x = R)gm, (VT )(Es, V), (VT )(Es, E5))-

If we choose 6x # ©, we get

0 = gan, (VT)(Es, V), (VT2)(Es, E))-

Then Lemma 3 implies that 7 is an h-isotropic Riemannian map. [J

In the theory of submanifolds, it is well known that a necessary and sufficient condition for a submanifold
to be totally geodesic is that every geodesic on the submanifold is also a geodesic of the ambient Riemannian
manifold. The following theorem investigates this condition in the specific context of horizontal slant helices
along an isotropic Riemannian maps.

Theorem 3.3. Let 7 : My — My be a smooth map between Riemannian manifolds (M, gu,) and (Mi, gu,)- Let o
be a horizontal curve which is not a horizontal general helix. If, for 6x # & and k" # 0, a horizontal slant helix with
curvatures k > 0 and © # 0 in M; is a horizontal slant helix with curvatures € > Qand © # 0 in My, then T is a
totally geodesic map.

Proof. We suppose that a = a(s) is a horizantal slant helix curve with curvatures « and 7 # 0. Then, we
have (16). Using Frenet formulas in range7 -, we obtain

(VT2)(E =20 + KV + 10V3) 4 VT (VT)(Es, 1V2) = (VT)(Es, e ) T+(E9)
2
H{VI) (VT)(E ) = 20 (VT)(E Vi) + R (VT)E, —Es + 7Va) + VI (VT)(E, V)|

+K(VT)(&s, &s). (22)

From the equation (8), when Vgl (VT (s, &) = (FV}S(VT,))(ES, &) +2(VT)(x Vo, &), the derivative yields

2 —_ —_
(V) (V708 &) = (P (VT)(Es &) + AT (VT)(E V)

+2K3(VT2)(Va, Va) = 263 (VT)(Es, &) + 2kT(VT2)(Es, V3) + 2 (VT2)(Es, V).
(23)
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By substituting and rearranging the last equation in (22), we derive the following equation:

(VT2)(Es, —12& + &'V + kTV3) + (Ve,(VT))(Es, kV2)
+HE(VT )V, Vo) = (VT )(Es, &) + KT(VT)(Es, Va) + K (VT )(Es, Va)

(VT (Es) SwryeneyTo(E)) + (Ve (VT))(Es, &) + A(Ve (VT2)(Es, K V)
+2i3(VT2)(Va, Vo) = 2K3(VT2)(Es, &) + 2kT(VT2)(Es, V) + 2K (VT2)(Es, V)

= 26 (V)& Va) + /| (V)& k& + TV3) + VL (VT(E, Vo))

FROVT)(E &) (24)
or

4 (VT2)(E, V) = HAVTNE, &) + 4xT(VT2)(E, Va)

~(VT)(Esr Svrye, e T-(E) + (V2 (VT))(Es, &) + 5(Ve, (VT))(Es, KV2)

LIAVT)(Va, Va) = 20 (VT2)(Es, Vi) + k[(V"E)(és, K&+ TV3)

+(Ve, (VT (Es, Va) + (VTL)(E, —Kk&) + (VT)(E, TV, )] + R(VT2)(Es, &s)-
(25)
From (8), the equation (25) becomes
4K (VT2)(Es, Va) = 413 (VT)(Es, &) + 4rT(VTL)(Es, V3)
~(VT)(Eer Svrye, e T(€9) + (V2 (VT))(Es, &)
+5kV7 (VT)(Es, Va) = 5(VT)(KV2, kV2) = 5(VT.)(Es, k' Vo = K2Es + kTV3)

F3RVT)(Va, Va) = 28 (VTN (E, Vi) + ﬁ[(vm(as, ks +TV3)

+(Ve,(VT))(Es, Va) + (VT)(Es, —KES) + (VT)(E, TV3, )] + K(VT)(&s, &)-

(26)
Changing V3 into —V3 and subtracting each other, it follows that

—KT(VT)(&s, V3) = 2RT1(VT.)(Es, V3) = 0 = 2k + ®)T(VT)(Es, V3) = 0.

When 7 # 0, then either (VT.)(&, V3) = 0or 2k + & = 0. If 2k + € = 0, then & < 0 since & > 0 (x must

be nonzero as it is a horizontal slant helix with a non-zero).Then (V7.)(&s, V3) = 0. From Corollary 4, 7
becomes umbilical.

Changing V; into —V; and subtracting each other in (24), it follows that

5K(Ve.(VT)(Es, V2) = 0. (27)
Taking inner product with the unit vector field 7.(&;) in (21), we have

I (13 + K7 = k7% + ®(k* + 1) — K)T2(Va), T2(V2)) = 5xga, (Swvrye, v T+(Es), T2 (V2))
M,

+aMm, (Svrye, ) PV e To(E&s), To(V2)) — ®Rgat, (Svaye, v T+(Es), To(V2))
that is

7’

4 om0 1) - K= [HalP (28)
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The equtaion (20) is multiplied by 7.(&;) and 7.(V3), respectively and considering that 7 is umbilical, then
the equations

=3kk’ + 2k + 'k’ =0 (29)
and
2k't+ k7 —®kT -2t =0

are obtained. When equation (28) is inserted into the final equation, given that «7’ # x’t is not constant,
then

2kt +xt — kT -2kt =0
3x’ RK’)
— T =
2 2K
*K’
=0
K

2¢'t + k7’ — k7T - 2(

kTt —«x't—-®T +

x(kt' — «'1) = ®*(kT — K’ 7)

K =K.
When this expression is inserted into equation (28), it results
KII _
— - K =|H, (30)
K
By considering umbilical and (27), we determine
(1 = 1% = K)Ha = (VT)(E, Sovmye, g T(E6)) + (V2 (VT))(Es, &) = 0

Changing T(&;) into —T(&;) and subtracting each other in the last equation, it follows that (6555 (VTI))(Es, &s) =
0 that is

(-K ~ |IH|*)H, = 0.

Using (30), we obtain £°H, = 0 When k” # 0, H, is zero. Then T is totally geodesic. [
& x Y8

4. Horizantal helices and Horizontal slant helices along an isotropic Riemannian maps

We prove the following theorem which shows the effect of transforming helices and slant helices into
the base manifold along Riemannian maps in this section.

Theorem 4.1. Let 7 : My — M, be a smooth map between Riemannian manifolds (M1, ga,) and (M1, ga,) If a
horizantal slant helix with curvatures ¥ > 0 and © # 0 in My is a horizantal helix with curvatures € > Qand T # 0
in My, then T is a totally geodesic map.

Proof. We assume that the horizontal slant helix curve a on M; is also an helix curve on M, with the map

T o a. The vector field along T o a is denoted as T(s) = Ty)&(s), where & is the unit tangent vector field
along a. From the equation (1), we have following equation

M, 3 M,
(v@s) T(E) + RV To(E) = 0, (31)
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where K = %2 + 72. Using (4) and arranging the above equation, we obtain

M, My \2
TA(Vere) + (VT (Ve ) €

N M
=S TUE) + VI (VT Ve k)
(VT)(Es, V g5s) °

M,
T (V& TSy ee T+ (Es) = (VT )(Es, Svrye,en T+(Es))
2
_sz:L(vrﬁ)(gS,gs)Tk(és) + (Vg ) (VT)(&s, Es)
M _
+KT.(V {Ssés) + K(VT2)(Es, &) = 0. (32)

If rangeT. and rangeT * are separated, they become

M1 Ml
TA((Ve)e) =S o TlSs) = TulV & TS wryee0T+(E5))
(v{rfr)(ésr Vv &s "Ss)

M
_SVQ(V'T,)(‘;,;)T«(ES) +KT.(Veés) =0

(33)
and
My \2 .t M
(VT)(Es, (Vgs) &)+ Vi (VT)(Es, Ve &s) = (VT)(Es, Sy e0T+(Es))
2

H{VT) (VT £) + ROTE, &) = 0. (34)
Considering (9) and Frenet formulas, the equation (33) turns into

=3k T(&) + (=% — k72 + Ri) T2 (Vo) + 2’7 + k7). (V3)

=KSwT) e v To(Es) = (Ve S) v e, c0T+(Es)

M,
“25yr e en T +(8s) S0PV e To(&s) = 0. (35)

By utilizing equation (8) and substituting it into (35), we can compute the component related to range7..
This computation yields

—3ki T2 (&) + (=1 — k72 + Ri)T2(V2) + KT + 1) T2 (V3) — (Ve. S)vrye. en To(Es)
M,
=255, vy TH(E) + 5KSurye, v To(Es) + Sevre.,e0 PV £ Tu(Es). (36)

Now, if we substitute =V, for V, in this equation, subtract the resulting equation from (36), and then
multiply both sides by 7.(&;), we obtain

M,
(=1 = k7 + K)T2(V2) = 5kSvrye, v T+(Es) + Sevryie,en PV . To(Es)

(37)

and

M,
0 = 5kgum, (Sv7)e, Vo) To(Es), To(Es)) + guty (Svrye, g PV & To(Es), To(Es)).
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Moreover, considering the expression:

M, M
I (ST, 0PV £ To(E), To(Es)) = gun (VT)(Es, Ve &), (VT)(Es, &)

= xkgm, (VT )(Es, Va), (VTL)(Es, &)
and making use of the fact that x # 0, we can simplify to
0 = gm, (VT )(Es, Va), (VT)(Es, Es))-
This implies that 7 is h-isotropic.
On the other hand combining equations (8) and (34), we derive
(VT)(Es, —K2Es + K Va + 1TV3) + (Ve (VT))(Es, KV2)
+(VT)(Va, Va) = 1E (VT (Es, &) + KT(VT)(Es, Va) + & (VT)(Es, Va)

~(VT)(Eer Svrye, e To(€9) + (V2 (VT))(Es, &) + 4Ve (VT))(Es, KV2)
+2K3(VT)(V2, V2) = 2k (VTL)(Es, &) + 2KT(VTL)(Es, Va) + 26 (VTL)(Es, Va) + R(VTL)(Es, &) = 0

or equivalently:

4 (VT)(Es, Va) = 4P (VT)(Es, &) +4kT(VTL)(Es, Va)
~(VT)(Es, Semae, i) To(E) + (Ve (VT)(Es &)
+5kV] (VT2)(Es, Va) = 5(VT)(kVa, kV2) = 5(VT.)(Es, 1 Vo — K& + kTV53)
+313(VT.)(Va, Va) + R(VTL)(&s, &) = 0. (38)
By substituting V3 with —V3 in the last equation and taking their difference, we arrive at
—KkT(VT)(&s, V3) = 0.

Since k and 7 are both non-zero, we conclude that (V7.)(&s, V3) = 0. According to Corollary 4, this implies
that 7~ is an umbilical map. Similarly, by replacing V, with —V; in equation (38) and subtracting, it follows
that

5K (Ve (VT)(Es, V2) = 0. (39)
Taking the inner product with the unit vector field 7.(V>) in equation (37), we derive

-k =12+ K = ||Hy|% (40)
Given that 7 is umbilical and combining equations (39) and (40), equation (38) becomes

(=1 + |l + &% + 7 = |Ho|)Hy = 0= H = 0
Thus, we conclude that 7 is a totally geodesic map. [
Theorem 4.2. Let 7 : My — M, be a smooth map between Riemannian manifolds (M, gar,) and (M1, ga,)- 1If,

for 6x # & and k" # 0, a horizantal helix with curvatures ¥ > 0 and t© # 0 in M, is a horizantal slant helix with
curvatures € > 0 and T # 0 in My, then T is a totally geodesic map.

Proof. We assume that the horizontal helix curve a on M; is also a horizontal slant helix curve on M, with
the map T o a. From our assumption that a curve T o « is a slant helix on Mj, it should be

(%A% . )37:(55) - z;z'(éd% 5 )ﬂ(vz) + K(QAT )an(vz) + K(éd‘/z" )fn(gs). 1)
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Where K = & - 3£ (f), (111(122 + 72)),. Using (4) and arranging the above equation, we have

M, 3 My \2 e M,
TU(Vele) + (VT (Ve ) €0 =5 Tue) + VI (V& Vi)
(VT)(Es, V £5Es)
M,
~TAV & TSm0 T+(E8) = (VT)(Es, Svre, 0 T+(E)) = Syrs e, 0T +(E6)
gL 2 M M; \2
HVL ) (VT8 &) = 20(Tu(V e V) + (V)& V) + 1| 74 (Ve ) 72)
My "
HVTE Ve V) = Serpe, v TAE) + VL (VT)(E, V)|

+1‘<(7:(A$&55) +(VT(E &)

M M,
Since « is a horizontal helix, ﬂ((Vlgs)3és) = —K7.(V¢&s). if this equation is substituted into the above
expression, the following equation is obtained:

M M; \2 . M
KT(Ve£) + (OT)E (V) €0 -8 w  Ti(E)+ VL (VTE, Vel
(VT)(Es, V &) ‘

J6
~To(V & TSvrye 0 To(E:) = (VT)(Es, Srye,ea T (Ee) = Sy orye, ) T+(E)
W\ My My 2
+(v’g ) (VTE &) = 20 (To(V & Vo) + (VTO)(E, V) + K[ﬂ((v ) vz)
M, N
HVTE Ve V) = Serpe,vaTE) + VL (VT)(E, Va)|

_ My
+K(71(V55 £ + (VT2)(E) &)) (42)

If rangeT. and rangeT - are separated, they become

M1 Ml
KTV &) =S vy Tu(&) = TV & TS, e0T+(Es))
(VTE Y 6,E)

M B My \2
~Sur e, T(E) = 2TV V) + K[‘T;((Vgs) Vz)

_ M,
—S(V’n)(és,vz)ﬁ(és)] + KT.(Veés)
(43)

and
M \2 - M,
(VT (Ve ) €0+ VI (VT(E V&) = (VT(E Sevrye. 60 7-(E)

2 1
VL) 976 £) = 2R (VT(E, Vo) + 7| V7006, Ve

VT VTE, Vz)] T ROVT)(Es &), s
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Using (9), (44) and Frenet formulas, we get
27" kT (&) + (=K — Kie + ®(1 + 1) T(V2) — 2" 7T (V3)

~(Ve.S)Te 0T (E) = 255, e, o0 T+(E5) + 5KSwrye, vy To(Es)
M,
+SwT e )PV & TulEs) = RSy, vy To(Es)- (45)

Changing V) into -V in the last equation and subtracting each other, it follows that

(=Kx — Kic + ®(1* + 72))T2(V2)
M,
= 5kSvr e, v T+ (Es) + Sevrye,en PV &, T (Es) = RS vy, vy T+(Es)
(46)

and taking inner product with the unit vector field 7-(&;) in last equation, we have
0 = (6x = ®)gm, (VT)(Es, V), (VT)(Es, £9))-

Since « is constant and % is not constant, it becomes 6k # &.
0 = g, (VT)(Es, Va), (VT2)(Es, &)

7 is isotropic. On the other hand, using (8) and (44), it can be found that

(VT )&, —K2E, + kTV3) + (Ve (VT2))(Es, 1 V2)
+12(VT2)(Va, Va) = K2(VT)(Es, &) + kT(VT2)(Es, V3)

~(VT)(Eer Svryie, e T (€) + (V2 (VT))(Es, &) + 4Ve (VT))(Es, KV2)
+2K2(VT)(V2, V2) = 2k (VTL)(Es, &) + 2kT(VTL)(Es, Va)

= 20 (V)& Va) + /| (V)& K&, + TV3) + VL (VT)(E, Vo))

+R(VT)(&s, &) (47)
or

— 1A (VT (Es, &) + 4xT(VT2)(Es, V3)

~(VT)(Es, Svrye, e T-(E) + (V2 (VT))(Es, &)
+5kV7(VT)(Es, Va) = 5(VT2) (K V2, kKV2) = 5(VT2) (&, —k7Es + kTV3)

SIEHVTNV2, Va) = 20 (V& Va) + /[ (VT (E, —rt + 7V2)

+ (Ve (VT))(Es, Va) + (VT)(Es, &) + (VT)(Es, TV3, )] + R(VT)(Es, &)-
(48)
Changing V3 into —V3 in the last equation and subtracting each other, it follows that
—kT(VT)(&s, V3) = 2RT(VT)(&s, V3) = 0 = 2k + ©)T(VT)(&s, V3) = 0.

Where Burada 7 # 0. Since « is constant « is not constant, we get(V7.)(&s, V3) = 0. From the corollary 4, T
is umbilical. Also, Changing V; into —V> in the equation (47) and subtracting each other, it follows that

5k(Ve, (VT)) (&, Va) = 0. (49)

Taking inner product with the unit vector field 7.(V>) in the equation (46), we have

“K-R+ g(xz +72) = |Ho| . (50)
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If equation (49), (50) and T umbilical are used in the equation (47), we have
2(
K

Where 7 # 0 and x # . Then H, = 0. Thus T is a totally geodesic map. O

K—K

)H, = 0.
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