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Abstract. Creating new operators that act as a superclass to existing ones and studying their spectral
and geometrical properties is an interesting area in linear operator theory. From that perspective, the
study introduces a new class of operators called polynomially m-quasi-totally-(a, f)-normal. This new class
integrates features from («, f)-normal, quasi-(«, f)-normal and m-quasi-totally-(a, f)-normal operators. This
article analyzes several properties of polynomially m-quasi-totally-(a, f)-normal operators.

1. Introduction

Let J# be a non zero complex Hilbert space and let #(#) denote the algebra of all bounded linear
operators on . Let m be a natural number.

Definition 1.1. Let S € B(7).
1. An operator S is called (a, B)-normal [9] (0 < a <1 < ) if
a’S'S < 88 < p*S'S.
2. An operator S is called quasi-(at, B)-normal [22] (0 < a <1 < B) if
a’S?S? < §'SS'S < fASE S
3. An operator S is called m-quasi-(o, f)-normal [22] (0 < a <1 < B) if
a?Srrgmtl < 888N S™ < pRSIH g

for a natural number m.
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4. An operator S is called m-quasi-totally-(a, f)-normal [22] (0 < a < 1 < B) if
> S™(S - A (S -NS" <SS - A)(S - A)S”
<BS™(S - A)(S-1)S"
for a natural number m and for all A € C.
In general the following implications holds:

(o, B) — normal C quasi — (@, f) — normal
€ m — quasi — (a, ) — normal C m — quasi — totally — («, f) — normal.

In the papers [8, 14], the authors have studied the class of polynomially normal operator as follows: An
operator S is said to be polynomially normal if there exists a nontrivial polynomial ¥ = Y., biz* € C(z)
with

P(S)S' — SP(S) = 0.

One of the current trends in operator theory is studying new extension for normal operators. In [21], the
authors have introudced polynomially quasi-M-hyponormal operators.

An operator S is said to be polynomially quasi-M-hyponormal if there exists a nontrivial polynomial
P € C(z) and a postive constant M such that

PS) (MAS = 1) (S = 1) = (S = (S = 1) )P(S) > 0.

forall A € C.
In the following, we introduce a new class of operators called the class of polynomially m-quasi-totally-
(@, p)-normal operators as a new extension of m-quasi-totally-(a, f)-normal operators.

An operator S € H#(J) is called polynomially m-quasi-totally-(«, f)-normal (0 < @ < 1 < ) if there
exists a nontrivial polynomial # € C(z) such that

A?P(S™) (S = A)(S — HP(S™) < P(S™) (S — AS = A)*P(S™) < BPP(S™) (S — 1)(S - 1)P(S™)
forall A € C.
Polynomially m-quasi-totally-(c.p)-normal
m-quasi-totally-(o,[)-normal

T

Quasi-totally-(c.)-normal m-quasi-(a,)-normal

SRe

Quasi-(o,p)-normal

!

(o, p)-normal

Figure 1: Inclusion relation between generalized («, f)-normal operator

In 1966, R.G. Douglas [10] proved an equivalence of factorization, range inclusion and majorization
of operators, known as Douglas lemma. Note that polynomially m-quasi-totally-(«, §)-normal operator is
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equivalent to the study of mutual majorization between (S — A)P(S™) and (S — A)*P(S™). It can be said that
both (S — M)P(S™) majorizes (S — A)*P(S™) and (S — A)*P(S™) majorizes (S — A)P(S™) for a natural number
m. Using Douglas’ result, it is observed that S is polynomially m-quasi-totally-(«, f)-normal if and only if

ran (S — M)P(S™)) = ran (S — A)'P(S™))

or equivalently

ker (S — M)P(S™)) = ker (S — A)"P(S™)).

In particular (choose A = 0), an operator S is called polynomially m-quasi-(a, f)-normal (0 < a < 1 < ) if
there exists a nontrivial polynomial € C(z) such that

PSS SP(S™) < P(S™) SS'P(S™) < PP(S™) S SP(S™).

Remark 1.2. 1. Every m-quasi-totally-(at, f)-normal is polynomially m-quasi-totally-(«t, B)-normal with P(z) =
z.
2. Every m-quasi-(at, B)-normal is polynomially quasi-(a, B)-normal with P(z) = z™.

Example 1.3. The following operator S in B(C?) is polynomially 2-quasi-(a, B)-normal for « = 0.04 and g = 3.8
with respect to the polynomial P(z) = z* + 2z, which is not normal, quasi-normal, hyponormal and quasi-hyponormal.

s+(12)

2. Main Results
We begin with:

Theorem 2.1. Let S € A(s¢) and let P € C(z) be any nontrivial polynomial. S is an polynomially m-quasi-totally-
(a, B)-normal operator iff

all(S = HPS™)xll < IS = A)P(S™)xll < BI(S = HP(S™)x|
forall A € Cand for all x € 7.

Proof. Assume that S is an polynomially m-quasi-totally-(a, f)-normal operator, then there exist € C(z)
for which

2?8 = HPS™I? = a® (S = VPS")x, (S = HP(S™)x)
= > (P(S")(S - A)(S - V)P(S™)x, x)
<{PS")(S = NS - A)P(S")x, x)
= (S - A)PE"), (S - A)P(S™)x)
= IS = Ay PS™)xIP
= (S - A)PE")x, (S - A)P(S™)x)
=(P(S")(S - A)(S - A)'P(S")x, x)
< BHPES") (S = A)(S - HP(S™)x, x)
= (S = MP(S")x, (S = HP(S™)x)
= BIIS — VPSP

Conversely, assume that S satisfies
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all(S = MHP(S™)xll < IS = A)P(S™)xl < BIS — HP(S™)x]|
for all A € C and for all x € 2#, we have

a? (S = MP(S™x, (S = HP(S™)x) < ((S = M) P(S™x, (S — 1) P(S™)x)
< BHS - DP(S™x, (S - D)P(S™)x) .

So one can obtain that
(PPS"Y (S = 1)'(S = DPS")x, x) < (P(S") (S = (S = ) P(S™)x, x)
< (BPPS"Y (S = A)'(S - HPS)x, x).

Therefore
a*P(S™) (S = A)(S - MHPS)" < P(S™)(S = (S = A)P(S)" < PSS - A)(S - VDP©S)".
Hence S is polynomially m-quasi-totally-(a, f)-normal operator. [J

Proposition 2.2. Suppose S € #(H) and P € C(z) is any nontrivial polynomial. Then S is polynomially
m-quasi-totally-(a, B)-normal operator if and only if
PPS™) (S — A)S = Ay P(S™) + 2ka*P(S™)*(S — 1)(S — V)P(S™)
+PE") (S =S -A)PES™) =0
and
FPS™) (S — ) (S = HP(S™) + 2kP(S™) (S — ANS - 1)'P(S™)
+BP(S™)(S - A)(S - HPS™) =0
forallk e R.
Proof. By using elementary properties of real quadratic forms,
KPS (S — A)S = Ay P(S™) + 2ka*P(S™)*(S — 1)(S — VP(S™)
+PS") (S = A(S - A)PES™) >0
& KIS = A)'PS™)x + 2ka® (S — HP(S™)xl?
HIS-A)PES™x|* >0 Vxe#and VkeR
& all(S - HPE")H < IS - A)PSE")xl VYV xe .
Similarly,
PSS = A)(S — VHP(S™) + 2kP(S™) (S — A)(S — A)'P(S™)
+BMP(S™)(S - A)(S - V)PS™) = 0
& KIS = HPS™)x + 2kI(S = 1) P(S™)l?
+HBHNS - VNPES™x|> 20 VxeAand YkeR
& BIS = VPSSl 2 (S = A)P(S")xll Y xe 2.

Therefore S is polynomially m-quasi-totally-(«t, f)-normal operator. [J
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Theorem 2.3. Let S € B(I) such that P(S™) does not have a dense range, then the following are equivalent.
(1) S is a polynomially m-quasi-totally-(a, B)-normal operator.

A B Do . _ .
2)S= ( 0 C )on H = ran(P(S™)) @ ker(P(S™)*), where A = Slm satisfies

P (A= A)(A=A) < (A= A)A-A) +BB < BHA-A)(A- D),
forall A € C and P(C™) = 0. Furthermore 6(S) = a(A) U {0}.

Proof. (1) = (2). Consider the matrix representation of S with respect to the decomposition J# =

ran(P(S™) @ ker(P(S™) : S = ( 4 B A o )

0o CJf 0 0
SP = PSP. Since § is polynomially m-quasi totally-(«, f)-normal operator, we have then

Let P be the projection onto ran(P(S™)). Then(

azp(so(s*m)(s —A(S - /\)SD(S’”))P < P(P(S*’”)(S NS A)*P(Sm))p

< ﬁzp(so(s*m)(s _ (S - /\)P(S’”))P
That is
a* (A= A)(A-A) < (A= A)A-A) +BB < BHA-A)(A-N),
forall A € C.
On the other hand, let x = x1 + x; € 7 = ran(P(S™)) ® ker(P(S™)). A simple computation shows that
(P(C™)x2, x2) (PSE")I - P)x, (I - P)x)
{(I=P)x,P(S™)(I - P)x) = 0.

So, P(C™) = 0.
Since o(S) U T = d(A) U 0(C), where 7 is the union of the holes in ¢(S) which happen to be subset

of 6(A) N o(C) by Corollary 7 of [12], and ¢(A) N ¢(C) has no interior point and C is nilpotent, we have
o(S) = a(A) U {0}.

(2) = (1) Suppose that S = ( 13 g ) onto S = ran(P(S™)) & ker(P(S™)) , with

az((A — A (A - /\)) <(A—A)YA-AY + BB < ﬁz((A —A)(A - /\)),

forallA € C and P(C™) =0.

m—1
A Z AlBCm1-i PA™) Y
Since 8™ = =0 ,P(S™) = ]
0 0
0 0
(A= AY(A =N (A-AYB
(S—)\)*(S—/\)={ J
BA-A)  BB+(C—-A)(C-A)
and

(S-AS-A) = ( (A-AYA-Ay +BB  B(C- Ay )

(C - 1)B" (C = A)(C = Ay
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Further

PS"PS™)

PAMPA™) + YY" 0 ]

(5 0)

0 0)
where D = P(AM)P(A™) + YY* = D".
Hence for all A € C, we have

PSMPS™((S = (S = V)PSMPS™)
DA - A)(A-=A)D 0

0 0

0 0
2 —_ ) _

It follows that
A*P(SMP(S™)((S = 1) (S — )\))P(S’”)SD(S"’")

(
< PSMPS™)((S = S - 1) JPSPS™)
< PPSMPS((S = A)'(S = V)PSMPS™).

This means that
2PS™((S = A)(S = MPS™) < PS™)((S = (S - 1) JP(S™)

< BPS™((S = A)'(S = ))PS™),
on J = ran(P(S)) & ker(P(S™)). Consequently, S is polynomially m-quasi-totally-(a, )-normal. [J
Theorem 2.4. Let (o, ) € R? such that 0 < a < 1 < Band let S € B(H) such that ran(P(S™)) = ran(P(S™)). If
S is polynomially m-quasi-(o, f)-normal, then S is polynomially m—quasi—(%, i)—normal.
Proof. Since S is polynomially m-quasi-(a, )-normal, it follows that
allSP(S)x|l < IS'P(S™)xl| < BISP(S™)xll, V x € 2.

This means that

allSPS") x|l < IS'P(S™)xll < BISP(S™)'xll, VxeH.

Combining these inequalities,

1 1
EIIS*P(S’")*XII <ISPS™)xll < —ISPS™) I

11
So, 8" is polynomially m—quasi—(ﬁ, E)—normal. d

Theorem 2.5. Let S be polynomially m-quasi-totally-(a, B)-normal operator. If P(S™) has dense range, then S is
totally-(a, B)-normal.



P. Radhakrishnan et al. / Filomat 39:16 (2025), 5393-5404 5399

Proof. Since P(S™) has a dense range, it follows that ran(P(S™)) = . Let y € . Then there exists a
sequence (x,) in . such that P(S8™)(x,) = yasn — oo.
Since S is polynomially m-quasi-totally-(a, f)-normal operator, we have

all (S = MPE™)xl < 1(S = A1) PS™)xll < BI(S = 1) P(S")xl

for all x € 2# and for all A € C.
In particular,

all (S = D) PE")xull < 1S = A) P(S")xall < BII(S = 1) PS")xll

for all x,, € 27 and for all A € C.
It follows that

al(S=Dyl < IS =)yl <BIS =Dyl
for all y € # and for all A € C. Therefore S is totally-(a, ) — normal operator. [J

Corollary 2.6. Let S be polynomially m-quasi-totally-(a, B)-normal operator. If P(S™) # 0and if S has no nontrivial
P(S™)-invariant closed subspace, then S is totally-(a, B)-normal.

Proof. Since £(S™) has no nontrivial invariant closed subspace, it has no nontrivial hyperinvariant subspace.
But ker(P(S™)) and ran(P(S™)) are hyperinvariant subspaces, and P(S™) # 0, hence ker(P(S™)) = 0 and
ran(P(S™)) = . Therefore S is totally-(«, f)-normal operator. [

Corollary 2.7. If Sis such that a1 +a,S is polynomially m-quasi-totally-(a, B)-normal operator for all scalars a; and
ay, then S is totally-(at, B)-normal.

Proof. If S is polynomially m-quasi-totally-(«, f)-normal operator but not totally-(«, f)-normal operator,
then P(S™) is not invertible. It is possible to find scalars a; and a; # 0 such that 7 = a; + 4,8 is invertible
polynomially m-quasi-totally-(a, f)-normal operator. Therefore 7™ is totally-(a, f)-normal operators.

1
T =m +IZQS:>S: H—(T—{Ill).
2

Therefore S is also totally-(a, f)-normal. [J

In the following theorem, the stability of the sum of two polynomially m-quasi-totally-(«, f)-normal opera-
tors is preserved under the specific conditions.

Theorem 2.8. Let S,7 € A(). S, T are polynomially m-quasi-totally-(at, B)-normal operator satisfies the
following conditions for some P € C(z):

o (S-VP(T)=(T -1PS)=0
¢ P(TY(S-N)=PS)(T -A)=0
o (S-NMNT -A)=S-A)T -41)=0
e ST =78=0
Then S + T is polynomially m-quasi-totally-(e, B)-normal operator.

Proof. Set P(z) = Y. o<ken UZ"-
We have P(S + 7)" = P(S™) + P(T)" since ST =TS = 0.
Since S, 7 are polynomially m-quasi-totally-(«, f)-normal operator, we have
PSS = 1)(S = HP(S™) < PS™)(S - A)(S - A)P(S™)
<BPE")(S = A)(S - HPES™),
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PPT™ T = A (T = VDPT™) <PT ™ (T = AT = A)PET™)
<BPT"Y(T = AT = DHPT™)
forall A € C.

To show that S + 7 is polynomially m-quasi-totally-(«, §)-normal operator.

First we have,
PS+T)") [a2((S = 1) + (T = A7 )((S= D) +(T - 1)
~((S=1)+ T =D)((S=A) + T = N[P(S+T)")
= PS" +T™) (S - +(T =V )(S=-1)+ (T - 1)
~((S=N)+ (T = V)((S=A) + (T - |PS" +T™)
= PSS =)+ (T =) ((S=1) +(T - 1))
~((S=2)+ (T = V)((S=1) + (T - A))]P(S™)
+P(S™ (S = 1) + (T = A )((S = 1)+ (T = 1))
~((S=N)+ (T = V)((S=1) + (T = A)|PT™
+P(T ™S = 1) + (T = A)((S = 1) +(T - 1))
~((S=M)+ (T = V)((S=1) + (T - ))]PS™)
(T2 ((S = ) + (T = ) )(S =) +(T - 1))
~((S=N)+ T = V)(S=A) + (T =A™
= PSS-S - 1) - ((S= S - ))]PS™)

P27 = T = ) = (T = T = AP
0.

IA

Secondly,

P(S+T)) [F(S =) + (T =) (S -1 +(T - 1))
~(S=N+T =S - Ay + (T - N|P(S+ 7))

5400
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= PS"+T™) (S + T =) (S -1 +(T - 1)
~((S=N)+ (T = V)((S=A) + (T - |PS" +T™)
= PS™F(S-V+T =) S-1+ (T -1)
~((S=N)+ (T = V)((S=1)" + (T - A))]P(S™)
+PS™[BA((S = A + (T = ) ((S= 1) + (T - 1))
~((S=N)+ (T = V)((S=1)" + (T - A)|PT™
+P(T)F(S = A + (T =) (S - 1)+ (T - 1))
~((S=N)+ (T = V)((S=1) + (T - ))]PS™)
+PT™) (S = A + (T = A )((S =)+ (T - 1)
~((S=)+ (T = V)((S=A) + (T - A)]PaT™
= PSS-S - 1) - (S-S - ) ]PES™)

(T[T = A)'(T = 1) = (T = )T = ))]PaT™)
> 0.

Therefore S + 7 is polynomially m-quasi-totally-(«t, f)-normal operator. []

Theorem 2.9. Let S is polynomially m-quasi-totally-(c, B)-normal operator with respect to the polynomial P € C[z].
Then

ker(S — k) C ker(S - k),
for all k € C such that P(k™) # 0.

Proof. Let x € ker(S — k). Since S is polynomially m-quasi-totally-(a, f)-normal operator, we have
all(S = HPS")xl < IS = A)P(S™)xll < BIS — HP(S™)x|
since Sx = kx, we get P(S™)x = P(k™)x, and therefore
all(S = DPE")xl < IS = A)P(E™)xll < BI(S — P K™l
According to (S — k)x = 0 we obtain [|(S — A)*P(S™)x|| = 0. Therefore x € ker(S—k)*. O

Proposition 2.10. Let S be polynomially m-quasi-totally-(a, B)-normal operator. If a1, ay are non-zero eigenvalues
of S such that ay # ay, then ker (S — ay) Lker (S — a).

Proof. Letx € ker(S—a;1) and y € ker(S —a3). Then Sx = a;x and Sy = ayy. Thereforea; < x,y >=a; <x,y >,
and so (11 —a2) < x,y >= 0. Hence ker (S —a1) Lker (S —az). O

Theorem 2.11. If S is polynomially m-quasi-(a, B)-normal such that aff = 1, then
a*P(S") SS'P(S™) < P(S")'S'SP(S™) < B*P(S™)' SS'P(S™).
Proof. S is polynomially m-quasi-totally-(«, f)-normal if and only if
PSS SP(S™) < P(S")'SS'P(S™) < BFP(S™)' S SP(S™).
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Therefore
PSS SP(S™) < a*P(S") SSP(S™) < 0(2[327)(3'”)*8"87’(8"1)

and
azﬁzP(S’”)*S*SP(S’") < ﬁZP(S’")*SS*P(Sm) < ﬁ‘*P(S’”)*S*SP(S’").

Combining these inequalities, af = 1, then
a*P(S") SSP(S™) < P(S")'S'SP(S™) < BFP(S™)' SS'P(S™).

O

Theorem 2.12. Let (o, ) € R? such that 0 < a <1 < Bandlet S € 93(%”) such that ran(P(S’")) = mn(P(S”’)*).
If aB = 1 then S is polynomially m-quasi-(«t, B)-normal if and only if S* is polynomially m-quasi-(e, B)-normal.

Proof. Since S is polynomially m-quasi-(a, f)-normal, it follows that
allSP(Sx < IS'P(S™)xl| < BISP(S™)xll, V¥V x € 2.
The condition ran(P(S™)) = ran(P(S™)*) implies
allSPES™) x| < IS*P(S™) x|l < BISP(S™)'xll, VY xe .

From the above two inequalities,
1 %, T\ * T\ * 1 % T\ *
EIIS PST) Xl < ISPS™) | < IS PS™) xll-
Here af =1, so, $* is polynomially m-quasi-(a, )-normal. [

Theorem 2.13. Let S € B(H) and N € HB(F) be an invertible operator such that N*N commutes with S. Then S
is polynomially m-quasi-totally-(a, B)-normal operator if and only if NSN 1 is polynomially m-quasi-totally-(a, B)-
normal operator.

Proof. Assume that S is polynomially m-quasi-totally-(a, )-normal operator.
Consider,

PP(NSNHY(NSNL= A (INSNTL = HP(NSNH™)
<PNSN Y (NSN L = DHINSNL = Ay P(NSN~H™)
< BPNSN Y (INSNT = A (INSNT = HP(NSNH™).
We have
PN PSS N(NHY(S = AYNINS = WN HNPSHN
< INTY'PES")YN NS = WN YN (S = D) NINPSHN
< BNTYPE)Y NN (S = AYNINS - WN HNPSN .

It follows that
ANYPS™ (S - AN NS - HPS"N !
< NTY'PES™ (S - WNNN YN (S - AN NPSIN !
< BANTYPS™ (S - AN NS - HPS™N .
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Hence,

oczNSD(S’”)*(S - A)(S - )\)5‘)(5’”)N_1

< NP(S™)(S - A)(S - )t)’*SD(S"’)N’1

< ﬁZNP(Sm)*(S —A)(S - VYPSMHNL.
We have

N(ozZSD(Sm)*(S — AV (S~ MPS™) < PS™Y (S — (S — Ay P(S™)

< PPES (S - A) (S - /\)P(S"’))Nfl.

Therefore, NSN ! is polynomially m-quasi-totally-(a, §)-normal operator.
Conversely, assume that NSN! is polynomially m-quasi-totaly-(a, f)-normal.

5403

Set 7 = NSN 1. We observe that 7 commutes with (N })*N~! and N7'TN = S. By taking into account

the preceding part of the theorem, we have N7 N is polynomially m-quasi-totaly-(e, f)-normal. [J

For 7,8 € %(s¢) the operator I';- s defined as I'y 5 : C2(5) such that X — 7 XS € Cp(#) has been

studied in [6].

The following results extends A. Bachir[3, Theorem 9]

Theorem 2.14. If T € HB(J¢) is polynomially m-quasi-(ot, B)-normal operator with respect to the polynomial
P(z) = zand S is normal, then I'y s is polynomially m-quasi-(a, B)-normal operator with respect to the polynomial

P(z) = z.

Proof. Here,
Trs(X) = TXS,
I s(X)=T"XS",
I (X)) =TmXS™,
7 g(X) = 7 XS™.

First we have,

(T T 5Ty T ¢ = @20 Ty T oI ) (X)

78 7,8 7.8 7,8

= TUTTTXS"S'SS™ -
= TUTTTXS"S SS" -

T T TT"XS"SS S
AT T TT XSS SS™

+?T T TT"XS"S'SS™ — T T T T"XS"SS' 8™
= (T"TTT" - T T TT") XS"S' SS™

+@? T T T T"X(S"S' SS™ — 8"SS'S™)
= (T"TTT" - T T TT") XS"S' SS™

Secondly,
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7l slTsly ¢ ~ 17 lrs r:r,sm“,s) (X)
= I TTXS"SS'S™ - T T T T "XS"S' SS™
= PTTTT"XS"SS' S — T T T T"XS"SS'S"
+T T T XS SS' S — T T T T " XS™ S SS"
= (BPT"TTT - T T T™) XS SS' S
HTTT X (ST SS S — S™ S SS™)
= (PT™T'TT"-T"TTT")XS™SS'S"
>0

Hence I'r s is polynomially m-quasi-(a, §)-normal operator with respect to the polynomial P(z) =z O

Theorem 2.15. Let 7, S be polynomially m-quasi-(t, B)-normal operator with respect to the polynomial P(z) = z.
If S is invertible and S*'S = SS” such that T X = XS for some X € Co(J€), then T*X = XS".

Proof. Let Ty 51(Y) = TYS™. Since 7 and S are m-quasi-(a, f)-normal operator, then I' g1 is also m-
quasi-(a, f)-normal operator by Theorem 2.14. Moreover I'r s1(X) = T7XS8™! = X because of 7X = XS.
Hence X is an eigenvector of I'r s-1. By Theorem 2.9, we have I . (X) = TX(871)", thatis, 7°X = XS" as
desired. [
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