

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A new study on m-quasi-totally- (α, β) -normal operators in relation to polynomials

Pradeep Radhakrishnan^a, Sid Ahmed Ould Ahmed Mahmoud^b, P. Maheswari Naik^c

^aDepartment of Mathematics, Nirmala College of Engineering Technology & Management, Thrissur – 680311, Kerala, India
^bMathematics Department, College of Science, Jouf University, Sakaka P.O.Box 2014. Saudi Arabia
^cDepartment of Mathematics, Sri Ramakrishna Engineering College, Coimbatore-641 022, Tamil Nadu, India

Abstract. Creating new operators that act as a superclass to existing ones and studying their spectral and geometrical properties is an interesting area in linear operator theory. From that perspective, the study introduces a new class of operators called polynomially m-quasi-totally- (α, β) -normal. This new class integrates features from (α, β) -normal, quasi- (α, β) -normal and m-quasi-totally- (α, β) -normal operators. This article analyzes several properties of polynomially m-quasi-totally- (α, β) -normal operators.

1. Introduction

Let \mathcal{H} be a non zero complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . Let m be a natural number.

Definition 1.1. *Let* $S \in \mathcal{B}(\mathcal{H})$ *.*

1. An operator S is called (α, β) -normal [9] $(0 \le \alpha \le 1 \le \beta)$ if

$$\alpha^2 S^* S \leq S S^* \leq \beta^2 S^* S$$
.

2. An operator S is called quasi- (α, β) -normal [22] $(0 \le \alpha \le 1 \le \beta)$ if

$$\alpha^2 \mathcal{S}^{*2} \mathcal{S}^2 \leq \mathcal{S}^* \mathcal{S} \mathcal{S}^* \mathcal{S} \leq \beta^2 \mathcal{S}^{*2} \mathcal{S}^2.$$

3. An operator S is called m-quasi- (α, β) -normal [22] $(0 \le \alpha \le 1 \le \beta)$ if

$$\alpha^2 S^{(m+1)*} S^{m+1} \leq S^{m*} (SS^*) S^m \leq \beta^2 S^{(m+1)*} S^{m+1}$$

for a natural number m.

2020 Mathematics Subject Classification. Primary 47A05; Secondary 47A10, 47A11.

Keywords. (α, β) -normal; m-quasi-totally- (α, β) -normal

Received: 15 August 2024; Accepted: 31 March 2025

Communicated by Dragon S. Djordjević

Email addresses: pradeeph123@gmail.com (Pradeep Radhakrishnan), sidahmed@ju.edu.sa, sidahmed.sidha@gmail.com (Sid Ahmed Ould Ahmed Mahmoud), maheswarinaik21@gmail.com (P. Maheswari Naik)

ORCID iDs: https://orcid.org/0009-0002-0738-840X (Pradeep Radhakrishnan), https://orcid.org/0000-0002-6891-7849 (Sid Ahmed Ould Ahmed Mahmoud), https://orcid.org/0000-0002-2551-5479 (P. Maheswari Naik)

^{*} Corresponding author: Pradeep Radhakrishnan

4. An operator S is called m-quasi-totally- (α, β) -normal [22] $(0 \le \alpha \le 1 \le \beta)$ if

$$\alpha^{2} S^{m*} (S - \lambda)^{*} (S - \lambda) S^{m} \leq S^{m*} (S - \lambda) (S - \lambda)^{*} S^{m}$$
$$\leq \beta^{2} S^{m*} (S - \lambda)^{*} (S - \lambda) S^{m}$$

for a natural number m and for all $\lambda \in \mathbb{C}$.

In general the following implications holds:

$$(\alpha, \beta)$$
 – normal \subseteq quasi – (α, β) – normal \subseteq m – quasi – (α, β) – normal \subseteq m – quasi – totally – (α, β) – normal.

In the papers [8, 14], the authors have studied the class of polynomially normal operator as follows: An operator S is said to be polynomially normal if there exists a nontrivial polynomial $\mathcal{P} = \sum_{0 \le k \le n} b_k z^k \in \mathbb{C}(z)$ with

$$\mathcal{P}(\mathcal{S})\mathcal{S}^* - \mathcal{S}^*\mathcal{P}(\mathcal{S}) = 0.$$

One of the current trends in operator theory is studying new extension for normal operators. In [21], the authors have introudced polynomially quasi-M-hyponormal operators.

An operator S is said to be polynomially quasi-M-hyponormal if there exists a nontrivial polynomial $P \in \mathbb{C}(z)$ and a postive constant M such that

$$\mathcal{P}(S)^* \Big(M^2 (S - \lambda)^* (S - \lambda) - (S - \lambda)(S - \lambda)^* \Big) \mathcal{P}(S) \ge 0.$$

for all $\lambda \in \mathbb{C}$.

In the following, we introduce a new class of operators called the class of polynomially m-quasi-totally- (α, β) -normal operators as a new extension of m-quasi-totally- (α, β) -normal operators.

An operator $S \in \mathcal{B}(\mathcal{H})$ is called polynomially m-quasi-totally- (α, β) -normal $(0 \le \alpha \le 1 \le \beta)$ if there exists a nontrivial polynomial $P \in \mathbb{C}(z)$ such that

$$\alpha^2 \mathcal{P}(S^m)^*(S-\lambda)^*(S-\lambda)\mathcal{P}(S^m) \leq \mathcal{P}(S^m)^*(S-\lambda)(S-\lambda)^*\mathcal{P}(S^m) \leq \beta^2 \mathcal{P}(S^m)^*(S-\lambda)^*(S-\lambda)\mathcal{P}(S^m)$$

for all $\lambda \in \mathbb{C}$.

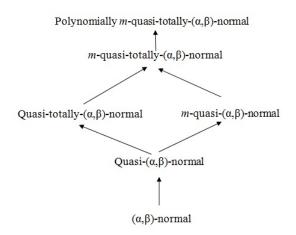


Figure 1: Inclusion relation between generalized (α, β) -normal operator

In 1966, R.G. Douglas [10] proved an equivalence of factorization, range inclusion and majorization of operators, known as Douglas lemma. Note that polynomially m-quasi-totally- (α, β) -normal operator is

equivalent to the study of mutual majorization between $(S - \lambda)\mathcal{P}(S^m)$ and $(S - \lambda)^*\mathcal{P}(S^m)$. It can be said that both $(S - \lambda)\mathcal{P}(S^m)$ majorizes $(S - \lambda)^*\mathcal{P}(S^m)$ and $(S - \lambda)^*\mathcal{P}(S^m)$ majorizes $(S - \lambda)\mathcal{P}(S^m)$ for a natural number M. Using Douglas' result, it is observed that S is polynomially M-quasi-totally- (α, β) -normal if and only if

$$ran((S - \lambda)\mathcal{P}(S^m)) = ran((S - \lambda)^*\mathcal{P}(S^m))$$

or equivalently

$$ker((S - \lambda)\mathcal{P}(S^m)) = ker((S - \lambda)^*\mathcal{P}(S^m)).$$

In particular (choose $\lambda = 0$), an operator S is called polynomially m-quasi- (α, β) -normal $(0 \le \alpha \le 1 \le \beta)$ if there exists a nontrivial polynomial $P \in \mathbb{C}(z)$ such that

$$\alpha^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \leq \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \leq \beta^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m).$$

Remark 1.2. 1. Every m-quasi-totally- (α, β) -normal is polynomially m-quasi-totally- (α, β) -normal with $\mathcal{P}(z) = z$.

2. Every m-quasi- (α, β) -normal is polynomially quasi- (α, β) -normal with $\mathcal{P}(z) = z^m$.

Example 1.3. The following operator S in $\mathcal{B}(\mathbb{C}^2)$ is polynomially 2-quasi- (α, β) -normal for $\alpha = 0.04$ and $\beta = 3.8$ with respect to the polynomial $\mathcal{P}(z) = z^2 + 2z$, which is not normal, quasi-normal, hyponormal and quasi-hyponormal.

$$\mathcal{S} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

2. Main Results

We begin with:

Theorem 2.1. Let $S \in \mathcal{B}(\mathcal{H})$ and let $P \in \mathbb{C}(z)$ be any nontrivial polynomial. S is an polynomially m-quasi-totally- (α, β) -normal operator iff

$$\alpha ||(S - \lambda)\mathcal{P}(S^m)x|| \le ||(S - \lambda)^*\mathcal{P}(S^m)x|| \le \beta ||(S - \lambda)\mathcal{P}(S^m)x||$$

for all $\lambda \in \mathbb{C}$ and for all $x \in \mathcal{H}$.

Proof. Assume that S is an polynomially m-quasi-totally- (α, β) -normal operator, then there exist $P \in \mathbb{C}(z)$ for which

$$\alpha^{2}\|(S-\lambda)\mathcal{P}(S^{m})x\|^{2} = \alpha^{2} \langle (S-\lambda)\mathcal{P}(S^{m})x, (S-\lambda)\mathcal{P}(S^{m})x \rangle$$

$$= \alpha^{2} \langle \mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m})x, x \rangle$$

$$\leq \langle \mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m})x, x \rangle$$

$$= \langle (S-\lambda)^{*}\mathcal{P}(S^{m})x, (S-\lambda)^{*}\mathcal{P}(S^{m})x \rangle$$

$$= \|(S-\lambda)^{*}\mathcal{P}(S^{m})x\|^{2}$$

$$= \langle (S-\lambda)^{*}\mathcal{P}(S^{m})x, (S-\lambda)^{*}\mathcal{P}(S^{m})x \rangle$$

$$= \langle \mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m})x, x \rangle$$

$$\leq \beta^{2} \langle \mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m})x, x \rangle$$

$$= \beta^{2} \langle (S-\lambda)\mathcal{P}(S^{m})x, (S-\lambda)\mathcal{P}(S^{m})x \rangle$$

$$= \beta^{2} \|(S-\lambda)\mathcal{P}(S^{m})x\|^{2}.$$

Conversely, assume that ${\cal S}$ satisfies

$$\alpha \| (\mathcal{S} - \lambda) \mathcal{P}(\mathcal{S}^m) x \| \leq \| (\mathcal{S} - \lambda)^* \mathcal{P}(\mathcal{S}^m) x \| \leq \beta \| (\mathcal{S} - \lambda) \mathcal{P}(\mathcal{S}^m) x \|$$

for all $\lambda \in \mathbb{C}$ and for all $x \in \mathcal{H}$, we have

$$\alpha^{2} \langle (S - \lambda) \mathcal{P}(S^{m}) x, (S - \lambda) \mathcal{P}(S^{m}) x \rangle \leq \langle (S - \lambda)^{*} \mathcal{P}(S^{m}) x, (S - \lambda)^{*} \mathcal{P}(S^{m}) x \rangle$$
$$\leq \beta^{2} \langle (S - \lambda) \mathcal{P}(S^{m}) x, (S - \lambda) \mathcal{P}(S^{m}) x \rangle.$$

So one can obtain that

$$\left\langle \alpha^{2} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}) x, x \right\rangle \leq \left\langle \mathcal{P}(S^{m})^{*} (S - \lambda) (S - \lambda)^{*} \mathcal{P}(S^{m}) x, x \right\rangle$$
$$\leq \left\langle \beta^{2} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}) x, x \right\rangle.$$

Therefore

$$\alpha^2 \mathcal{P}(S^m)^*(S-\lambda)^*(S-\lambda)\mathcal{P}(S)^m \leq \mathcal{P}(S^m)^*(S-\lambda)(S-\lambda)^*\mathcal{P}(S)^m \leq \beta^2 \mathcal{P}(S^m)^*(S-\lambda)^*(S-\lambda)\mathcal{P}(S)^m.$$

Hence *S* is polynomially *m*-quasi-totally- (α, β) -normal operator. \Box

Proposition 2.2. Suppose $S \in \mathcal{B}(\mathcal{H})$ and $P \in \mathbb{C}(z)$ is any nontrivial polynomial. Then S is polynomially m-quasi-totally- (α, β) -normal operator if and only if

$$k^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m}) + 2k\alpha^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) + \mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m}) \ge 0$$

and

$$k^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) + 2k\mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m}) + \beta^{4}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) \ge 0$$

for all $k \in \mathbb{R}$.

Proof. By using elementary properties of real quadratic forms,

$$k^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m}) + 2k\alpha^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) + \mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m}) \geq 0$$

$$\Leftrightarrow k^{2}||(S-\lambda)^{*}\mathcal{P}(S^{m})x||^{2} + 2k\alpha^{2}||(S-\lambda)\mathcal{P}(S^{m})x||^{2} + ||(S-\lambda)^{*}\mathcal{P}(S^{m})x||^{2} \geq 0 \quad \forall \ x \in \mathcal{H} \text{ and } \quad \forall \ k \in \mathbb{R}$$

$$\Leftrightarrow \alpha||(S-\lambda)\mathcal{P}(S^{m})x|| \leq ||(S-\lambda)^{*}\mathcal{P}(S^{m})x|| \quad \forall \ x \in \mathcal{H}.$$

Similarly,

$$k^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) + 2k\mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m})$$

$$+\beta^{4}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) \geq 0$$

$$\Leftrightarrow k^{2}||(S-\lambda)\mathcal{P}(S^{m})x||^{2} + 2k||(S-\lambda)^{*}\mathcal{P}(S^{m})x||^{2}$$

$$+\beta^{4}||(S-\lambda)\mathcal{P}(S^{m})x||^{2} \geq 0 \quad \forall \ x \in \mathcal{H} \text{ and } \quad \forall \ k \in \mathbb{R}$$

$$\Leftrightarrow \beta||(S-\lambda)\mathcal{P}(S^{m})x|| \geq ||(S-\lambda)^{*}\mathcal{P}(S^{m})x|| \quad \forall \ x \in \mathcal{H}.$$

Therefore *S* is polynomially *m*-quasi-totally- (α, β) -normal operator. \square

Theorem 2.3. Let $S \in \mathcal{B}(\mathcal{H})$ such that $\mathcal{P}(S^m)$ does not have a dense range, then the following are equivalent.

(1) S is a polynomially m-quasi-totally- (α, β) -normal operator.

(2)
$$S = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $\mathcal{H} = \overline{ran(\mathcal{P}(S^m))} \oplus ker(\mathcal{P}(S^m)^*)$, where $A = S_{|\overline{ran(\mathcal{P}(S^m))}|}$ satisfies

$$\alpha^2(A-\lambda)^*(A-\lambda) \le (A-\lambda)(A-\lambda)^* + BB^* \le \beta^2(A-\lambda)^*(A-\lambda),$$

for all $\lambda \in \mathbb{C}$ and $\mathcal{P}(C^m) = 0$. Furthermore $\sigma(S) = \sigma(A) \cup \{0\}$.

Proof. (1) ⇒ (2). Consider the matrix representation of S with respect to the decomposition $\mathcal{H} = \overline{ran(\mathcal{P}(S^m))} \oplus ker(\mathcal{P}(S^{*m}))$: $S = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. Let P be the projection onto $\overline{ran(\mathcal{P}(S^m))}$. Then $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = SP = PSP$. Since S is polynomially m-quasi totally- (α, β) -normal operator, we have then

$$\alpha^{2} P\Big(\mathcal{P}(\mathcal{S}^{*m})(\mathcal{S} - \lambda)^{*}(\mathcal{S} - \lambda)\mathcal{P}(\mathcal{S}^{m})\Big) P \leq P\Big(\mathcal{P}(\mathcal{S}^{*m})(\mathcal{S} - \lambda)(\mathcal{S} - \lambda)^{*}\mathcal{P}(\mathcal{S}^{m})\Big) P$$

$$\leq \beta^{2} P\Big(\mathcal{P}(\mathcal{S}^{*m})(\mathcal{S} - \lambda)^{*}(\mathcal{S} - \lambda)\mathcal{P}(\mathcal{S}^{m})\Big) P$$

That is

$$\alpha^2(A-\lambda)^*(A-\lambda) \le (A-\lambda)(A-\lambda)^* + BB^* \le \beta^2(A-\lambda)^*(A-\lambda),$$

for all $\lambda \in \mathbb{C}$.

On the other hand, let $x = x_1 + x_2 \in \mathcal{H} = \overline{ran(\mathcal{P}(S^m))} \oplus ker(\mathcal{P}(S^{*m}))$. A simple computation shows that

$$\langle \mathcal{P}(C^m)x_2, x_2 \rangle = \langle \mathcal{P}(S^m)(I - P)x, (I - P)x \rangle$$

= $\langle (I - P)x, \mathcal{P}(S^{*m})(I - P)x \rangle = 0.$

So, $\mathcal{P}(C^m) = 0$.

Since $\sigma(S) \cup \mathcal{T} = \sigma(A) \cup \sigma(C)$, where \mathcal{T} is the union of the holes in $\sigma(S)$ which happen to be subset of $\sigma(A) \cap \sigma(C)$ by Corollary 7 of [12], and $\sigma(A) \cap \sigma(C)$ has no interior point and C is nilpotent, we have $\sigma(S) = \sigma(A) \cup \{0\}$.

(2)
$$\Rightarrow$$
 (1) Suppose that $S = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ onto $\mathcal{H} = \overline{ran(\mathcal{P}(S^m))} \oplus ker(\mathcal{P}(S^{*m}))$, with

$$\alpha^2\Big((A-\lambda)^*(A-\lambda)\Big) \leq (A-\lambda)(A-\lambda)^* + BB^* \leq \beta^2\Big((A-\lambda)^*(A-\lambda)\Big),$$

for all $\lambda \in \mathbb{C}$ and $\mathcal{P}(C^m) = 0$.

Since
$$S^m = \begin{pmatrix} A^m & \sum_{j=0} A^j B C^{m-1-j} \\ 0 & 0 \end{pmatrix}$$
, $\mathcal{P}(S^m) = \begin{pmatrix} \mathcal{P}(A^m) & Y \\ 0 & 0 \end{pmatrix}$

$$(S - \lambda)^* (S - \lambda) = \begin{pmatrix} (A - \lambda)^* (A - \lambda) & (A - \lambda)^* B \\ B^* (A - \lambda) & B^* B + (C - \lambda)^* (C - \lambda) \end{pmatrix}$$

and

$$(S - \lambda)(S - \lambda)^* = \begin{pmatrix} (A - \lambda)(A - \lambda)^* + BB^* & B(C - \lambda)^* \\ (C - \lambda)B^* & (C - \lambda)(C - \lambda)^* \end{pmatrix}.$$

Further

$$\mathcal{P}(S^{m})\mathcal{P}(S^{*m}) = \begin{pmatrix} \mathcal{P}(A^{m})\mathcal{P}(A^{*m}) + YY^{*} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}.$$

where $D = \mathcal{P}(A^m)\mathcal{P}(A^{*m}) + YY^* = D^*$.

Hence for all $\lambda \in \mathbb{C}$, we have

$$\alpha^{2}\mathcal{P}(S^{m})\mathcal{P}(S^{*m})\Big((S-\lambda)^{*}(S-\lambda)\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m})$$

$$=\begin{pmatrix} \alpha^{2}D(A-\lambda)^{*}(A-\lambda)D & 0 \\ 0 & 0 \end{pmatrix}$$

$$\leq \begin{pmatrix} D\Big((A-\lambda)(A-\lambda)^{*}+BB^{*}\Big)D & 0 \\ 0 & 0 \end{pmatrix} = \mathcal{P}(S^{m})\mathcal{P}(S^{*m})\Big((S-\lambda)(S-\lambda)^{*}\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m})$$

$$\leq \begin{pmatrix} \beta^{2}D(A-\lambda)^{*}(A-\lambda)D & 0 \\ 0 & 0 \end{pmatrix} = \beta^{2}\mathcal{P}(S^{m})\mathcal{P}(S^{*m})\Big((S-\lambda)^{*}(S-\lambda)\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m}).$$

It follows that

$$\alpha^{2}\mathcal{P}(S^{m})\mathcal{P}(S^{*m})\Big((S-\lambda)^{*}(S-\lambda)\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m})$$

$$\leq \mathcal{P}(S^{m})\mathcal{P}(S^{*m})\Big((S-\lambda)(S-\lambda)^{*}\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m})$$

$$\leq \beta^{2}\mathcal{P}(S^{m})\mathcal{P}S^{*m}\Big((S-\lambda)^{*}(S-\lambda)\Big)\mathcal{P}(S^{m})\mathcal{P}(S^{*m}).$$

This means that

$$\alpha^{2} \mathcal{P}(\mathcal{S}^{*m}) \Big((\mathcal{S} - \lambda)^{*} (\mathcal{S} - \lambda) \Big) \mathcal{P}(\mathcal{S}^{m}) \le \mathcal{P}(\mathcal{S}^{*m}) \Big((\mathcal{S} - \lambda)(\mathcal{S} - \lambda)^{*} \Big) \mathcal{P}(\mathcal{S}^{m})$$

$$\le \beta^{2} \mathcal{P}(\mathcal{S}^{*m}) \Big((\mathcal{S} - \lambda)^{*} (\mathcal{S} - \lambda) \Big) \mathcal{P}(\mathcal{S}^{m}),$$

on $\mathcal{H} = \overline{ran(\mathcal{P}(S^{*m}))} \oplus ker(\mathcal{P}(S^{m}))$. Consequently, S is polynomially m-quasi-totally- (α, β) -normal. \square

Theorem 2.4. Let $(\alpha, \beta) \in \mathbb{R}^2$ such that $0 < \alpha \le 1 \le \beta$ and let $S \in \mathcal{B}(\mathcal{H})$ such that $ran(\mathcal{P}(S^m)) = ran(\mathcal{P}(S^m)^*)$. If S is polynomially m-quasi- (α, β) -normal, then S^* is polynomially m-quasi- $(\frac{1}{\beta}, \frac{1}{\alpha})$ -normal.

Proof. Since S is polynomially m-quasi- (α, β) -normal, it follows that

$$\alpha || \mathcal{SP}(S^m) x|| \le || S^* \mathcal{P}(S^m) x|| \le \beta || \mathcal{SP}(S^m) x||, \quad \forall \ x \in \mathcal{H}.$$

This means that

$$\alpha || \mathcal{SP}(\mathcal{S}^m)^* x || \le || \mathcal{S}^* \mathcal{P}(\mathcal{S}^m)^* x || \le \beta || \mathcal{SP}(\mathcal{S}^m)^* x ||, \quad \forall \ x \in \mathcal{H}.$$

Combining these inequalities,

$$\frac{1}{\beta}||S^*\mathcal{P}(S^m)^*x|| \le ||S\mathcal{P}(S^m)^*x|| \le \frac{1}{\alpha}||S^*\mathcal{P}(S^m)^*x||.$$

So, S^* is polynomially m-quasi- $(\frac{1}{\beta}, \frac{1}{\alpha})$ -normal. \square

Theorem 2.5. Let S be polynomially m-quasi-totally- (α, β) -normal operator. If $\mathcal{P}(S^m)$ has dense range, then S is totally- (α, β) -normal.

Proof. Since $\mathcal{P}(S^m)$ has a dense range, it follows that $\overline{ran}(\mathcal{P}(S^m)) = \mathcal{H}$. Let $y \in \mathcal{H}$. Then there exists a sequence (x_n) in \mathcal{H} such that $\mathcal{P}(S^m)(x_n) \to y$ as $n \to \infty$.

Since S is polynomially m-quasi-totally- (α, β) -normal operator, we have

$$\alpha \| (S - \lambda) \mathcal{P}(S^m) x \| \le \| (S - \lambda)^* \mathcal{P}(S^m) x \| \le \beta \| (S - \lambda) \mathcal{P}(S^m) x \|$$

for all $x \in \mathcal{H}$ and for all $\lambda \in \mathbb{C}$.

In particular,

$$\alpha \| (S - \lambda) \mathcal{P}(S^m) x_n \| \le \| (S - \lambda)^* \mathcal{P}(S^m) x_n \| \le \beta \| (S - \lambda) \mathcal{P}(S^m) x_n \|$$

for all $x_n \in \mathcal{H}$ and for all $\lambda \in \mathbb{C}$.

It follows that

$$\alpha \| (S - \lambda) y \| \le \| (S - \lambda)^* y \| \le \beta \| (S - \lambda) y \|$$

for all $y \in \mathcal{H}$ and for all $\lambda \in \mathbb{C}$. Therefore S is totally- (α, β) – normal operator. \square

Corollary 2.6. Let S be polynomially m-quasi-totally- (α, β) -normal operator. If $\mathcal{P}(S^m) \neq 0$ and if S has no nontrivial $\mathcal{P}(S^m)$ -invariant closed subspace, then S is totally- (α, β) -normal.

Proof. Since $\mathcal{P}(S^m)$ has no nontrivial invariant closed subspace, it has no nontrivial hyperinvariant subspace. But $\ker(\mathcal{P}(S^m))$ and $\overline{ran(\mathcal{P}(S^m))}$ are hyperinvariant subspaces, and $\mathcal{P}(S^m) \neq 0$, hence $\ker(\mathcal{P}(S^m)) = 0$ and $\overline{ran(\mathcal{P}(S^m))} = \mathcal{H}$. Therefore S is totally- (α, β) -normal operator. \square

Corollary 2.7. *If* S *is such that* $a_1 + a_2S$ *is polynomially m-quasi-totally-* (α, β) *-normal operator for all scalars* a_1 *and* a_2 , *then* S *is totally-* (α, β) *-normal.*

Proof. If S is polynomially m-quasi-totally- (α, β) -normal operator but not totally- (α, β) -normal operator, then $\mathcal{P}(S^m)$ is not invertible. It is possible to find scalars a_1 and $a_2 \neq 0$ such that $\mathcal{T} = a_1 + a_2 S$ is invertible polynomially m-quasi-totally- (α, β) -normal operator. Therefore \mathcal{T} is totally- (α, β) -normal operators.

$$\mathcal{T} = a_1 + a_2 \mathcal{S} \Rightarrow \mathcal{S} = \frac{1}{a_2} (\mathcal{T} - a_1).$$

Therefore S is also totally- (α, β) -normal. \square

In the following theorem, the stability of the sum of two polynomially m-quasi-totally- (α, β) -normal operators is preserved under the specific conditions.

Theorem 2.8. Let $S, T \in \mathcal{B}(\mathcal{H})$. S, T are polynomially m-quasi-totally- (α, β) -normal operator satisfies the following conditions for some $P \in \mathbb{C}(z)$:

- $(S \lambda)P(T) = (T \lambda)P(S) = 0$
- $\mathcal{P}(\mathcal{T})^*(S \lambda) = \mathcal{P}(S)^*(\mathcal{T} \lambda) = 0$
- $(S \lambda)(T \lambda)^* = (S \lambda)^*(T \lambda) = 0$
- ST = TS = 0

Then S + T *is polynomially m-quasi-totally-* (α, β) *-normal operator.*

Proof. Set $\mathcal{P}(z) = \sum_{0 \le k \le n} a_k z^k$.

We have $\mathcal{P}(S + T)^m = \mathcal{P}(S^m) + \mathcal{P}(T)^m$ since ST = TS = 0.

Since S, T are polynomially m-quasi-totally- (α, β) -normal operator, we have

$$\alpha^{2} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}) \leq \mathcal{P}(S^{m})^{*} (S - \lambda) (S - \lambda)^{*} \mathcal{P}(S^{m})$$
$$\leq \beta^{2} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}),$$

$$\alpha^{2} \mathcal{P}(\mathcal{T}^{m})^{*} (\mathcal{T} - \lambda)^{*} (\mathcal{T} - \lambda) \mathcal{P}(\mathcal{T}^{m}) \leq \mathcal{P}(\mathcal{T}^{m})^{*} (\mathcal{T} - \lambda) (\mathcal{T} - \lambda)^{*} \mathcal{P}(\mathcal{T}^{m})$$
$$\leq \beta^{2} \mathcal{P}(\mathcal{T}^{m})^{*} (\mathcal{T} - \lambda)^{*} (\mathcal{T} - \lambda) \mathcal{P}(\mathcal{T}^{m})$$

for all $\lambda \in \mathbb{C}$.

To show that S + T is polynomially m-quasi-totally- (α, β) -normal operator.

First we have,
$$\mathcal{P}\left((S+T)^{m}\right)^{*} \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}\left((S+T)^{m}\right)\right]$$

$$= \mathcal{P}(S^{m*}+T^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}(S^{m}+T^{m})\right]$$

$$= \mathcal{P}(S^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}(S^{m})\right] + \mathcal{P}(S^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}(T^{m})\right] + \mathcal{P}(T^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}(S^{m})\right] + \mathcal{P}(T^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}+(T-\lambda)^{*}\right)\left((S-\lambda)+(T-\lambda)\right)\right] - \left((S-\lambda)+(T-\lambda)\right)\left((S-\lambda)^{*}+(T-\lambda)^{*}\right) \left[\mathcal{P}(T^{m})\right]$$

$$= \mathcal{P}(S^{m*}) \left[\alpha^{2}\left((S-\lambda)^{*}(S-\lambda)\right)-\left((S-\lambda)(S-\lambda)^{*}\right) \mathcal{P}(S^{m})\right] + \mathcal{P}(T^{m*}) \left[\alpha^{2}\left((T-\lambda)^{*}(T-\lambda)\right)-\left((T-\lambda)(T-\lambda)^{*}\right)\right] \mathcal{P}(T^{m})$$

Secondly,

$$\mathcal{P}((S+\mathcal{T})^m)^* \left[\beta^2 ((S-\lambda)^* + (\mathcal{T}-\lambda)^*) ((S-\lambda) + (\mathcal{T}-\lambda)) \right] \\ - ((S-\lambda) + (\mathcal{T}-\lambda)) ((S-\lambda)^* + (\mathcal{T}-\lambda)^*) \mathcal{P}((S+\mathcal{T})^m)$$

$$= \mathcal{P}(S^{m*} + \mathcal{T}^{m*}) \Big[\beta^{2} \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \\
- \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big] \mathcal{P}(S^{m} + \mathcal{T}^{m})$$

$$= \mathcal{P}(S^{m*}) \Big[\beta^{2} \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \\
- \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big] \mathcal{P}(S^{m})$$

$$+ \mathcal{P}(S^{m*}) \Big[\beta^{2} \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \\
- \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big] \mathcal{P}(\mathcal{T}^{m})$$

$$+ \mathcal{P}(\mathcal{T}^{m*}) \Big[\beta^{2} \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \\
- \Big((S - \lambda) + (\mathcal{T} - \lambda) \Big) \Big((S - \lambda)^{*} + (\mathcal{T} - \lambda)^{*} \Big) \Big] \mathcal{P}(S^{m})$$

$$+ \mathcal{P}(\mathcal{T}^{m*}) \Big[\beta^{2} \Big((S - \lambda)^{*} (S - \lambda) \Big) - \Big((S - \lambda)(S - \lambda)^{*} \Big) \Big] \mathcal{P}(S^{m})$$

$$+ \mathcal{P}(\mathcal{T}^{m*}) \Big[\beta^{2} \Big((\mathcal{T} - \lambda)^{*} (\mathcal{T} - \lambda) \Big) - \Big((\mathcal{T} - \lambda)(\mathcal{T} - \lambda)^{*} \Big) \Big] \mathcal{P}(\mathcal{T}^{m})$$

$$\geq 0.$$

Therefore S + T is polynomially m-quasi-totally- (α, β) -normal operator. \square

Theorem 2.9. Let S is polynomially m-quasi-totally- (α, β) -normal operator with respect to the polynomial $P \in \mathbb{C}[z]$. Then

$$ker(S-k) \subseteq ker(S-k)^*$$
,

for all $k \in \mathbb{C}$ such that $\mathcal{P}(k^m) \neq 0$.

Proof. Let $x \in ker(S - k)$. Since S is polynomially *m*-quasi-totally- (α, β) -normal operator, we have

$$\alpha ||(S - \lambda)\mathcal{P}(S^m)x|| \le ||(S - \lambda)^*\mathcal{P}(S^m)x|| \le \beta ||(S - \lambda)\mathcal{P}(S^m)x||$$

since Sx = kx, we get $\mathcal{P}(S^m)x = \mathcal{P}(k^m)x$, and therefore

$$\alpha ||(S - \lambda)\mathcal{P}(k^m)x|| \le ||(S - \lambda)^*\mathcal{P}(k^m)x|| \le \beta ||(S - \lambda)\mathcal{P}(k^m)x||$$

According to (S - k)x = 0 we obtain $||(S - \lambda)^* \mathcal{P}(S^m)x|| = 0$. Therefore $x \in ker(S - k)^*$. \square

Proposition 2.10. Let S be polynomially m-quasi-totally- (α, β) -normal operator. If a_1, a_2 are non-zero eigenvalues of S such that $a_1 \neq a_2$, then $\ker(S - a_1) \perp \ker(S - a_2)$.

Proof. Let $x \in ker(S - a_1)$ and $y \in ker(S - a_2)$. Then $Sx = a_1x$ and $Sy = a_2y$. Therefore $a_1 < x, y >= a_2 < x, y >$, and so $(a_1 - a_2) < x, y >= 0$. Hence $ker(S - a_1) \perp ker(S - a_2)$. \square

Theorem 2.11. *If* S *is polynomially m-quasi-*(α , β)*-normal such that* $\alpha\beta = 1$ *, then*

$$\alpha^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \leq \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \leq \beta^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m).$$

Proof. S is polynomially *m*-quasi-totally- (α, β) -normal if and only if

$$\alpha^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \le \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \le \beta^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m).$$

Therefore

$$\alpha^4 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \leq \alpha^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \leq \alpha^2 \beta^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m)$$

and

$$\alpha^2 \beta^2 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \le \beta^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \le \beta^4 \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m).$$

Combining these inequalities, $\alpha\beta = 1$, then

$$\alpha^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m) \le \mathcal{P}(S^m)^* S^* S \mathcal{P}(S^m) \le \beta^2 \mathcal{P}(S^m)^* S S^* \mathcal{P}(S^m).$$

Theorem 2.12. Let $(\alpha, \beta) \in \mathbb{R}^2$ such that $0 < \alpha \le 1 \le \beta$ and let $S \in \mathcal{B}(\mathcal{H})$ such that $ran(\mathcal{P}(S^m)) = ran(\mathcal{P}(S^m)^*)$. If $\alpha\beta = 1$ then S is polynomially m-quasi- (α, β) -normal if and only if S^* is polynomially m-quasi- (α, β) -normal.

Proof. Since S is polynomially m-quasi- (α, β) -normal, it follows that

$$\alpha ||S\mathcal{P}(S^m)x|| \le ||S^*\mathcal{P}(S^m)x|| \le \beta ||S\mathcal{P}(S^m)x||, \quad \forall \ x \in \mathcal{H}.$$

The condition $ran(\mathcal{P}(\mathcal{S}^m)) = ran(\mathcal{P}(\mathcal{S}^m)^*)$ implies

$$\alpha || \mathcal{SP}(S^m)^* x|| \leq || S^* \mathcal{P}(S^m)^* x|| \leq \beta || \mathcal{SP}(S^m)^* x||, \quad \forall \ x \in \mathcal{H}.$$

From the above two inequalities,

$$\frac{1}{\beta}||S^*\mathcal{P}(S^m)^*x|| \leq ||S\mathcal{P}(S^m)^*x|| \leq \frac{1}{\alpha}||S^*\mathcal{P}(S^m)^*x||.$$

Here $\alpha\beta = 1$, so, S^* is polynomially m-quasi- (α, β) -normal. \square

Theorem 2.13. Let $S \in \mathcal{B}(\mathcal{H})$ and $N \in \mathcal{B}(\mathcal{H})$ be an invertible operator such that N^*N commutes with S. Then S is polynomially m-quasi-totally- (α, β) -normal operator if and only if NSN^{-1} is polynomially m-quasi-totally- (α, β) -normal operator.

Proof. Assume that S is polynomially m-quasi-totally- (α, β) -normal operator. Consider,

$$\alpha^{2}\mathcal{P}((\mathcal{NSN}^{-1})^{m})^{*}(\mathcal{NSN}^{-1}-\lambda)^{*}(\mathcal{NSN}^{-1}-\lambda)\mathcal{P}((\mathcal{NSN}^{-1})^{m})$$

$$\leq \mathcal{P}((\mathcal{NSN}^{-1})^{m})^{*}(\mathcal{NSN}^{-1}-\lambda)(\mathcal{NSN}^{-1}-\lambda)^{*}\mathcal{P}((\mathcal{NSN}^{-1})^{m})$$

$$\leq \beta^{2}\mathcal{P}((\mathcal{NSN}^{-1})^{m})^{*}(\mathcal{NSN}^{-1}-\lambda)^{*}(\mathcal{NSN}^{-1}-\lambda)\mathcal{P}((\mathcal{NSN}^{-1})^{m}).$$

We have

$$\begin{split} &\alpha^{2}(\mathcal{N}^{-1})^{*}\mathcal{P}(S^{m})^{*}\mathcal{N}^{*}((\mathcal{N}^{-1})^{*}(S-\lambda)^{*}\mathcal{N}^{*})(\mathcal{N}(S-\lambda)\mathcal{N}^{-1})\mathcal{N}\mathcal{P}(S^{m})\mathcal{N}^{-1} \\ &\leq (\mathcal{N}^{-1})^{*}\mathcal{P}(S^{m})^{*}\mathcal{N}^{*}(\mathcal{N}(S-\lambda)\mathcal{N}^{-1})((\mathcal{N}^{-1})^{*}(S-\lambda)^{*}\mathcal{N}^{*})\mathcal{N}\mathcal{P}(S^{m})\mathcal{N}^{-1} \\ &\leq \beta^{2}(\mathcal{N}^{-1})^{*}\mathcal{P}(S^{m})^{*}\mathcal{N}^{*}((\mathcal{N}^{-1})^{*}(S-\lambda)^{*}\mathcal{N}^{*})(\mathcal{N}(S-\lambda)\mathcal{N}^{-1})\mathcal{N}\mathcal{P}(S^{m})\mathcal{N}^{-1}. \end{split}$$

It follows that

$$\alpha^{2}(\mathcal{N}^{-1})^{*}\mathcal{P}(\mathcal{S}^{m})^{*}(\mathcal{S}-\lambda)^{*}\mathcal{N}^{*}\mathcal{N}(\mathcal{S}-\lambda)\mathcal{P}(\mathcal{S}^{m})\mathcal{N}^{-1}$$

$$\leq (\mathcal{N}^{-1})^{*}\mathcal{P}(\mathcal{S}^{m})^{*}(\mathcal{S}-\lambda)\mathcal{N}^{*}\mathcal{N}\mathcal{N}^{-1}(\mathcal{N}^{-1})^{*}(\mathcal{S}-\lambda)^{*}\mathcal{N}^{*}\mathcal{N}\mathcal{P}(\mathcal{S}^{m})\mathcal{N}^{-1}$$

$$\leq \beta^{2}(\mathcal{N}^{-1})^{*}\mathcal{P}(\mathcal{S}^{m})^{*}(\mathcal{S}-\lambda)^{*}\mathcal{N}^{*}\mathcal{N}(\mathcal{S}-\lambda)\mathcal{P}(\mathcal{S}^{m})\mathcal{N}^{-1}.$$

Hence,

$$\alpha^{2} \mathcal{N} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}) \mathcal{N}^{-1}$$

$$\leq \mathcal{N} \mathcal{P}(S^{m})^{*} (S - \lambda) (S - \lambda)^{*} \mathcal{P}(S^{m}) \mathcal{N}^{-1}$$

$$\leq \beta^{2} \mathcal{N} \mathcal{P}(S^{m})^{*} (S - \lambda)^{*} (S - \lambda) \mathcal{P}(S^{m}) \mathcal{N}^{-1}.$$

We have

$$\mathcal{N}\Big(\alpha^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m}) \leq \mathcal{P}(S^{m})^{*}(S-\lambda)(S-\lambda)^{*}\mathcal{P}(S^{m})$$

$$\leq \beta^{2}\mathcal{P}(S^{m})^{*}(S-\lambda)^{*}(S-\lambda)\mathcal{P}(S^{m})\Big)\mathcal{N}^{-1}.$$

Therefore, NSN^{-1} is polynomially *m*-quasi-totally- (α, β) -normal operator.

Conversely, assume that NSN^{-1} is polynomially m-quasi-totaly- (α, β) -normal.

Set $\mathcal{T} = \mathcal{NSN}^{-1}$. We observe that \mathcal{T} commutes with $(\mathcal{N}^{-1})^*\mathcal{N}^{-1}$ and $\mathcal{N}^{-1}\mathcal{T}\mathcal{N} = \mathcal{S}$. By taking into account the preceding part of the theorem, we have $\mathcal{N}^{-1}\mathcal{T}\mathcal{N}$ is polynomially m-quasi-totaly- (α, β) -normal. \square

For $\mathcal{T}, \mathcal{S} \in \mathcal{B}(\mathcal{H})$ the operator $\Gamma_{\mathcal{T},\mathcal{S}}$ defined as $\Gamma_{\mathcal{T},\mathcal{S}} : C_2(\mathcal{H})$ such that $X \to \mathcal{T}X\mathcal{S} \in C_2(\mathcal{H})$ has been studied in [6].

The following results extends A. Bachir[3, Theorem 9]

Theorem 2.14. If $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ is polynomially m-quasi- (α, β) -normal operator with respect to the polynomial $\mathcal{P}(z) = z$ and \mathcal{S} is normal, then $\Gamma_{\mathcal{T},\mathcal{S}}$ is polynomially m-quasi- (α, β) -normal operator with respect to the polynomial $\mathcal{P}(z) = z$.

Proof. Here,

$$\Gamma_{\mathcal{T},\mathcal{S}}(X) = \mathcal{T}X\mathcal{S},$$

$$\Gamma_{\mathcal{T},\mathcal{S}}^*(X) = \mathcal{T}^*X\mathcal{S}^*,$$

$$\Gamma^m_{\mathcal{T},\mathcal{S}}(X) = \mathcal{T}^m X \mathcal{S}^m,$$

$$\Gamma^{m*}_{\mathcal{T},\mathcal{S}}(X)=\mathcal{T}^{m*}X\mathcal{S}^{m*}.$$

First we have,

$$\begin{split} \left(\Gamma_{\mathcal{T},S}^{m*}\Gamma_{\mathcal{T},S}\Gamma_{\mathcal{T},S}^{m}\Gamma_{\mathcal{T},S}^{m} - \alpha^{2}\Gamma_{\mathcal{T},S}^{m}\Gamma_{\mathcal{T},S}\Gamma_{\mathcal{T},S}^{m}\Gamma_{\mathcal{T},S}\Gamma_{\mathcal{T},S}^{m}\right)(X) \\ &= \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m}S^{*}SS^{m*} - \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}SS^{*}S^{m*} \\ &= \mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m}S^{*}SS^{m*} - \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}S^{*}SS^{m*} \\ &+ \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}S^{*}SS^{m*} - \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}SS^{*}S^{m*} \\ &= \left(\mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m} - \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}\right)XS^{m}S^{*}SS^{m*} \\ &+ \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}X\left(S^{m}S^{*}SS^{m*} - S^{m}SS^{*}S^{m*}\right) \\ &= \left(\mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m} - \alpha^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}\right)XS^{m}S^{*}SS^{m*} \\ &\geq 0 \end{split}$$

Secondly,

$$\begin{split} \left(\beta^{2}\Gamma_{\mathcal{T},S}^{m*}\Gamma_{\mathcal{T},S}^{*}\Gamma_{\mathcal{T},S}\Gamma_{\mathcal{T},S}^{m} - \Gamma_{\mathcal{T},S}^{m*}\Gamma_{\mathcal{T},S}\Gamma_{\mathcal{T},S}^{*}\Gamma_{\mathcal{T},S}^{m}\right)(X) \\ &= \beta^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}SS^{*}S^{m*} - \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m}S^{*}SS^{m*} \\ &= \beta^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m}XS^{m}SS^{*}S^{m*} - \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m}SS^{*}S^{m} \\ &+ \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m}SS^{*}S^{m} - \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}XS^{m*}S^{*}SS^{m} \\ &= \left(\beta^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m} - \mathcal{T}^{m}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m*}\right)XS^{m*}SS^{*}S^{m} \\ &+ \mathcal{T}^{m*}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m}X\left(S^{m*}SS^{*}S^{m} - S^{m*}S^{*}SS^{m}\right) \\ &= \left(\beta^{2}\mathcal{T}^{m*}\mathcal{T}^{*}\mathcal{T}\mathcal{T}^{m} - \mathcal{T}^{m}\mathcal{T}\mathcal{T}^{*}\mathcal{T}^{m*}\right)XS^{m*}SS^{*}S^{m} \\ &\geq 0 \end{split}$$

Hence $\Gamma_{\mathcal{T},\mathcal{S}}$ is polynomially m-quasi- (α,β) -normal operator with respect to the polynomial $\mathcal{P}(z)=z$

Theorem 2.15. Let \mathcal{T} , \mathcal{S} be polynomially m-quasi- (α, β) -normal operator with respect to the polynomial $\mathcal{P}(z) = z$. If \mathcal{S} is invertible and $\mathcal{S}^*\mathcal{S} = \mathcal{S}\mathcal{S}^*$ such that $\mathcal{T}X = X\mathcal{S}$ for some $X \in \mathbb{C}_2(\mathcal{H})$, then $\mathcal{T}^*X = X\mathcal{S}^*$.

Proof. Let $\Gamma_{\mathcal{T},S^{-1}}(Y) = \mathcal{T}YS^{-1}$. Since \mathcal{T} and \mathcal{S} are m-quasi- (α,β) -normal operator, then $\Gamma_{\mathcal{T},S^{-1}}$ is also m-quasi- (α,β) -normal operator by Theorem 2.14. Moreover $\Gamma_{\mathcal{T},S^{-1}}(X) = \mathcal{T}XS^{-1} = X$ because of $\mathcal{T}X = XS$. Hence X is an eigenvector of $\Gamma_{\mathcal{T},S^{-1}}$. By Theorem 2.9, we have $\Gamma_{\mathcal{T},S^{-1}}^*(X) = \mathcal{T}^*X(S^{-1})^*$, that is, $\mathcal{T}^*X = XS^*$ as desired. \square

References

- [1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- [2] S.C. Arora, R. Kumar, M-hyponormal operators, Yokohama Mathematical Journal 28 (1980), 41–44.
- [3] A. Bachir, T. Prasad, Fuglede-Putnam theorem for (α, β)-normal operators, Rendiconti del Circolo matematico di Palermo **69(3)** (2020), 1243–1249
- [4] B.A. Barnes, Majorization, range inclusion, and factorization for bounded linear operators, Proc. Amer. Math. Soc. 133 (2005), 155–162.
- [5] A. Benali, O.A.M. Sid Ahmed, (α, β) -A-Normal operators in semi-Hilbertian spaces, Afrika Matematika **30** (2019), 903–920.
- [6] S.K. Berberian, Extension of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1978), 113–114.
- [7] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- [8] D. S. Djordjevic, Muneo Cho, Dijana Mosic, Polynomially normal operators, Ann. Funct. Anal. 11 (2020),493–504.
- [9] S.S. Dragomir, M.S. Moslehian, Some Inequalities for (α, β)-normal Operators in Hilbert Spaces, Ser. Math. Inform. 23 (2008),39–47.
- [10] R.G. Duglus, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [11] K.E. Gustafson, D.K.M. Rao, Numerical range, Springer-Verlag, New York (1997).
- [12] J.K. Han, H.Y. Lee, W.Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119-123.
- [13] Y.M. Han, J.H. Son, On quasi-M-hyponormal operators, Filomat ${\bf 25}$ (2011), 37-52 .
- [14] F. Kittaneh, On the structure of polynomially normal operators, B. Aust. Math. Soc. 30 (1984), 11–18.
- [15] K.B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323–336.
- [16] K.B. Laursen, M.M. Neumann, *An introduction to Local spectral theory*, London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000.
- [17] V. Manuilov, M. S. Moslehian, Q. Xu, Solvability of the equation Ax = C for operators on Hilbert C^* -modules, Proc. Amer. Math. Soc. 148 (2020), 1139–1151.
- [18] S. Mecheri, On k-quasi-M-hyponormal operators, Math. Inequal. Appl. 16 (2013), 895–902.
- [19] M.S. Moslehian, On (α, β) -normal operators in Hilbert spaces, IMAGE, **39** (2007).
- [20] M.S. Moslehian, M. Kian, Q. Xu, Positivity of 2 × 2 block matrices of operators, Banach J. Math. Anal. 13 (2019), 726–743.
- [21] Ohud Bulayhan Almutairi, O.A.M. Sid Ahmed, New extension of quasi-M-hyponormal operators, AIMS Mathematics 9(8) (2024), 21383–21396.
- [22] R. Pradeep, P. Maheswari Naik, O.A.M. Sid Ahmed, On m-quasi-totally- (α, β) -normal operators, Operators and Matrices **15(3)** (2021), 1055–1072.
- [23] D. Senthilkumar, P. Maheswari Naik, Weyl's theorem for algebraically absolute-(p,r)-paranormal operators, Banach J. Math. Anal. 5 (2011), 29–37.
- [24] B.Sid Ahmed, O.A.M. Sid Ahmed, On the class of n-power D-m-quasi-normal operators on Hilbert spaces, Operators and Matrices 14 (2020), 159–174.