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Abstract. The aim of this manuscript is to investigate the existence and uniqueness of solutions for a class
of nonlinear ψ-Caputo fractional pantograph differential equations with damping and nonlocal conditions.
The proofs are based on results from topological degree theory for condensing maps, combined with the
technique of measures of noncompactness. As an application, a nontrivial example is presented to illustrate
the theoretical results.

1. Introduction

Fractional calculus, which extends integration and differentiation to non-integer orders, has become one
of the most rapidly expanding mathematical fields following the recognition of its utility in mathematical
modeling [11, 21, 22, 33, 35]. Fractional differential equations, which can be used to model and describe non-
homogeneous physical events, have recently attracted a lot of attention, particularly initial and boundary
value problems for nonlinear fractional differential equations. Different researchers have found some
interesting solutions to initial and boundary value problems for fractional differential equations involving
various fractional derivatives, including their existence and uniqueness, such as Riemann-Liouville [28],
Caputo [3], Hilfer [27], Erdelyi-Kober [30] and Hadamard [2]. Since all these definitions incorporate kernel-
dependent formulations, researchers introduced theψ-Caputo derivative a fractional derivative with respect
to another function to provide a unified framework for studying fractional differential equations. This
generalized approach encompasses several well-known fractional derivatives as special cases: by selecting
specific functions ψ, one can recover the classical Caputo, Caputo-Hadamard, or Caputo-Erdelyi-Kober
fractional derivatives. From an applications perspective, this framework offers significant advantages, as
the strategic selection of the “trial” function ψ enables researchers to fine-tune the ψ-Caputo derivative for
modeling specific phenomena [24, 25]. Almeida et al. [6] established existence and uniqueness results for
nonlinear fractional differential equations involving ψ-Caputo-type derivatives using fixed point theorems
and the Picard iteration method. Additional details can be found in [8, 18–20, 26, 34] and the references cited
therein. In particular, the pantograph equation was employed as a useful tool to shed light on some of the
modern problems originating from several scientific disciplines, including electrodynamics, probability,
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quantum mechanics, and number theory. However, a substantial investigation on the characteristics of
this type of fractional differential equation, both analytical and numerical, has been done, and intriguing
findings have been published in [1, 4, 7, 9, 10, 12, 15–17, 29, 37].
Motivated by recent advances, this study explores the existence of solutions for a nonlinear pantograph
differential equation governed by the ψ-Caputo fractional derivative.

CDβ,ψ
0+ x(t) + λx′(t) = 1(t, x(t), x(εt)), t ∈ J = [0,T],

x′(0) = 0, x(0) + ω(x) = x0.
(1)

Where CDβ,ψ
0+ is the ψ−Caputo fractional derivative of u at order β ∈ (1, 2),

ε ∈ (0, 1), T > 0, x0 ∈ R, 1 ∈ C(J ×R ×R,R), ω is the nonlocal term satisfies some given conditions, and the

damping coefficient |λ| ∈
(
0, 1

Qβ,ψ

)
where Qβ,ψ =

∥ψ′∥(ψ(T)−ψ(0))β−1

Γ(β) .

To the best of the authors’ knowledge, topological degree theory for condensing maps has not yet been
applied to this class of nonlinear pantograph differential equations with damping and the ψ-Caputo frac-
tional derivative.
The structure of the paper is as follows. In Section 2, we present some basic definitions and preliminary
results that will be used in establishing our main findings. Section 3 is devoted to proving the existence of
solutions for the problem (1). In Section 4, we provide a concrete example to illustrate the applicability of
the main results. Finally, Section 5 presents conclusions derived from the study’s results.

2. Basic concepts

This section introduces the preliminaries and notations employed throughout the paper. For further
details, the reader is referred to [5].

Definition 2.1. [6] Let q > 0, h ∈ L1(J,R) and ψ ∈ Cn(J,R) such that ψ′(t) > 0 for all t ∈ J. The ψ-Riemann-
Liouville fractional integral at order q of the function h is given by

Iq,ψ
0+ h(t) =

1
Γ(q)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))q−1h(s)ds. (2)

where Γ(q) =
∫
∞

0 e−ttq−1 dt.

Definition 2.2. [6] Let q > 0, h ∈ Cn−1(J,R) and ψ ∈ Cn(J,R) such that ψ′(t) > 0 for all t ∈ J. The ψ−Caputo
fractional derivative at order q of the function h is given by

CDq,ψ
0+ h(t) =

1
Γ(n − q)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))n−q−1h[n]

ψ (s)ds, (3)

where

h[n]
ψ (s) =

(
1

ψ′(s)
d
ds

)n

h(s) and n = [q] + 1,

and [q] denotes the integer part of the real number q.

Remark 2.3. In particular, note that if ψ(t) = t and ψ(t) = lo1(t), then the equation (3) is reduced to the the Caputo
fractional derivative and Caputo-Hadamard fractional derivative respectively.

Proposition 2.4. [6] Let q > 0, if h ∈ Cn−1(J,R), then we have

1) CDq,ψ
0+ Iq,ψ

0+ h(t) = h(t).
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2) Iq,ψ
0+

CDq,ψ
0+ h(t) = h(t) −

n−1∑
k=0

h[k]
ψ (0)

k!
(ψ(t) − ψ(0))k.

Proposition 2.5. [6] Let q > p > 0 and t ∈ J, then

1) Iq,ψ
0+ (ψ(t) − ψ(0))p−1 =

Γ(p)
Γ(q + p)

(ψ(t) − ψ(0))q+p−1.

2) Dq,ψ
0+ (ψ(t) − ψ(0))p−1 =

Γ(p)
Γ(p − q)

(ψ(t) − ψ(0))ν−µ−1.

3) Dq,ψ
0+ (ψ(t) − ψ(0))k = 0, ∀k < n ∈N.

Definition 2.6. [14] Let X a Banach space and BX be the family of all non-empty and bounded subsets of X. The
Kuratowski measure of non-compactness is the mapping ρ : BX → [0,+∞[ defined by

ρ(A) = inf{ r > 0: A admits a finite cover by sets of diameter ≤ r}.

Proposition 2.7. [14] The Kuratowski measure of noncompactness ρ satisfies the following assertions.
1. ρ(A) = 0 if and only if A is retativety compact.
2. ρ(kA) = |k|ρ(A), k ∈ R .
3. ρ(A1 + A2) ≤ ρ(A1) + ρ(A2).
4. If A1 ⊂ A2 then ρ(A1) ≤ ρ(A2).
5. ρ(A1 ∪ A2) = max{ρ(A1), ρ(A2)}.
6. ρ(A) = ρ(A) = ρ(convA) where A and convA denote the closure and the convex hull of A respectively.

Definition 2.8. [14] Let and F : Ω ⊂ X → X be a continuous bounded map. We say that F is ρ-Lipschitz if there
exists k ≥ 0 such that

ρ(F (A)) ≤ kρ(A), f or every A ⊂ Ω.

Moreover, if k < 1 then we say that F is a strict ρ-contraction.

Definition 2.9. [14] We say that the function F is ρ-condensing if

ρ(F (A)) < ρ(A),

for every bounded subset B of Ω with ρ(A) > 0.
In other words,

ρ(F (A)) ≥ ρ(A)⇒ ρ(A) = 0.

Definition 2.10. [14] We say that the function F : Ω→ X is Lipschitz if there exists l > 0 such that

∥ F (x) − F (y) ∥≤ k ∥ x − y ∥, f or all x, y ∈ Ω.

Moreover, if k < 1 then we say that F is a strict contraction.

Lemma 2.11. [14] If L,F : Ω → X are ρ-Lipschitz mappings with constants c1 respectively c2, then the mapping
F +L : Ω→ X is ρ- Lipschitz with constants c1 + c2.

Lemma 2.12. [14] If F : Ω→ X is compact, then F is ρ− Lipschitz with constant c = 0.

Lemma 2.13. [14] If F : Ω→ X is Lipschitz with constant k, then F is ρ−Lipschitz with the same constant k.

Theorem 2.14. (See Isaia [31]). Let F : X→ X be ρ-condensing and

Eγ = {x ∈ X : x = γF x f or some 0 ≤ γ ≤ 1}.

If Eγ is a bounded set in X, then there exists r > 0 such that Sγ ⊂ Br and we have

de1(I − δF ,Br, 0) = 1, for all δ ∈ [0, 1].

Consequently, F has at least one fixed point and the set of the fixed points ofH lies in Br .
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3. Main results

We start this section by introducing necessary notations and hypotheses which we will need in the
sequel.
• We denote by C := C(J,R) the space of continuous real-valued functions defined on J provided with
supremum norm

∥ x ∥= sup
t∈J
| x(t) | .

•We denote by Bη the closed ball centered at 0 with radius η > 0.

Lemma 3.1. A function x ∈ C1 := C1(J,R) is a solution of (1) if and only if x satisfies the following fractional integral
equation

x(t) = x0 − ω(x) +
1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1(1(s, x(s), x(εs)) − λx′(s))ds. (4)

Proof. Let x be a solution of (1), then by applying ψ−fractional integral Iβ,ψ0+ on both sides of (1) we obtain

Iβ,ψ0+
CDβ,ψ

0+ x(t) − λIβ,ψ0+ x′(t) = Iβ,ψ0+ 1(t, x(t), x(εt)),

and by using Proposition 2.4 we get

x(t) = c0 + c1(ψ(t) − ψ(0)) + Iβ,ψ0+ 1(t, x(t), x(εt)) + λIβ,ψ0+ x′(t),

where c0, c1 ∈ R,
hence

x′(t) = c1Ψ
′(t) +

1
Γ(β)

∫ t

0

(
ψ′(s)(ψ(t) − ψ(s))β−1

(
1(s, x(s), x(εs)) − λx′(s)

))′
ds,

given that x(0) + ω(x) = x0 and x′(0) = 0, it follows c0 = x0 − ω(x) and c1 = 0.
Therefore (4) holds.
Conversely, suppose x is a solution to (4). Then, it follows that x(0) + ω(x) = x0 and x′(0) = 0. Moreover,
by applying the ψ-Caputo fractional derivative CDβ,ψ

0+ to both sides of (4) and utilizing Proposition 2.4, we
obtain

CDβ,ψ
0+ x(t) − λIβ,ψ0+ x′(t) = Iβ,ψ0+ 1(t, x(t), x(εt)).

Thus, equation (1) holds.

In order to establish the existence of a solution for our main problem (1), it is necessary to first state the
following hypotheses.

(H1) There exists a constant Lω ∈ [0, 1) such that

|ω(x) − ω(y)| ≤ Lω | x − y |, f or all x, y ∈ C.

(H2) There exist two constants Kω,Mω > 0 and q ∈ (0, 1) such that

|ω(x)| ≤ Kω || x ||q +Mω f or all x ∈ C.

(H3) There exist two constants K1,M1 > 0 and p ∈ (0, 1) such that

|1(t, x(t), x(εt))| ≤ K1 || x ||p +M1 f or all x ∈ C.
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Lemma 3.2. If a function x ∈ C1 is a solution to (1), then

∥x′∥ ≤
Qβ,ψ

1 − |λ|Qβ,ψ
(K1∥x∥p +M1).

Proof. Let x ∈ C1 be a solution of (1), then

|x′(t)| =

∣∣∣∣∣∣ (β − 1)
Γ(β)

∫ t

0
(ψ′(s)ψ′(t)(ψ(t) − ψ(s))β−2(1(s, x(s), x(εs)) − λx′(s))ds

∣∣∣∣∣∣
≤

(β − 1)ψ′(t)
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−2

∣∣∣(1(s, x(s), x(εs)) − λx′(s))
∣∣∣ ds.

By (H3), we get

|x′(t)| ≤ Qβ,ψ(K1∥x∥p +M1 + |λ|∥x′∥).

It follows

∥x′∥(1 − |λ|)Qψ,β ≤ Qβ,ψ(K1∥x∥p +M1).

Thus

∥x′∥ ≤
Qβ,ψ

1 − |λ|Qβ,ψ
(K1∥x∥p +M1).

To prove the (4) has at least one solution x ∈ C1, we consider the following two operators B1,B2 : C1
→ C

1

defined by

B1x(t) = x0 − ω(x), t ∈ J, (5)

and

B2x(t) =
1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

(
1(s, x(s), x(εs)) − λx′(s)

)
ds, t ∈ J, (6)

thus, (4) can be formulated as follows

Bx(t) = B1x(t) +B2x(t), t ∈ J. (7)

Theorem 3.3. Assume that the hypotheses (H1)− (H3) are satisfied, then fractional pantograph differential equation
(1) has at least one solution x ∈ C1. Moreover, the set of all solutions for (1) is bounded in C1.

In order to prove the Theorem 3.3, we will need to show some lemmas and preliminary results.

Lemma 3.4. The operator B1 is ρ- Lipschitz with the constant Lω. Moreover, B1 satisfies the following growth
condition

∥B1x∥ ≤ |x0| + Kω∥x∥q +Mω, f or every x ∈ C1. (8)

Proof. To prove that the operator B1 is Lipschitz with constant Lω.
Let x, y ∈ C1, then we have ∣∣∣B1x(t) − B1y(t)

∣∣∣ ≤ |ω(x) − ω(y)|,

by using (H1) we get ∣∣∣B1x(t) − B1y(t)
∣∣∣ ≤ Lω∥x − y∥,
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Taking supremum over t, we obtain ∥∥∥B1x − B1y
∥∥∥ ≤ Lω∥x − y∥,

hence B1 is is Lipschitz with Lω. By Lemma 2.13, we conclude that B1 is ρ-Lipschitz with the constant Lω.
To show the growth condition (8), let x ∈ C1, then we have

|B1x(t)| = |x0 − ω(x)| ≤ |x0| + |ω(x)|,

by (H2), we get
∥B1x∥ ≤ |x0| + Kω∥x∥q +Mω.

Lemma 3.5. The operator B2 is continuous. Additionally B2 satisfies the following growth condition

∥B2x∥ ≤ Πβ,λ,ψ(Kω∥x∥p +Mω), for each x ∈ C1. (9)

where Πβ,λ,ψ =
(1−|λ|)Q2

β,ψ+Qβ,ψ

∥ψ′∥β(1−|λ|Qβ,ψ) .

Proof. To prove that the operator B2 is continuous, let xn ∈ C
1 converging to x in C1, it follows that there

exists δ > 0 such that ∥xn∥ ≤ δ and ∥x∥ ≤ δ. Now let t ∈ J, then we have

|B2xn(t) − B2x(t)| ≤
1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

∣∣∣1(s, xn(s), xn(εs)) − 1(s, x(s), x(εs))
∣∣∣ ds

+
λ
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

∣∣∣x′n(s)) − x′(s)
∣∣∣ ds.

Given that 1 is continuous, then we have

lim
n→∞
1(s, xn(s), xn(εs)) = 1(s, x(s), x(εs)).

Conversely, utilizing Lemma 3.2 and (H3), we find

1
Γ(β)

(ψ′(s)(ψ(t) − ψ(s))β−1
∥∥∥(1(s, xn(s), xn(εs)) − λx′n(s)) − (1(s, x(s), x(εs)) − λx′(s))

∥∥∥
≤ 2

(
K1δp +M1

)
(1 +

Qβ,ψ

1 − |λ|Qβ,ψ
)

1
Γ(β)

(ψ′(s)(ψ(t) − ψ(s))β−1,

since s 7→
1
Γ(β)

(ψ′(s)(ψ(t) − ψ(s))β−1 is an integrable function on [0, t], then by Lebesgue dominated conver-

gence theorem, we can conclude that

lim
n7→+∞

1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

∥∥∥(1(s, xn(s), xn(εs)) − λx′n(s)) − (1(s, x(s), x(εs)) − λx′(s))
∥∥∥ ds = 0.

Therefore,
lim

n7→+∞
∥ B2xn − B2x ∥= 0,

it follows that B2 is continuous .
To demonstrate (9), let x ∈ C1, then we obtain

|B2x(t)| ≤
1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

∣∣∣(1(s, x(s), x(εs)) − λx′(s))
∣∣∣ ds,
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by Lemma 3.2 and (H3) we obtain

|B2x(t)| ≤
(1 + Qβ,ψ

1−|λ|Qβ,ψ
)(K1∥x∥p +M1)

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1ds,

it follows

∥ B2x ∥≤
(1 + Qβ,ψ

1−|λ|Qβ,ψ
)(K1∥x∥p +M1)(ψ(T) − ψ(0))β

Γ(β + 1)
.

Thus,

∥ B2x ∥≤
Qβ,ψ

∥ ψ′ ∥ β
(1 +

Qβ,ψ

1 − |λ|Qβ,ψ
)(K1∥x∥p +M1).

Finally, we get
∥ B2x ∥≤ Πβ,λ,ψ(K1∥x∥p +M1).

Lemma 3.6. B2 : C1
→ C

1 is a compact operator.

Proof. Let us first prove that B2Bη is bounded. To do so, let x ∈ Bη. Then by (9) we have

∥ Bx ∥≤ Πβ,λ,ψ(K1ηp +M1) := ζ.

It follows that B2Bη ⊂ Bζ. Thus B2Bη is bounded.
Now let us show that BBη is equicontinuous. Let x ∈ B2Bη and t1, t2 ∈ J such that t1 < t2, then we have

∣∣∣B2x(t2) − B2x(t1)
∣∣∣ ≤ (1 + Qβ,ψ

1−|λ|Qβ,ψ
))(K1ηp +M1)

Γ(β)

∫ t2

t1

ψ′(s)(ψ(t2) − ψ(s))β−1ds,

+
(1 + Qβ,ψ

1−|λ|Qβ,ψ
)(K1ηp +M1)

Γ(β)

∫ t1

0
ψ′(s)((ψ(t2) − ψ(s))β−1

− (ψ(t1) − ψ(s))β−1)ds

≤

(1 + Qβ,ψ

1−|λ|Qβ,ψ
)(K1ηp +M1)

Γ(β + 1)
((ψ(t2) − ψ(0))β + 2(ψ(t2) − ψ(t1))β + (ψ(t1) − ψ(0))β).

Since ψ is a continuous function, then we obtain

lim
t1→t2
|B2x(t1) − B2x(t2)| = 0.

thus B2Bη is equicontinuous.
Given that B2Bη is uniformly bounded and equicontinuous. Then by Arzelà–Ascoli Theorem [23] we
conclude that B2Bη is relatively compact, hence B2 is compact.

Corollary 3.7. B2 : C1
→ C

1 is ρ-Lipschitz with zero constant.

Proof. Since the operator B2 is compact and from Lemma 2.12 it follows that B2 is ρ-Lipschitz with zero
constant.

Now, we have all tools to establish the proof of Theorem 3.3.
Proof of Theorem 3.3.
Let B1,B2,B: C1

→ C
1 be the operators given by the equations (5),(6) and (7) respectively.

B1,B2,B are continuous and bounded. Moreover, by using Lemma 3.4 we have B1 is ρ-Lipschitz with
constant Lω and by using Corollary 3.7 we have B1 is ρ-Lipschitz with zero constant. It follows from
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Lemma 2.11 that B is a strict ρ-contraction with constant Lω.
We consider the following set

Sγ = {x ∈ C1 : x = γBx f or some γ ∈ [0, 1]}.

Let us show that Sγ is bounded in C1. For this purpose let x ∈ Sγ, then x = γBx = γ(Ax + B2x). It follows
that

∥x∥ = γ∥Bx∥ ≤ γ(∥B1x∥ + ∥B2x∥),

by using Lemmas 3.4 and 3.5 we get

∥x∥ ≤
(
|x0| + Kω∥x∥q +Mω +Πβ,λ,ψ(K1∥x∥p +M1)

)
. (10)

From the inequality (10) we deduce that Sγ is bounded in C1 with p < 1 and q < 1.
if it’s not the case, we suppose that ξ := ∥x∥ −→ ∞. Dividing both sides of (10) by ξ, and taking ξ → ∞, it
follows that

1 ≤ lim
ξ→∞

(
|x0| + Kωξq +Mω +Πβ,λ,ψ(K1ξp +M1)

)
ξ

= 0,

which is a contradiction.
Finally, by Theorem 2.14, we conclude that B has at least one fixed point, which serves as a solution to (1).
Moreover, the set of fixed points of B is bounded in C1. □

Remark 3.8. Note that if the assumptions (H2) and (H3) are formulated for q = 1 and p = 1, then the conclusions of
Theorem 3.3 remain valid provided that

Kω + K1Πβ,λ,ψ < 1.

4. An illustrative example

In this section, we give an example to illustrate the usefulness of our main result.
Consider the following problem:

CD
3
2 ,(e

t

0+ x(t) +
1
8

x′(t) = 1(t, x(t), x(εt)), t ∈ J = [0, 1],

x′(0) = 0, x(0) =
20∑
j=1

θ j|x(t j)|, θ j > 0, 0 < t j < 1, j = 1, 2, .., 20.

(11)

where 1(t, x(t), x(εt)) =
sin

(
x
(

t
√

2

))
(9+et)

√
2

 |x(t)|

1+
∣∣∣∣∣x( t
√

2

)∣∣∣∣∣


Here ε = 1
√

2
, β = 3

2 , T = 1, ψ(t) = et, λ = 1
8 and ω(x) =

20∑
j=1

θ j|x(t j)| with
20∑
j=1
θ j < 1.

Clearly (H1), (H2) hold with Kω = Lω =
20∑
i= j
θ j, Mω = 0 and q = 1.

Indeed, we can write

|ω(x(t))| =

∣∣∣∣∣∣∣∣
20∑
j=1

θ j|x(t j)

∣∣∣∣∣∣∣∣ ,
hence

|ω(x)| ≤
20∑
j=1

θ j ∥x∥ ,
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thus Kω =
20∑
j=1
θ j, Mω = 0 and q = 1.

Alternatively, we have

|ω(x(t)) − ω(y(t))| =

∣∣∣∣∣∣∣∣
20∑
j=1

θ j|x(t j) −
20∑
j=1

θ j|y(t j)

∣∣∣∣∣∣∣∣ ,
hence

|ω(x) − ω(y)| ≤
20∑
j=1

θ j

∣∣∣x − y
∣∣∣ ,

thus Lω =
20∑
j=1
θ j.

To prove (H3), let t ∈ J and x ∈ R, then we have

∣∣∣1(t, x(t), x(εt))
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
cos

(
x
(

t
√

2

))
(9 + et)

√
2

 |x(t)|

1 +
∣∣∣∣∣x (

t
√

2

)∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ ≤

1

10
√

2
(∥x∥ + 1) .

Thus, (H3) holds with K1 =M1 =
1

10
√

2
and p = 1.

Consequently, Theorem 3.3 implies that problem (11) has at least one solution.
Moreover, from the inequality (10) we have

∥x∥ ≤
(1 + e (e−1)(1/2)

Γ(3/2)− 1
8 e(e−1)(1/2) )(e − 1)(3/2)

10
√

2Γ(8/3) − 1
= 0.0598798162,

thus the set of solutions for (11) is bounded.

5. Conclusion

In this paper, we studied the existence of solutions for a class of nonlocal pantograph differential equa-
tions with damping and aψ-Caputo type fractional derivative. The existence results were established using
topological degree theory for condensing maps. Finally, an illustrative example was presented to support
the theoretical findings.
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