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Abstract. Let R = Z8[u]/⟨u2
− 4, 2u⟩ be a non-chain ring of characteristic 8. In this article, DNA codes

of odd lengths over the ring R based on the deletion distance are discussed. For this purpose, we study
cyclic codes of any odd length over the ring R satisfying the reversible and the reversible complement
constraints. Also, a bijection ϑ between the elements of the ringR and SD16 is constructed in such a way that
the reversibility problem is solved. Moreover, we introduce a homogeneous weight whom over the ring R
and by utilizing whom, a new Gray map θhom : Rn

→ F8n
2 is obtained. Furthermore, we study the GC-content

of DNA codes and provide some examples of DNA codes with their respective deletion distance.

1. Introduction

Deoxyribonucleic acid or DNA for short, is a molecule that contains the genetic instructions necessary
for the development and functioning of all known living organisms. DNA is a double-stranded molecule
made up of nucleotides. Each nucleotide consists of a sugar (deoxyribose), a phosphate group, and one
of four nitrogenous bases: adenine (A), thymine (T), cytosine (C), or guanine (G). The DNA molecules
form a twin-stranded double helix as two sugar-phosphate chains are connected through hydrogen bonds,
specifically between G and C as well as between A and T, and linked according to the Watson-Crick
complement (WCC) rule. We call a given sequence α = α0α1 · · ·αn−1, a quaternary n-sequence or a DNA
sequence of length n if αi ∈ Y, where Y = {A,G,T,C}. Moreover, DNA k-bases is defined as the collection
of all DNA sequences of length k. The Watson-Crick complement rule states that when a DNA sequence
combines with its reversible complement, it forms a helix. Specifically, T pairs with A (and vice versa),
while G pairs with C (and vice versa) We denote by Cc = G , Gc = C, Ac = T, Tc = A, where Cc, Gc, Ac,
and Tc are the complements of C, G, A and T respectively. For example, the Watson-Crick complement
of (ATTGACC)c = AcTcTcGcAcCcCc = TAACTGG. A DNA code C of length n is the collection of DNA
sequences of length n where each sequence occurs with its reverse complement sequence i.e., αrc

∈ C,where
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αrc = αc
n−1α

c
n−2 · · ·α

c
0 is the reverse complement of α = α0α1 · · ·αn−1.

The ability to construct DNA codes that fulfill particular constraints is of utmost importance in various
domains, including biotechnology and security. These applications encompass a range of areas, such as
DNA computing, DNA cryptography, and DNA steganography [5], [6]. A cyclic DNA code C always
satisfies the Hamming distance constraint and it may satisfy the other three constraints. Following are the
constraints:

1. The Hamming constraint : If H(c1, c2) ≥ d,where c1, c2 ∈ C and c1 , c2 for some Hamming distance d.

2. The Reverse constraint : If H(c1, cr
2) ≥ d, where c1, c2 ∈ C for some Hamming distance d, and

cr
2 = (αn−1, αn−2, . . . , α0) is the reverse of c2 = (α0, α1, . . . , αn−1)

3. The Reverse-complement constraint : If H(c1, crc
2 ) ≥ d, where c1, c2 ∈ C for some Hamming distance

d, and crc
2 = (αc

n−1, α
c
n−2, . . . , α

c
0) is the reverse complement of c2 = (α0, α1, . . . , αn−1)

4. The Fixed GC-content constraint : If any codeword contains the same number of G and C.

The first three constraints aim to minimize the likelihood of non-specific hybridization, while the fixed
GC-content constraint is employed to achieve comparable melting temperatures.

Adleman [4] initiated the exploration of DNA’s structural role in computations by solving a well-known
NP-hard problem through the application of DNA molecules. He used an approach that was based on the
Watson-Crick complement (WCC) property of DNA sequence. Moreover, Adleman et al. [5] formulated
a molecular program for breaking the symmetric cryptographic algorithm namely the Data Encryption
Standard (DES). Subsequently, Mansuripur et al. [24] demonstrated that DNA molecules can serve as
a storage medium. This advancement necessitates the development of various theories for constructing
DNA sequences that meet specific constraints. Algebraic coding theory plays a crucial role in creating DNA
codes with constraints (refer to [21] for DNA codes over different finite rings). DNA codes, rooted in error-
correcting codes, have proven effective in DNA-based computation and storage. For instance, Milenkovic
and Kashyap [23] elucidated the design of codes for DNA computing by considering avoidance of forma-
tion of secondary structures in single-stranded DNA molecules and non-selective cross-hybridization.

There are some known methods for designing DNA codes that satisfy certain constraints including the
study of reversible codes. In 1964 Massey [25] studied the reversible codes over finite fields. Later on,
Tzeng and Hartmann[31] obtained the bounds of the minimum distance for certain reversible cyclic codes.
Moreover, Srinivasulu and Bhaintwal[29] studied reversible cyclic codes over the finite ring F4+uF4, u2 = 0
and constructed certain DNA codes. Further, Dinh et al [13] constructed reversible complement codes and
obtained cyclic DNA codes over the ringF2[u, v]/⟨u2

−1, v3
−v,uv−vu⟩. For the intensive study of reversible

codes over finite rings, we refer the readers [1–3, 11, 14, 18–20, 26–28]. D’yachkov et al. [9, 10] identified a
similarity distance which is more worthy than the Hamming distance. Recently, Martinez-Moro and Szabo
[22] discussed the structure of the local Frobenius non-chain ring of order 16. Later on, Dougherty et al.
[15] constructed cyclic codes over a local Frobenius non-chain ring of order 16. Siap et al. [30] studied cyclic
DNA codes over the ring F2[u]/⟨u2

− 1⟩ based on the deletion distance. Further, Dinh et al. [12] discussed
cyclic DNA codes over the ring Z4[u]/⟨u2

− 1⟩ based on the deletion distance.

Motivated by these studies, we study cyclic DNA codes of odd length over the ring R = Z8[u]/⟨u2
− 4, 2u⟩

based on the deletion distance. We discuss the reversibility of cyclic codes over the ringR.We have also con-
structed a bijectionϑ (see Table 1) between the elements of the ringR and SD16 ,where SD16 = {x1x2 : x1, x2 ∈ Y}.
The novelty of this article is that by utilizing the bijection ϑ,we have solved the reversibility problem. More-
over, Dougherty et al. [15] studied binary cyclic codes as the images of the Gray map with respect to the
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Lee weight. In this article, we obtain cyclic codes with respect to the homogeneous weight. Also, we study
the GC-content of cyclic DNA codes and find their deletion distance.

The rest of the article is organized as follows: Section 2 is devoted to familiarize the readers with basic
terminology. In Section 3, we discuss the structure of cyclic codes over the ring R.We obtain a new Gray
map θhom : Rn

→ F8n
2 with respect to the homogeneous weight whom in Section 4. In Section 5, we provide

some necessary and sufficient conditions for: (i) a given cyclic code of odd length over the ring R to be a
reversible cyclic code, and (ii) a given cyclic code of odd length over the ring R to be reversible complement
cyclic code. The study of the GC-content of cyclic DNA codes of odd length and their deletion distance is
included in Section 6. Section 7 consists of examples of DNA codes with respect to their deletion distance.

2. Preliminaries

We begin this section by characterizing the ringR. In [22], the authors obtained all local Frobenius non-chain
rings of order 16. SupposeZ8 is a ring of integers modulo 8. Throughout the article R := Z8[u]/⟨u2

− 4, 2u⟩.
Therefore R is a finite commutative ring, which is an extension ofZ8.Moreover, R is a vector space over F2
with basis {1, 2,u, 4}. Thus, any element x ∈ R can be uniquely expressed as x = ξ1 + 2ξ2 + uξ3 + 4ξ4,where
ξi ∈ F2. The cardinalty of R is 16 and characteristic of R is 8. Then all elements of the ring R are as follows:
R = {0, 1, 2, 3, 4, 5, 6, 7,u, 1 + u, 2 + u, 3 + u, 4 + u, 5 + u, 6 + u, 7 + u}.Moreover, the non-trivial ideals of R are
as follows:

⟨4⟩ = {0, 4},

⟨2⟩ = {0, 2, 4, 6},

⟨u⟩ = {0,u, 4,u + 4},

⟨2 + u⟩ = {0, 4, 2 + u, 6 + u},

⟨2,u⟩ = {0, 2, 4, 6,u, 2 + u, 4 + u, 6 + u}.

The ideal lattice of the ring R is given in Figure 1. It is worth to notice that ideals of R do not form a chain
under the set theoretical inclusion relation. Therefore,R is a non-chain ring and the ideal ⟨2,u⟩ is the unique
maximal ideal of R. Hence, R is a local Frobenius non-chain ring of order 16. Recall that a linear code C of
length n over R is an R-submodule of Rn and members of C are known as codewords. A linear code C of
length n over R is called cyclic if for each codeword a = (a0, a1, . . . , an−1) ∈ C, the n-tuple (an−1, a0, . . . , an−2)
obtained by the cyclic shift of coordinates i to i + 1 mod n is also in C.

⟨2⟩

⟨2,u⟩

⟨1⟩

⟨u⟩

⟨4⟩

⟨2 + u⟩

⟨0⟩
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Figure 1: Ideal lattice of the ring R

The inner-product of two given n-tuples a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) is defined as a · b =
n−1∑
i=0

aibi,

a and b are said to be orthogonal if a · b = 0.
For a given linear code C,we define the dual code C⊥ over the ring R in the following manner

C
⊥ = {a ∈ Rn

| a · b = 0 for all b ∈ C}.

One can verify that C⊥ is a linear code over the ring R of same length as C. In addition, If C ⊆ C⊥ then
a linear code C is said to be self-orthogonal and if C = C⊥ then we call a linear code C is self-dual. The
reciprocal polynomial p∗(x) of a given polynomial p(x) = p0 + p1x + · · · + pn−1xn−1

∈ R[x], is defined as
p∗(x) = xdeg(p(x))p( 1

x ) = pn−1 + pn−2x + · · · + p0xn−1. It is worth to mention that deg(p(x)) ≥ deg(p∗(x)) and if
p0 , 0, then deg(p(x)) = deg(p∗(x)). A given polynomial p(x) is said to be self-reciprocal if p∗(x) = p(x).

We need the following result which provides the criteria for obtaining the reciprocal of sum and product of
polynomials.

Lemma 2.1. [3] Let f1(x) and f1(x) be any two polynomials inR[x] with deg( f1(x)) ≥ deg( f2(x)). Then the following
statements hold:

1. ( f1(x) · f1(x))∗ = f ∗1 (x) · f ∗2 (x),
2. ( f1(x) + f2(x))∗ = f ∗1 (x) + xi f ∗2 (x), where i = deg( f1(x)) − deg( f2(x)).

Let A = α0α1 · · ·αn−1 and B = β0β1 · · · βn−1 be any two quaternary n-sequences. Suppose ℓ ∈ {1, 2, . . . ,n}
and 1 ≤ t ≤ ℓ. We define by C = γ0γ1 · · ·γℓ−1, a common subsequence of length ℓ between A and B if
γt = αpt = βqt ,where 1 ≤ p1 < p2 < · · · < pℓ ≤ n, 1 ≤ q1 < q2 < · · · < qℓ ≤ n. The energy of DNA hybridization
E(A,B) is measured by the longest common subsequence (not necessarily contiguous) of either strand or
the reverse complement of the other strand. The deletion similarity is define as the length of the longest
common subsequence for A and B and is denoted by S(A,B). If A and B are any strands of length n, then
we have S(A,B) = n and S(A,B) = S(B,A).Moreover, the deletion similarity S(A,B) can be identified by the
number of base pair bonds between A and Brc i.e.,

S(A,B) = S(B,A) = E(A,Brc) = E(Arc,B) (1)

Example 2.2. Suppose A = TAGATT and B = TCGATT, are two DNA sequences of length 6. Clearly, GAT is
a largest common subsequence of length 3, TAT is also a common subsequence of length 3. There is no common
subsequence of length ℓ > 3. Therefore, the deletion similarity between the DNA sequences A and B is given by
S(A,B) = 3.

Definition 2.3. [9, 10] Let C be a DNA code of length n. Then C is called a DNA code of distance D based
on the deletion similarity or equivalently an (n,D)-code if there exists a smallest positive integer D such that
S(X,Y) ≤ n −D − 1 for all X,Y ∈ C, X , Y.

Example 2.4. Let B = {GAGC,GCTC,GCGA,TCGC} be the collection of DNA sequences of length 4. Clearly,
(GAGC)rc = GCTC, (GCTC)rc = GAGC, (GCGA)rc = TCGC, (TCGC)rc = GCGA. Therefore, we can conclude that
B is a DNA code of length 4. Notice that GC is a common subsequence of length 2. There is no subsequence of
length ℓ > 2. Hence, the deletion similarity S(X,Y) = 2, for all X,Y ∈ B. By using Definition 2.1, we must have
4 −D − 1 ≥ 2, which further yields D ≤ 1. Thus, B is a (4,1)-code.

3. Structure of cyclic codes over R

Dougherty et al. [15] have obtained structure of cyclic codes over a local Frobenius non-chain ring of order
16. In this article, the aforementioned ring R is also a local Frobenius non-chain ring of order 16, and hence
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we obtain the structure of cyclic codes over R using results given in [15]. Throughout this article, we use
a symbol N, where N is the ideal generated by {2,u}, i.e., N = ⟨2,u⟩. For example, N f (x) = ⟨2 f (x),u f (x)⟩,
where f (x) ∈ Rn.

The following theorem provides the structure of cyclic codes of any odd length over the ring R.

Theorem 3.1. [15] LetC be a cyclic code of odd length n over the ringR. ThenC is generated by the following polyno-
mials {Ĥ1(x),NĤ2(x), 2Ĥ3(x),uĤ4(x), (2+u)Ĥ5(x), 4Ĥ6(x)},where xn

−1 = H0(x)H1(x)H2(x)H3(x)H4(x)H5(x)H6(x);

Hi(x) are coprime monic polynomials and Ĥi(x) =
xn
− 1

Hi(x)
, 0 ≤ i ≤ 6.Moreover, C is of the type

16deg(H1(x))8deg(H2(x))4(deg(H3(x))+deg(H4(x))+deg(H5(x)))2deg(H6(x)).

Observe that there is no relationship between the generating polynomials of the cyclic codes over the ring
R in the aforementioned theorem. The following equivalent structure of cyclic codes over the ring R, in
which generating polynomials are dividing some other generating polynomials, is obtained using the above
structure of cyclic codes over the ring R.

Theorem 3.2. Let C be a cyclic code of odd length n over the ring R. Then C is given by

C = ⟨10(x),N11(x), 212(x),u13(x), (2 + u)14(x), 415(x)⟩

such that 1 j(x) ∈ R[x] for 0 ≤ j ≤ 5 and 15(x)|1k(x)|11(x)|10(x), where k = 2, 3, 4.

Proof. By using Theorem 3.1,we haveC = ⟨Ĥ1(x),NĤ2(x), 2Ĥ3(x),uĤ4(x), (2+u)Ĥ5(x), 4Ĥ6(x)⟩,where xn
−1 =

H0(x)H1(x)H2(x)H3(x)H4(x)H5(x)H6(x); Hi(x) are coprime monic polynomials and Ĥi(x) =
xn
− 1

Hi(x)
, 0 ≤ i ≤ 6.

Now construct the polynomials 1 j(x),where 0 ≤ j ≤ 5 using the polynomials Hi(x) as follows:

10(x) = H0(x)H2(x)H3(x)H4(x)H5(x)H6(x),
11(x) = H0(x)H3(x)H4(x)H5(x)H6(x),
12(x) = H0(x)H4(x)H5(x)H6(x),
13(x) = H0(x)H3(x)H5(x)H6(x),
14(x) = H0(x)H3(x)H4(x)H6(x),
15(x) = H0(x).

Let C
′

= ⟨10(x),N11(x), 212(x),u13(x), (2+u)14(x), 415(x)⟩,where 1 j(x) are polynomials as defined above. Our
claim is that C

′

= C. First we prove C ⊆ C
′

. To do so, notice that Ĥ1(x) = 10(x) ∈ C
′

. Now consider the
polynomial

NĤ2(x) = NH0(x)H1(x)H3(x)H4(x)H5(x)H6(x),

and substitute the value of 11(x) in the above expression we obtain

NĤ2(x) = N11(x)H1(x).

Therefore, NĤ2(x) ∈ C
′

. Similarly, the polynomials 2Ĥ3(x)=212(x)H1(x)H2(x) ∈ C
′

,

uĤ4(x)=u13(x)H1(x)H2(x) ∈ C
′

and (2 + u)Ĥ5(x)=(2 + u)14(x)H1(x)H2(x) ∈ C
′

. Also, the polynomial
4Ĥ6(x) = 415(x)H1(x)H2(x)H3(x)H4(x)H5(x) ∈ C

′

.Hence, we obtain that C ⊆ C
′

. To prove C
′

⊆ C,we proceed
as follows. Notice that 10(x) = Ĥ1(x), then 10(x) ∈ C. First, we check if N11(x) ∈ C. Since H1(x) and H2(x) are
coprime polynomials, there exist polynomials p1(x), p2(x) ∈ R[x] such that

p1(x)H1(x) + p2(x)H2(x) = 1. (2)
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Now multiplying by 11(x) in both sides of (2), we obtain

11(x) = p1(x)H1(x)11(x) + p2(x)H2(x)11(x),

11(x) = p1(x)Ĥ2(x) + p2(x)10(x)

and N11(x) = Np1(x)Ĥ2(x)+Np2(x)10(x) ∈ C.Next, we check if 212(x) ∈ C. Since the polynomials H1(x)H2(x)
and H3(x) are coprime, there exist polynomials q1(x), q2(x) ∈ R[x] such that

q1(x)H1(x)H2(x) + q2(x)H3(x) = 1. (3)

Now multiplying by 12(x) in both sides of (3), we obtain

12(x) = q1(x)H1(x)H2(x)12(x) + q2(x)H3(x)12(x),

12(x) = p1(x)Ĥ3(x) + p2(x)11(x).

This implies that 212(x) ∈ C. Similarly, we can also verify that the polynomials u13(x), (2 + u)14(x) and
415(x) ∈ C. Therefore, we can conclude that C

′

⊆ C and hence C
′

= C.

Now, using the above structure of cyclic codes we define the following particular cases of cyclic codes.
These codes are helpful in determining the conditions for reversibility over the ring R.

Definition 3.3. Let Ci be a cyclic code of odd length n over the ring R, where i ∈ {1, 2, 3}. Then

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2 + u.

The annihilator A(I) for any ideal I of Rn, is given by the following expression

A(I) = {1(x) ∈ Rn | f (x) · 1(x) = 0,∀ f (x) ∈ I}.

Since A(I) is an ideal of the ring Rn, A(I) a cyclic code over the ring R. Moreover, if a cyclic code C of
length n over R is given by C = ⟨I⟩ then C⊥ = ⟨A∗(I)⟩,where A∗(I) = {a∗(x) | a(x) ∈ A(I)}.
The following theorem is useful to obtain the structure of annihilator A(Ci) of cyclic codeCi,where i ∈ {1, 2, 3}
over the ring R.

Theorem 3.4. Let Ci be a cyclic code of odd length n over the ring R, where i ∈ {1, 2, 3}. Then annihilator A(Ci) of
Ci is given by

A(Ci) =
〈(xn

− 1
13(x)

)
,N
(xn
− 1
12(x)

)
, ξi

(xn
− 1
11(x)

)
, 4
(xn
− 1
10(x)

)〉
,

where Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩ such that 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2 + u.

Proof. Suppose that

K′ =
〈(xn

− 1
13(x)

)
,N
(xn
− 1
12(x)

)
, ξi

(xn
− 1
11(x)

)
, 4
(xn
− 1
10(x)

)〉
.

Given that Ci is a cyclic code of odd length n over the ring R. By using the definition of annihilator, A(Ci)
becomes a cyclic code over the ring R. Let

A(Ci) = ⟨p1(x),Np2(x), ξ
′

ip3(x), 4p4(x)⟩,

where p4(x)|p3(x)|p2(x)|p1(x). As 13(x) ∈ Ci and p1(x) ∈ A(Ci),we get

13(x) · p1(x) = 0 mod (xn
− 1).

We have p1(x) = xn
−1
13(x)α(x), for some α(x) ∈ R[x], p1(x) ∈ ⟨ xn

−1
13(x) ⟩. Similarly, we also have p2(x) ∈ ⟨ xn

−1
12(x) ⟩,

p3(x) ∈ ⟨ xn
−1
11(x) ⟩ and p4(x) ∈ ⟨ xn

−1
10(x) ⟩. This implies that A(Ci) ⊆ K′ . Similarly, we must have K′ ⊆ A(Ci). Thus,
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A(Ci) =
〈(xn

− 1
13(x)

)
,N
(xn
− 1
12(x)

)
, ξi

(xn
− 1
11(x)

)
, 4
(xn
− 1
10(x)

)〉
.

Now by using the above theorem, we obtain the structure of the dual of a cyclic code Ci, where i ∈ {1, 2, 3}
over the ring R.

Theorem 3.5. Let Ci be a cyclic code of odd length n over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x) and ξ1 = 2, ξ2 = u and ξ3 = 2 + u. Then dual of the cyclic code Ci is given by

C
⊥

i =
〈(xn

− 1
13(x)

)∗
,N
(xn
− 1
12(x)

)∗
, ξi

(xn
− 1
11(x)

)∗
, 4
(xn
− 1
10(x)

)∗〉
.

Proof. The result directly follows from the Theorem 3.4.

4. Homogeneous weight of cyclic codes over R

The idea of homogeneous weight over the residue class rings of integers was introduced by Constanttinescu
and Heise [8]. Subsequently, Greferath and Schmidt [17] generalized this notion to arbitrary finite rings
and they have proved the existence of such a weight function on arbitrary finite rings. Dougherty et al.[15]
constructed cyclic codes over the ring R with respect to the Lee weight. In this article, we obtain cyclic
codes over the ring R with respect to the homogeneous weight on R.

Definition 4.1. Suppose R is a finite ring. A real valued function w on R is called a homogeneous (left) weight, if
w(0) = 0 and the following are true:

(i) If Rx = Ry, then w(x) = w(y) for all x, y ∈ R.
(ii) There exists a real number α ≥ 0 such that ∑

t∈Rx

w(t) = α|Rx|

for all non-zero x ∈ R.

Yildiz and Karadeniz [32] studied cyclic codes over the non-chain ring R = F2 + uF2 + vF2 + uvF2, where
u2 = 0, v2 = 0 and uv = vu with respect to the homogeneous weight. Later on, Yildiz and Kelebek
[33] studied homogeneous weight for an infinite family of rings Rk = F2[u1,u2, · · · ,uk]/⟨u2

i ,uiu j = u jui⟩.
Motivated by this work, in this article we introduced homogeneous weight over the ring R as follows:
Let x ∈ R be an arbitrary element. Then we define,

whom(x) =


0 if x = 0,
8 if x = 4,
4 otherwise.

In order to obtain a distance preserving map θ from R to F8
2, we assume the following: θ(0) =

(0, 0, 0, 0, 0, 0, 0, 0), θ(1) = (1, 0, 1, 0, 1, 0, 1, 0), θ(2) = (1, 1, 1, 1, 0, 0, 0, 0), θ(u) = (1, 1, 0, 0, 1, 1, 0, 0) and
θ(4) = (1, 1, 1, 1, 1, 1, 1, 1). Now, we extend this map to the whole ring R in the following manner. No-
tice that any x ∈ R can be expressed uniquely x = α1 + 2α2 + uα3 + 4α4,where αi ∈ F2. Then, we define

θ(α1 + 2α2 + uα3 + 4α4) = α1θ(1) + α2θ(2) + α3θ(u) + α4θ(4).

We can verify that the map θ : R → F8
2 defined above is a distance preserving map (Gray map). Notice

that θ(6 + 2) , θ(6) + θ(2), therefore we can conclude that the Gray map θ is not linear. Moreover, θ can be
extended to the map θhom : Rn

→ F8n
2 such that

θhom(β0, β1, β2, . . . , βn−1) = (θ(β0), θ(β1), θ(β2), . . . , θ(βn−1)),
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where (β0, β1, β2, . . . , βn−1) ∈ Rn. Recall that a cyclic shift on Rn is the permutation σ given by

σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

A code C is said to be an ℓ-quasi-cyclic code if it is invariant under σℓ and we call ℓ the index of the
quasi-cyclic code.

Lemma 4.2. Let σ be the cyclic shift. Then θhom ◦ σ = σ8
◦ θhom.

Proof. Suppose an element c = (c0, c1, . . . , cn−1) ∈ Rn, then

θhom ◦ σ
(
(c0, c1, . . . , cn−1)

)
=
(
θ(cn−1), θ(c0), θ(c1), . . . , θ(cn−2)

)
. (4)

Also, we can write θhom(c0, c1, . . . , cn−1) = (θ(c0), θ(c1), θ(c2), . . . , θ(cn−1)), where each θ(ci) is of length 8.
Therefore, if we apply the cyclic shift eight times then we must have

σ8
◦ θhom

(
(c0, c1, . . . , cn−1)

)
=
(
θ(cn−1), θ(c0), θ(c1), . . . , θ(cn−2)

)
. (5)

Hence, by using (4) and (5) we get the desired result.

Based on the above lemma we have the following result.

Theorem 4.3. Let C be a cyclic code of length n and minimum homogeneous weight d over the ring R. Then θhom(C)
is an 8-quasi-cyclic binary code of length 8n and minimum distance d.

Proof. Given that C is a cyclic code of length n over the ring R. Then, we have σ(C) = C,where σ is the cyclic
shift. Now, apply θhom to both sides we obtain

θhom(σ(C)) = θhom(C).

Consider the Gray image of a given cyclic code C as

θhom(C) = θhom(σ(C))
= (θhom ◦ σ)(C).

By making use of Lemma 4.2 we obtain

θhom(C) = σ8(θhom(C)).

This implies that θhom(C) is invariant under σ8. Therefore, θhom(C) is an 8-quasi cyclic binary code.

5. The Reversible DNA codes over R

In this section, we discuss the reversibility of cyclic codes of odd length over the ring R. We provide
necessary and sufficient condition for a given cyclic code to be reversible. Moreover, we study the reversible
complement cyclic codes of odd length over the ring R and construct a bijection ϑ in such a manner that
the reversibility problem is solved.

Definition 5.1. A cyclic code C of length n over the ring R is called reversible if αr
∈ C whenever α ∈ C, where

reverse of a codeword α = (α0, α1, . . . , αn−1) is given by αr = (αn−1, αn−2, . . . , α0).

The following theorem provides a necessary and sufficient condition for cyclic codes of odd lengths over
the ring R to be reversible.
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Theorem 5.2. Let C be a cyclic code of odd length n over the ring R given by

C = ⟨Ĥ1(x),NĤ2(x), 2Ĥ3(x),uĤ4(x), (2 + u)Ĥ5(x), 4Ĥ6(x)⟩,

where xn
− 1 = H0(x)H1(x)H2(x)H3(x)H4(x)H5(x)H6(x); Hi(x) are coprime monic polynomials and Ĥi(x) =

xn
− 1

Hi(x)
,

0 ≤ i ≤ 6. Then C is a reversible cyclic code if and only if each Ĥi(x) for 1 ≤ i ≤ 6, is a self-reciprocal polynomial.

Proof. Suppose that C is a reversible cyclic code of odd length n over the ring R.We have to show that each
Ĥi(x) is self-reciprocal polynomial. To do so, let on contrary Ĥi(x) is not a self-reciprocal polynomial i.e.,
Ĥi(x) , Ĥi

∗

(x),where i ∈ {1, 2, 3, 4, 5, 6}.Now, consider a polynomial H(x) given by H(x) = gcd(Ĥi(x), Ĥi
∗

(x)).
There exist α1(x) and α2(x) such that

H(x) = α1(x)Ĥi(x) + α2Ĥi
∗

(x).

Let P = {N, 2,u, 2 + u, 4} be a set. Now, multiplying by p ∈ P on both sides in the above expression we get

pH(x) = α1(x)pĤi(x) + α2(x)pĤi
∗

(x).

Since C is a reversible cyclic code, pH(x) ∈ C for all p ∈ P. Notice that deg(pH(x)) < deg(pĤi(x)) for all p ∈ P
which contradicts the fact that Ĥi(x) is the minimal degree polynomial such that pĤi(x) ∈ C . Hence, each
Ĥi(x) is a self-reciprocal polynomial. For the converse part assume that each Ĥi(x), where i ∈ {1, 2, 3, 4, 5, 6}
is a self-reciprocal polynomial over the ring R. Let c(x) ∈ C be an arbitrary polynomial. Then there exist
λi(x) ∈ R[x],where 1 ≤ i ≤ 6 such that

c(x) = λ1(x)Ĥ1(x) + λ2(x)NĤ2(x) + λ3(x)2Ĥ3(x) + λ4(x)uĤ4(x)

+λ5(x)(2 + u)Ĥ5(x) + λ6(x)4Ĥ6(x).

By using Lemma 2.1, the reciprocal polynomial c∗(x) is given by

c∗(x) = λ∗1(x)Ĥ1
∗

(x) + xi1λ∗2(x)NĤ2
∗

(x) + xi2λ∗3(x)2Ĥ3
∗

(x) + xi3λ∗4(x)uĤ4
∗

(x)

+xi4λ∗5(x)(2 + u)Ĥ5
∗

(x) + xi5λ∗6(x)4Ĥ6
∗

(x).

Since each Ĥi(x) is self-reciprocal i.e., Ĥi(x) = Ĥi
∗

(x) and 1 ≤ i ≤ 6,we obtain

c∗(x) = λ∗1(x)Ĥ1(x) + xi1λ∗2(x)NĤ2(x) + xi2λ∗3(x)2Ĥ3(x) + xi3λ∗4(x)uĤ4(x)

+xi4λ∗5(x)(2 + u)Ĥ5(x) + xi5λ∗6(x)4Ĥ6(x).

This implies that c∗(x) ∈ C for λ∗i (x) ∈ R[x]. Hence, C is a reversible cyclic code over the ring R.

The following result provides the reversibility conditions for cyclic codes Ci,where i ∈ {1, 2, 3}.

Theorem 5.3. Let Ci be a cyclic code of odd length n over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2+ u. Then Ci is a reversible cyclic code over the ring R if and
only if 10(x), 11(x), 12(x) and 13(x) are self-reciprocal polynomials.

Proof. The proof is similar to the Theorem 5.2.

The next result is useful to obtain the reversibility of the dual of cyclic codes Ci,where i ∈ {1, 2, 3}.
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Theorem 5.4. Let Ci be a reversible cyclic code over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2+ u. Then C⊥i is also a reversible cyclic code over the ring R.

Proof. By making use of Theorem 5.3, we must have 10(x), 11(x), 12(x) and 13(x) are self-reciprocal poly-

nomials. Suppose that
xn
− 1
13(x)

= s1(x),
xn
− 1
12(x)

= s2(x),
xn
− 1
11(x)

= s3(x), and
xn
− 1
10(x)

= s4(x). Notice that(xn
− 1
13(x)

)∗
= s∗1(x),which further yields −

(xn
− 1)
1∗3(x)

= s∗1(x). Since 13(x) is self-reciprocal polynomial, we obtain

−
(xn
− 1)
13(x)

= s∗1(x) and −s1(x) = s∗1(x). Similarly, we obtain −s2(x) = s∗2(x), −s3(x) = s∗3(x) and −s4(x) = s∗4(x). Let

c̄(x) ∈ C⊥i be an arbitrary codeword. By using Theorem 3.5 there exist polynomials P1(x),P2(x),P3(x) and
P4(x) in R[x] such that

c̄(x) =
[
P1(x)

(xn
− 1
13(x)

)∗
+ P2(x)N

(xn
− 1
12(x)

)∗
+ P3(x)ξi

(xn
− 1
11(x)

)∗
+ P4(x)4

(xn
− 1
10(x)

)∗]
.

Which on simplifying yields,

c̄(x) = [P1(x)s∗1(x) + P2(x)Ns∗2(x) + P3(x)ξis∗3(x) + P4(x)4s∗4(x)].

Now, consider the reciprocal polynomial of c̄(x)

c̄∗(x) = [P1(x)s∗1(x) + P2(x)Ns∗2(x) + P3(x)ξis∗3(x) + P4(x)4s∗4(x)]∗.

Replace s∗i (x) by −si(x) in above expression we obtain the following

c̄∗(x) = [P1(x)(−s1(x)) + P2(x)N(−s2(x)) + P3(x)ξi(−s3(x)) + P4(x)4(−s4(x))]∗.

By using Lemma 2.1 we obtain

c̄∗(x) = [−P∗1(x)s∗1(x) − xα1 P∗2(x)Ns∗2(x) − xα2 P∗3(x)ξis∗3(x) − xα3 P∗4(x)4s∗4(x)].

Equivalently we can write

c̄∗(x) = [s∗1(x)q1(x) +Ns∗2(x)q2(x) + ξis∗3(x)q3(x) + 4s∗4(x)q4(x)],

where q1(x) = −P∗1(x), q2(x) = −xα1 P∗2(x), q3(x) = −xα2 P∗3(x) and q4(x) = −xα3 P4(x). Hence, c̄∗(x) ∈ C⊥i and
which implies that C⊥i is also a reversible cyclic code over the ring R.

Our current focus is to characterize the reversible-complement cyclic codes of odd lengths. We will establish
a condition that is both necessary and sufficient for a cyclic code to be categorized as a reversible-complement
cyclic code over the ring R. To accomplish this, we discuss the foundational concepts of complement over
the ring R. We denote the complement of an element z ∈ R by z̄ and define as: zc = z + 4. For example, the
complement of z = 3+ u is zc = 3+ u+ 4 = 7+ u. Let p(x) ∈ R[x],where p(x) = p0 + p1x+ p2x2 + · · ·+ pn−1xn−1.
Then the complement of p(x) is defined as follows: pc(x) = pc

0 + pc
1x + pc

2x2 + · · · + pc
n−1xn−1,where pc

i denotes
the complement of pi for pi ∈ R, 0 ≤ i ≤ n − 1. The reverse-complement of p(x) ∈ R[x] is denoted by prc(x)
and is defined as: prc(x) = pc

n−1 + pc
n−2x + · · · + pc

0xn−1.
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Table 1: DNA correspondence ϑ between R and SD16

Elements of the ring R α1α2 ∈ SD16

0 AA
2 AT

3 + u GT
3 CT
u GG

2 + u GC
1 + u AC

1 AG
4 TT
6 TA

7 + u CA
7 GA

4 + u CC
6 + u CG
5 + u TG

5 TC

In Table 1, we establish a bijection ϑ between the elements of the ring R and SD16 to address the reversibility
problem. To illustrate the reversibility problem, consider any codeword λ = (λ1, λ2, λ3, λ4) over the ring
R. Let ATCGGATG be the DNA sequence corresponding to λ = (λ1, λ2, λ3, λ4), where λ1 corresponds to
AT, λ2 corresponds to CG, λ3 corresponds to GA, and λ4 corresponds to TG. The reverse of λ is denoted
as λr = (λ4, λ3, λ2, λ1), with the corresponding DNA sequence being TGGACGAT. It is noteworthy that
TGGACGAT is not the reverse of the DNA sequence ATCGGATG; rather, the reverse of ATCGGATG is
GTAGGCTA. We resolve this reversibility issue by employing the correspondence outlined in Table 1.
Consequently, we present the following lemma, which plays a pivotal role in solving the reversibility
problem.

Lemma 5.5. Let x = (x1, x2, . . . , xn) be any codeword over the ring R. Also, suppose that X = d1d2 · · · d2n−1d2n is
the DNA sequence corresponding to the codeword x. Then, DNA sequence corresponding to the codeword 7xr is the
reverse of X i.e., d2nd2n−1 · · · d2d1.

Proof. The above result can be easily verified by using Table 1. For example, suppose that λ = (4 + u, 6 +
u, 5 + u, 5) be a codeword over the ring R. According to Table 1, the DNA sequence corresponding to λ is
CCCGTGTC.Now consider the codeword 7λr = (3, 3+ u, 2+ u, 4+ u). By using Table 1 corresponding DNA
sequence to the codeword (3, 3+ u, 2+ u, 4+ u) is CTGTGCCC.We can verify that CTGTGCCC is the reverse
of CCCGTGTC.

Lemma 5.6. If x, y ∈ R, then the x + y = x̄ + ȳ + 4.

Proof. The above lemma can easily be verified by observing Table 1.

Now, we provide a necessary and sufficient condition under which a given cyclic code Ci,where i ∈ {1, 2, 3}
over R of any odd length is a reversible complement cyclic code.

Theorem 5.7. Let Ci be a cyclic code of odd length n over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2 + u. Then Ci is a reversible complement cyclic code if and
only if
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(i) Ci is a reversible code;

(ii) the element
4(xn
− 1)

x − 1
∈ Ci.

Proof. First we prove the second condition. Assume that Ci is a reversible complement cyclic code over
the ring R. Since Ci is a reversible complement cyclic code, 0rc

∈ Ci, where 0 = (0, 0, 0, . . . , 0, 0) ∈ Ci. Now
consider the codeword,

0rc = (0̄, 0̄, . . . , 0̄) = (4, 4, . . . , 4) ∈ Ci

= 4(1, 1, . . . , 1, 1) ∈ Ci

=
4(xn
− 1)

x − 1
∈ Ci,

where (1, 1, . . . , 1, 1) ∈ Ci can be identified by xn
−1

x−1 in Ci.
For the first condition take any c(x) ∈ Ci. Then there exist polynomials qi(x) ∈ R[x], 0 ≤ i ≤ 3 such that

c(x) = [q0(x)10(x) +Nq1(x)11(x) + ξiq2(x)12(x) + 4q3(x)13(x)].

Then by using Lemma 2.1, the reciprocal polynomial c∗(x) is given by

c∗(x) = [q0(x)10(x) +Nq1(x)11(x) + ξiq2(x)12(x) + 4q3(x)13(x)]∗,

c∗(x) = q∗0(x)1∗0(x) + xi1 Nq∗1(x)1∗1(x) + xi2ξiq∗2(x)1∗2(x) + 4xi3 q∗3(x)1∗3(x) (6)

Let
10(x) = β

′

0 + β
′

1x + · · · + β
′

r−1xr−1 + β
′

rx
r,

be a polynomial over R. Then the reverse of 10(x) is given by

1r
0(x) = β

′

r + β
′

r−1x + · · · + β
′

1xr−1 + β
′

0xr,

and the reverse complement of 10(x) is given by

1rc
0 (x) = β̄

′

r + β̄
′

r−1x + · · · + β̄
′

1xr−1 + β̄
′

0xr.

Now multiplying both sides of the above expression by xn−r−1 we obtain

(xn−r−1)1rc
0 (x) = β̄

′

rx
n−r−1 + β̄

′

r−1xn−r + · · · + β̄
′

1xn−2 + β̄
′

0xn−1

= 0̄ + 0̄x + · · · + 0̄xn−r−2 + β̄
′

rx
n−r−1

+β̄
′

r−1xn−r + · · · + β̄
′

1xn−2 + β̄
′

0xn−1

(xn−r−1)1rc
0 (x) = 4 + 4x + · · · + 4xn−r−2 + β̄

′

rx
n−r−1 + β̄

′

r−1xn−r

+ · · · + β̄
′

1xn−2 + β̄
′

0xn−1. (7)

On adding
4(xn
− 1)

x − 1
in both sides of (7), we obtain

(xn−r−1)1rc
0 (x) +

4(xn
− 1)

x − 1
= 0 + 0x + 0x2 + · · · + 0xn−r−2 + β

′

rx
n−r−1

+β
′

r−1xn−r + · · · + β
′

1xn−2 + β
′

0xn−1,

= xn−r−1[β
′

r + β
′

r−1x + · · · + β
′

0xr],

(xn−r−1)1rc
0 (x) +

4(xn
− 1)

x − 1
= xn−r−11∗0(x). (8)

Therefore, using (8) we can conclude 1∗0(x) ∈ Ci. Similarly, 1∗1(x), 1∗2(x) and 1∗3(x) ∈ Ci and by using (6), we
obtain c∗(x) ∈ Ci for q∗i (x) ∈ R[x]. Thus, Ci is a reversible cyclic code over the ring R.
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For converse part, let B(x) = b0+b1x+· · ·+bmxm
∈ C be an arbitrary codeword. Then the reverse-complement

of the polynomial B(x) is given by

Brc(x) = b̄m + b̄m−1x + · · · + b̄1xm−1 + b̄0xm,

multiplying by xn−m−1 on both sides in the above equation, we obtain

(xn−m−1)Brc(x) = b̄mxn−m−1 + b̄m−1xn−m + · · · +

b̄1xn−2 + b̄0xn−1.

On adding
4(xn
− 1)

x − 1
in both sides of the above expression, we obtain

(xn−m−1)Brc +
4(xn
− 1)

x − 1
= xn−m−1[bm + bm−1x + · · · + b0xm]

= xn−m−1B∗(x).

Now, on simplifying the above expression we find that

(xn−m−1)Brc(x) = xn−m−1B∗(x) −
4(xn
− 1)

x − 1
. (9)

Utilizing conditions (i) and (ii) in theorem with equation (9) leads to the conclusion that Brc(x) belongs to C.
Consequently, we must have C is a reversible-complement cyclic code over the ring R.

6. The GC-content and the Deletion distance D

The DNA is a long chain of nucleotides. Each base binds with another complementary base with hydrogen
bonds. For example, the A forms two hydrogen bonds with the T, vice versa and G forms three hydrogen
bonds with the C, vice versa. The percentage of the Guanine (G) and the Cytosine (C), nitrogenous bases
present in a DNA, nucleic acid sequence is known as the GC-content. Moreover, in DNA codes the same
GC-content in every codeword ensures that the codewords have similar hybridization energy and melting
temperature. This motivates to consider such DNA codes in which all codewords have the same GC-
content. In this section, we study the GC-content of DNA cyclic codes over the ring R and deletion distance
D of such DNA codes.

Definition 6.1. Let C be a cyclic code over the ring R. Then Hamming weight enumerator of C is denoted by WC(x)
and is define as follows:

WC(x) =
∑

k

Bkxk,

where Bk = |{c : w(c) = k}| i.e., the number of codewords in C whose Hamming weights equal to k. By making use of
the Hamming weight enumerator, we can identify the minimum distance of the code as the smallest non-zero exponent
of x with a non-zero coefficient in WC(x).

Let Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩ be a cyclic code of odd length n over the ring R. Then we define a
subcode C(4)

i of Ci such that C(4)
i consist of all codewords in Ci which are multiples of 4. The next result

provides the structure of C(4)
i .

Theorem 6.2. Let Ci be a cyclic code of odd length n over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2 + u. Then C(4)
i = ⟨413(x)⟩.
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Proof. Notice that ⟨413(x)⟩ ⊆ C(4)
i . For the reverse inclusion, C(4)

i ⊆ ⟨413(x)⟩ we proceed as follows. Let
c(x) ∈ Ci be any codeword. Then there exist polynomials ai(x), bi(x) ∈ R[x] such that

c(x) = 10(x)a1(x) +N11(x)a2(x) + ξi12(x)a3(x) + 410(x)b1(x)
+4N11(x)b2(x) + 4ξi12(x)b3(x) + 413(x)a4(x).

If c(x) is a multiple of 4, then we must have xn
− 1|10(x)a1(x), xn

− 1|N11(x)a2(x) and xn
− 1|ξi12(x)a3(x) and

hence we obtain

c(x) = 410(x)b1(x) + 4N11(x)b2(x) + 4ξi12(x)b3(x) + 413(x)a4(x).

Since 13(x)|12(x)|11(x)|10(x), c(x) ∈ ⟨413(x)⟩. Therefore, we can conclude C(4)
i ⊆ ⟨413(x)⟩ and hence C(4)

i =
⟨413(x)⟩.

The next theorem provides the spectra of the GC-content of cyclic codes Ci, where i ∈ {1, 2, 3} of any odd
length over the ring R.

Theorem 6.3. Let Ci be a cyclic code of odd length n over the ring R given by

Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩,

where 13(x)|12(x)|11(x)|10(x), ξ1 = 2, ξ2 = u and ξ3 = 2 + u. Let c ∈ Ci be any codeword such that w(c) = WH(c̄),
c̄ ∈ Z8[x]. Then all possible spectra of the GC-content of Ci are determined by the Hamming weight enumerator of
the code generated by 13(x).

Proof. Notice that GC-contents of Ci can be obtained by multiplying the elements of Ci by 4. By using the
structure of C(4)

i ,we can conclude that the Hamming weight enumerator generated by the polynomial 13(x)
provides the spectra of the GC-content.

By using the following theorem one can obtain the deletion distance of the subcode C(4)
i .

Theorem 6.4. Let Ci = ⟨10(x),N11(x), ξi12(x), 413(x)⟩ be an (n,D) cyclic code over the ring R, where n is any odd
integer and D4 be the deletion distance of the code C(4)

i . Then D = D4.

Proof. Observe that C(4)
i ⊆ Ci, then for any A,B ∈ Ci we obtain S(A,B) ≤ n − D − 1 and hence D4 ≥ D.

Let A1,A2 ∈ Ci be two codewords such that S(A1,A2) > n − D4 − 1. Since A1,A2 ∈ Ci by making use
of Theorem 6.2, we obtain 4A1 and 4A2 are two codewords in C(4)

i . Therefore, we can conclude that
S(4A1, 4A2) ≥ S(A1,A2) > n −D4 − 1, a contradiction. Hence D = D4.

7. examples

In this section, we present some examples of reversible cyclic codes over the ring R and their ϑ images are
DNA codes which satisfying reversible and reversible complement constraint (see Tables 2, 3 & 4). In Table
5, we provide some examples of reversible cyclic codes and their Gray images.

Example 7.1. Consider the factorization of the polynomial x3
− 1 over the ring Z8 as follows:

x3
− 1 = (x − 1)(x2 + x + 1)

= a1(x)a2(x).

Let C be a cyclic code of length 3 over the ringR given by C = ⟨a2(x)⟩.Notice that C satisfies all conditions of Theorem

5.3. Hence, C is a reversible cyclic code of length 3 over the ring R. Since
4(x3
− 1)

x − 1
= 410(x) ∈ C, C is a reversible

complement code over the ring R. Observe that in Table 2, we have Arc
∈ C for all A ∈ C. Also, S(A,B) ∈ {0, 3} for all

A,B ∈ C and A , B.Moreover, ϑ(C) is a DNA code of length 6 and S(A,B) ≤ 3 and we obtain D = 2. Hence, ϑ(C)
is a (6, 2) DNA cyclic code.
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Example 7.2. Consider the factorization of the polynomial x13
− 1 over the ring Z8 as follows:

x13
− 1 = (x − 1)(

i=12∑
i=0

xi).

Let C be a cyclic code of length 13 over the ring R given by C = ⟨10(x)⟩, where 10(x) =
∑i=12

i=0 xi. Clearly, 10(x) is
a self-reciprocal polynomial. Since C satisfies the Theorem 5.3, C is reversible cyclic code of length 13 over the ring

R. Moreover,
4(x13

− 1)
x − 1

= 410(x) ∈ C, then by using Theorem 5.7, C is a reversible complement code over the ring
R. Observe that in Table 3, we have Arc

∈ C for all A ∈ C. Notice that S(A,B) ∈ {0, 13} for all A,B ∈ C and A , B.
Moreover, ϑ(C) is a DNA code of length 26 and S(A,B) ≤ 13 and we obtain D = 12. Hence, ϑ(C) is a (26, 12) DNA
cyclic code.

Example 7.3. Consider the factorization of the polynomial x15
− 1 over the ring Z8 as follows:

x15
− 1 = (x − 1)(x2 + x + 1)(x4 + 4x3 + 6x2 + 3x + 1)(x4 + 3x3 + 6x2 + 4x + 1)

(x4 + x3 + x2 + x + 1)
= a1(x)a2(x)a3(x)a4(x)a5(x).

Let C be a cyclic code of length 15 over the ring R given by C = ⟨410(x)⟩, where 10(x) = a2(x)a5(x). Since a2(x) and
a5(x) both are self-reciprocal polynomial, 10(x) is also a self-reciprocal polynomial. Hence, C is a reversible cyclic code
of length 15 over the ring R.

Example 7.4. Consider the factorization of the polynomial x17
− 1 over the ring Z8 as follows:

x17
− 1 = (x − 1)(x8 + 4x7 + 6x6 + 7x5 + x4 + 7x3 + 6x2 + 4x + 1)

(x8 + 5x7 + 7x6 + 3x4 + 7x2 + 5x + 1)
= a1(x)a2(x)a3(x).

Let 10(x) = a2(x)a3(x), 12(x) = a3(x) be two polynomials. Since a2(x) and a3(x) are self-reciprocal polynomials, 10(x)
and 12(x) are self-reciprocal polynomials.

(i) Let C be a cyclic code of length 17 over the ring R given by C = ⟨412(x)⟩.Notice that C satisfying all conditions
of Theorem 5.3. Hence, C is a reversible cyclic code of length 17 over the ring R.

(ii) Let C = ⟨10(x)⟩ be a cyclic code of length 17. Notice that C satisfying all conditions of Theorem 5.3. Hence,

C is a reversible cyclic code of length 17 over the ring R. Since
4(x17

− 1)
x − 1

= 410(x) ∈ C, C is a reversible
complement code over the ring R. Thus ϑ(C) is a DNA code of length 34 shown in Table 4.

Table 2: DNA code of length 6 corresponding to Example 7.1
GAGAGA GGGGGG
GTGTGT GCGCGC
CACACA CGCGCG
CTCTCT CCCCCC
AAAAAA AGAGAG
TGTGTG TCTCTC
ATATAT TTTTTT
ACACAC TATATA
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Table 3: DNA code of length 26 corresponding to Example 7.2
TGTGTGTGTGTGTGTGTGTGTGTGTG
CGCGCGCGCGCGCGCGCGCGCGCGCG
ATATATATATATATATATATATATAT

AGAGAGAGAGAGAGAGAGAGAGAGAG
CTCTCTCTCTCTCTCTCTCTCTCTCT
CCCCCCCCCCCCCCCCCCCCCCCCCC

AAAAAAAAAAAAAAAAAAAAAAAAAA
TTTTTTTTTTTTTTTTTTTTTTTTTT

GAGAGAGAGAGAGAGAGAGAGAGAGA
GGGGGGGGGGGGGGGGGGGGGGGGGG

GTGTGTGTGTGTGTGTGTGTGTGTGT
GCGCGCGCGCGCGCGCGCGCGCGCGC
CACACACACACACACACACACACACA

TCTCTCTCTCTCTCTCTCTCTCTCTC
ACACACACACACACACACACACACAC
TATATATATATATATATATATATATA

Table 4: DNA code of length 34 corresponding to Example 7.4 (ii)
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
GCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC

TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
ACACACACACACACACACACACACACACACACAC
CGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG

AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG
ATATATATATATATATATATATATATATATATAT
CTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA

GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT
CACACACACACACACACACACACACACACACACA
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TATATATATATATATATATATATATATATATATA

Table 5: Gray images of reversible cyclic codes
Length Generator(s) of cyclic code Gray Images

3 ⟨x2 + x + 1⟩ (24, 24, 12)∗2
5 ⟨x4 + x3 + x2 + x + 1⟩ (40, 24, 20)∗2
9 ⟨x2 + x + 1⟩ (72, 228, 16)2
9 ⟨u(x2 + x + 1)(x6 + x3 + 1)⟩ (72, 24, 36)2

15 ⟨4(x2 + x + 1)(x4 + x3 + x2 + x + 1)⟩ (120, 236, 32)∗2
17 ⟨4(x8 + 5x7 + 7x6 + 3x4 + 7x2 + 5x + 1)⟩ (136, 236, 40)2
17 ⟨(x8 + 4x7 + 6x6 + 7x5 + x4 + 7x3 + 6x2 + 4x + 1) (136, 24, 68)2

(x8 + 5x7 + 7x6 + 3x4 + 7x2 + 5x + 1)⟩

REMARK: All codes in the above examples are calculated using Magma software [7] and * delineates that
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the corresponding binary linear code is optimal with respect to the online data available in [16].

8. Conclusion

Establishing a bijection between the components of an algebraic structure, such as fields or rings, and
DNA k-bases poses a substantial challenge. This complexity is particularly giving rise to the reversibility
problem when the algebraic structures consist of exactly 4k elements (where k > 1), In this paper, we tackle
this challenge by introducing a bijection denoted as ϑ, identifying the elements of the ring R to SD16 (see
Table 1). This construction adeptly resolves the reversibility problem occurred in DNA 2-bases. Also, we
have discussed DNA codes of odd length based on the deletion distance. Cyclic codes over the ring R such
that they satisfy reversible and reversible complement constraint are studied. We have also established a
relation between the GC-content of a given cyclic code Ci and its subcode C(4)

i . Also, we have introduced
a Gray map θhom from (Rn, Homogeneous weight) to (F8n

2 , Hamming weight). As an application of θhom,
we have provided some examples of reversible cyclic codes over the ring R such that their corresponding
binary linear codes are optimal. In the end, we have provided examples of DNA cyclic codes including
their deletion distances. For future work, it would be further fascinating to construct reversible cyclic codes
of even length over the ring R.
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