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Abstract. In 1983, Bouchet conjectured that every flow-admissible signed graph admits a nowhere-zero
6-flow. This conjecture remains unresolved even for signed planar graphs. In this paper, we prove that any
flow-admissible signed grid graph, which is a special class of planar graphs, admits a nowhere-zero 6-flow.

1. Introduction

The graphs in this paper are finite, without loops and may have multiple edges. Set [a, b] = {x ∈ Z :
a ≤ x ≤ b}. Terminology and notations not defined here can be found in [1, 11]. Tutte [7, 8] introduced the
theory of integer flows as a dual problem of the face coloring of bridgeless plane graphs. The concept of
integer flow on signed graphs arises from the study of graphs embedded on nonorientable surfaces, where
a nowhere-zero flow serves as the dual of local tension. Bouchet [2] put forward the following conjecture.

Conjecture 1.1. [2] Every flow-admissible signed graph admits a nowhere-zero 6-flow.

This conjecture is known as Bouchet’s 6-flow conjecture. It was provided by Bouchet [2] that every flow-
admissible signed graph admits a nowhere-zero 216-flow, and Zýka [12] decreased the value to nowhere-
zero 30-flow. Recently, DeVos et al. [3] improved the result of Zýka to nowhere-zero 11-flow. Integer flows
on signed graphs have been studied for some specific graphs. Kaiser et al. [4] proved that every flow-
admissible signed series-parallel graph admits a nowhere-zero 6-flow. Note that every signed outerplanar
graph, which is a special class of signed planar graphs, is a signed series-parallel graph. This implies that
Bouchet’s 6-flow conjecture on signed outerplanar graphs has already been verified. Motivated by this
result, we verify the Bouchet’s 6-flow conjecture for signed grid graphs in this paper, which is a type of
signed planar graphs.

Theorem 1.2. If (Gn,m, σ) is a flow-admissible signed grid graph, then (Gn,m, σ) admits a nowhere-zero 6-flow.

The present paper is organized as follows: In Section 2, we give some notations and terminology. We
prove some useful lemmas in Section 3. The proof of Theorem 1.2 is presented in Section 4.
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2. Notation and terminology

A signed graph (G, σ) is an underlying graph G together with a signature σ : E(G) → {±1}. An edge e is
positive if σ(e) = 1; otherwise it is negative. Let H be a signed subgraph of a signed graph G. The sign of H is
the product of the signs of all edges in H. Additionally, a circuit is positive (resp., negative) if the product of
the signs of all its edges equals 1 (resp., -1). For a vertex v ∈ V(G), switching at v means that reversing the
signs of all edges incident with v. If a signed graph (G, σ) can be transformed into (G, σ′) through a series
of switchings, then (G, σ) and (G, σ′) are said to be equivalent.

Let Cn (resp., Pn) be the circuit (resp., path) with n vertices. The length of a path or a circuit is the number
of its edges. A circuit is balanced if it contains an even number of negative edges; otherwise, it is unbalanced.
If all circuits of a signed graph are balanced, then the signed graph is balanced; otherwise, it is unbalanced.

The following lemma characterizes the equivalence of two signed graphs in terms of the signs of their
circuits.

Lemma 2.1. [10] Let G be a graph. (G, σ) and (G, σ′) are equivalent if and only if every circuit of G has the same
sign in (G, σ) and (G, σ′).

An edge e ∈ E(G) with two ends u and v is considered as two half edges, denoted as hu
e and hv

e , where
hu

e is incident to vertex u and hv
e is incident to vertex v. Let HG(v) (or simply H(v) if no confusion arises)

represent the set of all half edges incident with vertex v, and let H(G) denote the set of all half edges of
(G, σ). An orientation of (G, σ) is a mapping τ : H(G)→ {±1} such that for every e ∈ E(G), τ(hu

e )τ(hv
e ) = −σ(e)

for each τ(hu
e ) ∈ H(G). The τ is an assignment of orientations on H(G) such that τ(hu

e ) = 1 if hu
e is oriented

away from u and τ(hu
e ) = −1 if hu

e is oriented toward u.
The definition of an (integer) k-flow on a signed graph is as follows.

Definition 2.2. Let (G, σ) be a signed graph with an orientation τ, and let f be a mapping f : E(G)→ Z. The pair
(τ, f ) (or simply f ) is called as an (integer) k-flow of (G, σ) if for each v ∈ V(G),

∑
h∈HG(v) τ(h) f (eh) = 0 and for each

e ∈ E(G), | f (e)| < k.

Let f be a k-flow of (G, σ). The set {e ∈ E(G) : f (e) , 0}, denoted by supp( f ), is called the support of f .
If supp( f ) = E(G), then the flow f is a nowhere-zero k-flow. A signed graph is flow-admissible if it admits a
nowhere-zero k-flow for a positive integer k. For simplicity of presentation, the notation of nowhere-zero
k-flow is abbreviated as k-NZF.

Note that if (G, σ) and (G, σ′) are equivalent, then (G, σ) admits a k-NZF if and only if (G, σ′) admits a
k-NZF. Let (G, σ′) be the signed graph that obtained by switching at v ∈ V(G). If (G, σ) admits a k-NZF φ,
then the orientations of the half edges hv

e1
, hv

e2
, . . . , hv

er
are opposite. Meanwhile, φ(ei) will not be changed,

where i ∈ [1, r]. Therefore, φ is a k-NZF of (G, σ′).
Let G be a graph and v ∈ V(G). Define EG(v) = {e ∈ E(G) : e is incident with v} and let F ⊂ EG(v). Splitting

the edges of F away from v, adding a new vertex v′ and changing the end v of the edges of F to be v′.
For a vertex v ∈ V(G), the degree of v is denoted as dG(v) in G. For (G, σ), suppressing an induced path is
replacing it with an edge e with same sign. In a signed graph (G, σ), the subdivision of an edge uv refers to
the operation of inserting a new vertex w into the edge uv, thereby replacing uv with a path uwv, and the
sign of the path is the same as the edge uv. A subdivision of a signed graph (G, σ) is a signed graph obtained
from (G, σ) by performing a sequence of subdivisions.

Remark 2.3. For a signed graph (G, σ), let (G1, σ1) be a signed graph obtained from (G, σ) by a series of splittings,
and let (G′, σ′) be a signed graph obtained by suppressings of some induced paths in (G1, σ1). We claim that for a
positive integer k, if (G′, σ′) admits a k-NZF, then (G, σ) admits a k-NZF. Let (τ, f ) be a k-NZF on (G′, σ′). Note that
(G1, σ1) can be obtained from (G′, σ′) by a sequence of subdivisions. For any edge uv in G′, there is an induced path
Puv in G1, where Puv is obtained from uv by subdivisions or E(Puv) = {uv}. Thus, we can extend the flow (τ, f ) to a
k-NZF on (G1, σ1), as Figure 1. Since we can perform switchings on the internal vertices of Puv, it follows that the
assignment of signs to the edges within Puv is irrelevant.

We denote by (τ1, f1) the k-NZF on (G1, σ1). Let Sv ⊂ V(G1) be the set of all vertices obtained by splitting the
vertex v and v itself. Then (τ1, f1) can be extended to a k-NZF on (G, σ), as follows. We identify all the vertices of
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u v
⇒

− · · ·+ − · · · +

u v

u v
⇒

+ · · ·+ + · · · +

u v

Figure 1: Extending (τ, f ) from uv to Puv.

Sv to be the original vertex v in (G, σ). For any vertex v′ in Sv, since (τ1, f1) is a k-NZF on (G1, σ1), it follows that∑
h∈HG1 (v′) τ1(h) f1(eh) = 0. Note that E(G) = E(G1) and σ(e) = σ1(e) for all e ∈ E(G). Thus, (τ1, f1) is also defined on

(G, σ). Because
∑

h∈HG(v) τ(h) f (eh) =
∑

v′∈Sv

∑
h∈HG1 (v′) τ1(h) f1(eh) = 0, it follows that (τ1, f1) is a k-NZF on (G, σ).

Let Gn,m = (V,E) be the grid graph with vertex set

V(Gn,m) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and edge set

E(Gn,m) = {{(i, j), (i
′

, j
′

)} : |i − i
′

| + | j − j
′

| = 1}.

For Gn,m, since the flow-admissible (G2,2, σ) is a balanced circuit of length 4 that admits a 2-NZF, we always
assume n > 2 or m > 2.

In this paper, for a planar graph, we assume that it has already been embedded on the plane. A subset
of the plane is arcwise-connected if any two of its points can be connected by a curve lying entirely within
the subset. After embedding the vertices and edges of a planar graph G in the plane, G partitions the rest of
the plane into a number of arcwise-connected open sets. These open sets are called the faces of G. A simple
closed curve C partitions the plane into two open sets: the interior region, denoted by int(C), and the exterior
region of C, denoted by ext(C), where exterior region contains the unbounded face of the plane graph. Since
a circuit C0 of a plane graph is a simple closed curve, saying that something is “inside” the circuit C0 means
it lies in int(C0). The boundary of a face is the boundary of the open set in the usual topological sense.
For simplicity, the boundary of a face is regarded as a subgraph induced by all edges embedded in the
boundary of that face. The boundary of a face f 0 or a region F0 is denoted by ∂( f 0) or ∂(F0). In this paper,
a graph is nonseparable if it is connected and has no cut vertices. Note that in a nonseparable plane graph
other than K1 or K2, each face is bounded by a circuit [9], and grid graphs are nonseparable plane graphs.

A face is positive if it has an even number of negative edges in ∂( f 0), otherwise, it is negative. For a
balanced grid graph, by the 6-flow theorem of Seymour [6], it admits a 6-NZF. In fact, it admits a 3-NZF, as
it is face-3-colorable. Therefore, we focus on the case that (Gn,m, σ) is unbalanced.

3. Lemmas

Máčajová et al. [5] characterized the flow-admissible signed 2-edge-connected graph. Since every
connected nonseparable plane graph is 2-edge-connected, their result is crucial for our conclusion.

Lemma 3.1. [5]An unbalanced signed 2-edge-connected graph is flow-admissible except in the case when it contains
an edge whose removal leaves a balanced graph.

For a connected signed nonseparable plane graph, we have the following lemma to determine whether
a circuit is balanced or unbalanced.

Lemma 3.2. Let (G, σ) be a signed connected nonseparable plane graph, and C be a signed circuit in (G, σ). Then C
is balanced if and only if there are even number of negative faces in int(C).
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Proof. Let Ck = {C is a signed circuit in (G, σ) : the number of faces in int(C) is k}. Since (G, σ) is a signed
plane graph, it follows that C is laid out as a simple closed curve, and every face of (G, σ) is either entirely
inside int(C) or entirely outside int(C). We denote the number of negative faces in int(C) by fN(C), where
C ∈ Ck. We proceed by induction on k. For an arbitrary circuit C ∈ Ck, if k = 1 and C is balanced, then
fN(C) = 0. If fN(C) is even and k = 1, then fN(C) = 0. Therefore, C is balanced.

Suppose that it holds for less than k + 1. If Ck+1 = ∅, then the result holds. If Ck+1 , ∅, then choose an
arbitrary circuit C′ in Ck+1. Consider an x,y-path inside C′, the x,y-path intersects only at the endpoints with
C′. Since (G, σ) is a plane graph, x,y-path divides int(C’) into two interior regions F1 and F2 with boundaries
∂(F1) and ∂(F2), respectively , where ∂(F1) and ∂(F2) are circuits.

Note that C′ is balanced if and only if there is an even number of negative edges in C′. Since E(C′) =
(E(∂(F1))∪E(∂(F2))) \ (E(∂(F1))∩E(∂(F2))), it follows that C′ is balanced if and only if both ∂(F1) and ∂(F2) are
either balanced or unbalanced. By the inductive hypothesis, both ∂(F1) and ∂(F2) are balanced if and only if
fN(∂(F1)) and fN(∂(F2)) are even. Similarly, both ∂(F1) and ∂(F2) are unbalanced if and only if fN(∂(F1)) and
fN(∂(F2)) are odd. In either case, we have fN(C′) = fN(∂(F1)) + fN(∂(F2)) is even. Therefore, C′ is balanced if
and only if there are even number of negative faces in int(C).

According to Lemma 3.2, if all faces in a connected nonseparable plane graph (G, σ) are positive, then
(G, σ) is balanced. In fact, we have the following stronger lemma.

Lemma 3.3. Let (G, σ) be a connected signed nonseparable plane graph. If the boundaries of all other faces are positive
except for the unbounded face, then (G, σ) is balanced.

Proof. For any circuit C in (G, σ), the boundaries of all faces inside C are positive. By Lemma 3.2, the circuit
C is balanced. Therefore, (G, σ) is balanced.

For an unbalanced flow-admissible (Gn,m, σ), the following lemma shows that there are two negative
faces whose boundaries are edge-disjoint.

Lemma 3.4. An unbalanced flow-admissible (Gn,m, σ) has two edge-disjoint negative circuits, which are boundaries
of two faces.

Proof. We denote the boundary of unbounded face of (Gn,m, σ) by C. Note that the boundaries of other faces
in (Gn,m, σ) are circuits of length 4. Conversely, every cycle of length 4 is the boundary of some face. By
Lemma 3.3, since (Gn,m, σ) is unbalanced, there is at least one negative circuit of length 4 in (Gn,m, σ). We
will complete the proof by considering the number of negative circuit of length 4 in (Gn,m, σ), denoted by
nc(Gn,m).

Case 1. nc(Gn,m) = 1.
We denote the only negative circuit of length 4 by C1. By Lemma 3.2, C is unbalanced. If E(C1)∩E(C) = ∅,

then C and C1 are edge-disjoint negative circuits. If E(C1) ∩ E(C) , ∅, then |E(C1) ∩ E(C)| ∈ {1, 2, 3}. If
|E(C1) ∩ E(C)| = 1, then delete the common edges of C and C1. Let the new signed graph be (G, σ). In
this situation, except for the unbounded face of (G, σ), all other faces are positive. By Lemma 3.3, (G, σ) is
balanced. According to Lemma 3.1, this is a contradiction with the fact that (Gn,m, σ) is flow-admissible.

If |E(C1) ∩ E(C)| = 2 or 3, then E(C1) ∩ E(C) induces an induced path P of Gn,m, by the structure of Gn,m.
Delete one edge of E(C1) ∩ E(C), and denote the resulting signed graph by (G, σ). Note that there are cut
edges in (G, σ). We delete these cut edges, and the resulting signed graph is denoted by (G′, σ′). Since all
faces in (G′, σ′) except the unbounded face are positive, Lemma 3.3 implies that (G′, σ′) is balanced. Because
cut edges are not included in any circuit and every circuit of (G′, σ′) is balanced, it follows that every circuit
of (G, σ) is balanced. Thus, (G, σ) is balanced. According to Lemma 3.1, (Gn,m, σ) is not flow-admissible,
which leads to a contradiction.

Case 2. nc(Gn,m) = 2.
Let C2 and C3 be the two negative circuits of length 4. By Lemma 3.2, C is balanced. If E(C2)∩E(C3) = ∅,

then C2 and C3 are the edge-disjoint negative boundaries of two faces. If E(C2) ∩ E(C3) , ∅, then C2 and
C3 have only one common edge, by the structure of Gn,m. Delete the common edge of C2 and C3, the result
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signed graph denoted by (G, σ). Note that the boundaries of every face of (G, σ) is positive. By Lemma 3.3,
(G, σ) is balanced. By Lemma 3.1, this contradicts the fact that (Gn,m, σ) is flow-admissible.

Case 3. nc(Gn,m) ≥ 3.
Without loss of generality, we assume that nc(Gn,m) = 3. We denote the three negative circuits by C4,C5,

and C6, respectively. We assume that any two of C4,C5, and C6 have at least one common edges. For distinct
i, j ∈ {4, 5, 6}, Ci and C j have only one common edge. Thus, any two circuits of length 4 that share an edge
with C4 do not have common edge between themselves, see Figure 2. A contradiction. Therefore, there
exist two negative circuits of length 4 that are edge-disjoint.

C4

Figure 2: All circuits share an edge with C4

4. Proof of Theorem 1.2

The outline of the proof is converting (Gn,m, σ) into a flow-admissible signed series-parallel graph, more
specifically, a signed outerplanar graph. Therefore, we need the following theorem.

Theorem 4.1. [4] Every flow-admissible signed series-parallel graph has a nowhere-zero 6-flow.

In order to transform (Gn,m, σ) into a flow-admissible signed outerplanar graph, we perform a series of
operations. First, we split vertices of degree 4 into two vertices of degree 2. Then, we suppress certain
special induced paths into edges. Now, we begin to prove Theorem 1.2.

Proof. Because our proof rely on the planarity and the embedding of (Gn,m, σ), unless otherwise specified,
we assume that the grid graph in the proof is already embedded in the plane as Figure 3. In the following
proof, edges that are not involved in the operation process are assumed unchanged for the embedding, and
the other edges are redrawn so that the resulting signed graph is a plane graph.

Figure 3: The embedding of G4,4

For clarity, an example with n = 8 and m = 9 is provided at each step. Since the signs of edges do not
affect the following operations, they are omitted in the following steps and figures.

Consider a circuit of length 4 of (Gn,m, σ), say C∗, where V(C∗) = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} and
i ∈ [1,n − 1], j ∈ [1,m − 1]. Without loss of generality, we assume that i ≤ j. Let s ∈ [1, k] and t ∈ [1, q],
where k = min{i − 1, j − 1} and q = min{n − i − 1,m − j − 1}. In (Gn,m, σ), let C−s

∗ and C+t
∗ be the two circuits

of length 4 derived from C∗. Their vertex sets are defined as V(C−s
∗ ) = {(i − s, j − s) : (i, j) ∈ V(C∗)} and
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V(C+t
∗ ) = {(i+ t, j+ t) : (i, j) ∈ V(C∗)}. We give an example about C0 in Figure 4, where C0 is a circuit of length

4.
Let f 0 be the unbounded face of (Gn,m, σ) and ∂( f 0) = C. By Lemma 3.4, (Gn,m, σ) contains two edge-

disjoint negative circuits, C0 and C1, which form the boundaries of two faces. We prove the theorem by
considering whether one of C0 and C1 is C.

Case 1. One of C0 and C1 is C.
Without loss of generality, let C1 = C. Then C0 is a circuit of length 4. Let V(C0) = {(i1, j1), (i1+1, j1), (i1, j1+

1), (i1+1, j1+1)}, where 2 ≤ i1 ≤ n−2, 2 ≤ j1 ≤ m−2. Without loss of generality, we assume that i1 ≤ j1 ≤ ⌊m
2 ⌋.

Let C0P = C0 ∪ (
⋃k

i=1 C−i
0 ) be a signed induced subgraph of (Gn,m, σ), where k = min{i1 − 1, j1 − 1} . Because

C0 and C are edge-disjoint, it follows that (i1, j1) , (1, 1). Therefore, such a C0P exists. Each circuit of length
4 in C0P is a block, see Figure 4. Two blocks C−x

0 and C−y
0 have a common vertex if and only if |x − y| = 1.

Let V2
C0P = {v ∈ V(C0P) \ V(C) : dC0P(v) = 2} be a subset of V(C0P). For any v ∈ V2

C0P, let F0
1(v) denote

EGn,m (v) \ E(C0P). By splitting the edges of F0
1(v) away from v, we obtain a signed graph (G0

n,m, σ
0). We draw

(G0
n,m, σ

0) on a plane such that (G0
n,m, σ

0) is a signed plane graph, as follows. Let e be an edge in E(C)∩E(C0P).
We draw C0P \ e on f 0, and the embedding of all other vertices and edges in (G0

n,m, σ
0) are identical to those

in (Gn,m, σ), see Figure 5. In (G0
n,m, σ

0), let f 0
1 denote the face that does not intersect f 0 and whose boundary

contains the edges of F0
1(v), where v ∈ V2

C0P, see Figure 5. Next, a transformation process is provided. The
first step is as follows.

C0

C−2
0

Figure 4: C0P

v′1v1

f 0
1

Figure 5: (G0
8,9, σ

0)

Let P1
1 be a signed path induced by E(∂( f 0

1 ))\E(C). For any internal vertex of P1
1, we split the edges of F1

1(v)
away from v, and then suppress P1

1 to an edge e1
1. We denote the resulting signed graph by (G1

n,m, σ
1). Next,

we draw (G1
n,m, σ

1) on the plane as follows. We draw e1
1 in f 0

1 such that e1
1 has no crossings with E(G0

n,m)\E(P1
1),

and the embedding of all other vertices and edges in (G1
n,m, σ

1) are identical to those in (G0
n,m, σ

0), see Figure
6. We denote by f 1

1 the face of (G1
n,m, σ

1) such that E(∂( f 1
1 )) ∩ E(∂( f 0

1 )) = ∅. Note that some vertices in V(P1
1)

have degree 2 in G0
n,m. Thus, we perform splits on these vertices of degree 2, leading to the appearance

of isolated vertices. For any flow (τ, f ) and any isolated vertex v∗, the sum
∑

e∈E(v∗) τ(hv∗
e ) f (e) is always 0.

Hence, these isolated vertices can be omitted. This completes the first step.
Because in a certain step of the transformation process, there are more than one path as well as more

than one face, it is necessary to add some subscripts. For example, in Figure 8, the subscript “1” in f 2
1

represents the first face in the 2nd step; while “2” in P3
2 represents the second path in the 3rd step. In the

(s − 1)-th step, let P be a set of signed paths induced by E(
⋃k

a=1(∂( f s−2
a ))) \ (EGs−2

n,m
(C) ∪ (

⋃h
b=1{e

s−2
b })), where

f s−2
a are the faces appearing in the (s − 2)-th step and es−2

b are the edges obtained from suppressing some
signed paths in the (s − 2)-th step. Let x be the number of elements in P. We denote by Fs−1

i (v) the edge
set EGs−2

n,m
(v) \ (

⋃x
i=1 E(Ps−1

i )), where Ps−1
i ∈ P and v ∈ (

⋃x
i=1 V(Ps−1

i )). For any Ps−1
i and any internal vertex v of

Ps−1
i , we split the edges of Fs−1

i (v) away from v. Then suppress the signed path Ps−1
i to edge es−1

i , i ∈ [1, x].
We denote the resulting signed graph by (Gs−1

n,m, σ
s−1). In Figure 7, we give an example of i = 1, s = 3 and in

Figure 8, an example of i ∈ [1, 2], s = 4 is given.
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e1
1

f 1
1

v1

Figure 6: (G1
8,9, σ

1)

e1
1

e2
1

v1
f 2
1

Figure 7: (G2
8,9, σ

2)

v1

P3
1

P3
2

f 2
1

Figure 8: P3
1 and P3

2

v1

f 3
1

f 3
2

Figure 9: (G3
8,9, σ

3)

Next, we draw (Gs−1
n,m, σ

s−1) on the plan as follows. We draw es−1
i in f s−2

j such that edge es−1
i has no

crossings with E(Gs−2
n,m) \ (

⋃x
i=1 E(Ps−1

i )), where f s−2
j is the face whose boundary containing Ps−1

i . And the
embedding of all other vertices and edges in (Gs−1

n,m, σ
s−1) are identical to those in (Gs−2

n,m, σ
s−2). Since any two

distinct paths Ps−1
y and Ps−1

z have no crossings in (Gs−2
n,m, σ

s−2), it follows that we can draw (Gs−1
n,m, σ

s−1) on the
plan such that es−1

y and es−1
z have no crossings, y, z ∈ [1, x]. For any es−1

i , there is a face, denoted by f s−1
i , in

(Gs−1
n,m, σ

s−1) such that es−1
i ∈ E(∂( f s−1

i )) and E(∂( f s−1
i ))∩ E(∂( f s−2

j )) = ∅ for any f s−2
j in (Gs−2

n,m, σ
s−2), see Figures 9

and 10.

v1

f 4
1

f 4
2

f 4
3

Figure 10: (G4
8,9, σ

4)

v1

Figure 11: (Gq
8,9, σ

q)

Let s be the minimal positive integer such that |E(∂( f s
i )) \ E(C)| = 1 holds for every f s

i . Then the
transformation process terminates at the s-th step. Since Gn,m is finite, such an s exist. Thus the final signed
graph is denoted by (Gs

n,m, σ
s), see Figure 11. Note that if there is a face f d

y that satisfies |E(∂( f d
y )) \ E(C)| = 1

while the transformation process is still ongoing, then denote f d
y by f d+1

y in the (d + 1)-th step.
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Note that (Gs
n,m, σ

s) is a signed 2-edge connected graph. Additionally, since C0 and C are two edge-disjoint
unbalanced circuits in (Gs

n,m, σ
s), it follows by Lemma 3.1 that (Gs

n,m, σ
s) is flow-admissible. For (Gs

n,m, σ
s),

because there are no vertices inside C and every vertex of C0P is on the boundary of the unbounded face, it
follows that (Gs

n,m, σ
s) is a signed outerplanar graph. According to Theorem 4.1, (Gs

n,m, σ
s) admits a 6-NZF.

Since (Gs
n,m, σ

s) is obtained from (Gn,m, σ) through a series of splittings and suppressings, it follows from
Remark 2.3 that (Gn,m, σ) admits a 6-NZF.

Case 2. Both C0 and C1 are not C.
In this situation, C0 and C1 are the negative circuits of length 4. Let V(C0) = {(i1, j1), (i1 + 1, j1), (i1, j1 +

1), (i1 + 1, j1 + 1)}, V(C1) = {(i2, j2), (i2 + 1, j2), (i2, j2 + 1), (i2 + 1, j2 + 1)}. Without loss of generality, we assume
that 1 ≤ i1 ≤ i2 ≤ n − 1. There are some circuits of length 4 in Gn,m such that include a vertex of degree
2. Such circuits are referred to as the corner of Gn,m. For the first and second steps of the transformation
process, we shall consider three subcases with respect to the number of corners in {C0,C1}.

Subcase 2.1. Neither C0 nor C1 is a corner.
Let H1 = C0 ∪ (

⋃s
i=1 C−i

0 ) be the C0-path, and H2 = C1 ∪ (
⋃t

j=1 C+ j
1 ) be the C1-path, where s = min{ j1 −

1, i1 − 1}, t = min{m − j2 − 1,n − i2 − 1}. Because neither C0 nor C1 is a corner, the two subgraphs H1 and H2
exist. Since C0 and C1 are edge-disjoint, we have E(H1) ∩ E(H2) = ∅, see Figures 12 and 13.

C0

C1

Figure 12: H1 and H2

C0

C1

Figure 13: H1 and H2

We denote by V2
Hi

(v) the set {v ∈ V(Hi) \ V(C) : dHi (v) = 2}, where i ∈ {1, 2}. Then we perform a series
of splittings at the vertices in V2

Hi
(v) in (Gn,m, σ). For any v ∈ V2

Hi
(v), let F0

i (v) denote the set EGn,m (v) \ E(Hi).
For every vertex v ∈ V2

Hi
(v), we split the edges of F0

i (v) away from v and denote by (G0
n,m, σ

0) the resulting
signed graph. Let ei be an edge in E(C) ∩ E(Hi). We draw (G0

n,m, σ
0) on the plane such that (G0

n,m, σ
0) is a

signed plane graph as follows. We draw H1 \ e1 and H2 \ e2 on f 0 , and the embedding of all other vertices
and edges in (G0

n,m, σ
0) are identical to those in (Gn,m, σ).

Note that V(C0) ∩ V(C1) may not be an empty set, as shown in Figures 12 and 13. If V(C0) ∩ V(C1) = ∅,
then we denote by f 0

i the face whose boundary includes the edges of F0
i (v) and does not intersect with f 0,

where i ∈ [1, 2], see Figure 14. If V(C0)∩V(C1) , ∅, then we denote by f 0
1 the face whose boundary includes

the edges of F0
1(v) ∪ F0

2(v) and does not intersect with f 0, see Figure 15.
In the case of V(C0) ∩ V(C1) , ∅, let P1

1 and P1
2 be the signed paths induced by E(∂( f 0

1 )) \ E(C). Denote
by F1

i (v) the set EG0
n,m

(v) \ E(P1
i ), where v ∈ V(P1

i ) and i ∈ {1, 2}. For any internal vertex of P1
i , we split the

edges of F1
i (v) away from v, and then suppress P1

i to an edge e1
i . We denote the resulting signed graph by

(G1
n,m, σ

1). Next, we draw (G1
n,m, σ

1) on the plane as follows. We draw e1
1 and e1

2 in f 0
1 such that them have no

crossings with E(G0
n,m)\E(P1

i ) and there are no crossings between e1
1 and e1

2. Meanwhile, the embedding of all
other vertices and edges in (G1

n,m, σ
1) are identical to those in (G0

n,m, σ
0). The transformation from (G0

n,m, σ
0)

to (G1
n,m, σ

1) is analogous to that in Case 1. Therefore, in the remainder of the discussion, we consider the
situation where V(C0) ∩ V(C1) = ∅, see Figure 14.

Let P1
1 be a signed path induced by E(∂( f 0

1 )) \ E(C). For any internal vertex of P1
1, we split the edges of

F1
1(v) away from v, and then suppress P1

1 to an edge e1
1. We denote the resulting signed graph by (G1

n,m, σ
1).

Next, we draw (G1
n,m, σ

1) on the plane as follows. We draw e1
1 in f 0

1 such that e1
1 has no crossings with
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H1

C0

H2

C1

f 0
1

f 0
2

Figure 14: (G0
8,9, σ

0)

C0

H1

C1H2
f 0
1

Figure 15: (G0
8,9, σ

0)

E(G0
n,m) \ E(P1

1), and the embedding of all other vertices and edges in (G1
n,m, σ

1) are identical to those in
(G0

n,m, σ
0), see Figure 16. We denote by f 1

1 the face of (G1
n,m, σ

1) such that E(∂( f 1
1 )) ∩ E(∂( f 0

1 )) = ∅.

H2

H1

e1
1

f 1
1

f 2
0

Figure 16: (G1
8,9, σ

1)

H2

H1

e1
1

e2
1

f 0
2

f 2
1

Figure 17: (G2
8,9, σ

2)

Subcase 2.2. Exactly one of C0 and C1 is a corner.
Without loss of generality, let C1 be the corner. We only consider V(C0) ∩ V(C1) = ∅, as the treatment

of V(C0) ∩ V(C1) , ∅ is analogous and is omitted. Let H1 = C0 ∪ (
⋃s

i=1 C−i
0 ) be the C0-path, where s =

min{ j1 − 1, i1 − 1}. The approach for H1 is similar to the one used in the Subcase 2.1. In order to avoid
repetition, we omit further details. In this subcase, we only discuss the handling of C1.

We denote by P0 the path induced by E(C1)\E(C), and let F(v) denote the set EGn,m (v)\EC1 (v). Then, for an
internal vertex of P0, we split the edges in F0(v) away from v and suppress P0 to an edge e0. We denote the
resulting signed graph by (G−1

n,m, σ
−1). Next, we draw (G−1

n,m, σ
−1) on the plane as follows. Let f 0 denote the

face with boundary C1. We draw e0 in f 0 such that it has no crossings with E(Gn,m) \ E(P0). Meanwhile, the
embedding of all other vertices and edges in (G−1

n,m, σ
−1) are identical to those in (Gn,m, σ). The transformation

process on H1 is the same as in Subcase 2.1. Specifically, we split H1 away from (G−1
n,m, σ

−1) and redraw
it on the unbounded face, see Figure 18. Let (G0

n,m, σ
0) denote the resulting signed graph. Similarly, The

transformation from (G0
n,m, σ

0) to (G1
n,m, σ

1) is analogous to that in Case 1, see Figure 19. We denote by C′1 the
circuit of length 3, which is obtained from C1. Note that C0 and C′1 are two edge-disjoint negative circuits
in (G1

n,m, σ
1). Meanwhile, in (G1

n,m, σ
1), the edge e1

1 and the faces f 1
1 and f 2

0 are defined, see Figure 19.
Subcase 2.3. Both C0 and C1 are corners.
For (Gn,m, σ), it follows that V(C0) ∩ V(C1) , ∅ if and only if n = m = 3. Then we split EC1 ((2, 2)) away

from (2, 2) in (G3,3, σ), and we suppress the induced paths inside C. It is easy to verify that the resulting
signed graph is a flow-admissible signed outerplanar graph. Therefore, we consider the situation that
V(C0) ∩ V(C1) = ∅. The approaches for C0 and C1 are similar to the one for C1 in the Subcase 2.1. In order
to avoid repetition, we omit further details present (G1

n,m, σ
1) as Figure 20. In (G1

n,m, σ
1), the edge e1

1 and the
faces f 1

1 and f 2
0 are defined. This completes the first and second steps.
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C0

H1

e0

f 0
1

Figure 18: (G0
8,9, σ

0)

C0

H1

f 2
0
→ C′1

e1
1

f 1
1

Figure 19: (G1
8,9, σ

1)

f 0
2

f 1
1

e1
1

Figure 20: (G1
8,9, σ

1)

In the (s − 1)-th step, let P be a set of signed paths induced by E(
⋃k

a=1(∂( f s−2
a ))) \ (EGs−2

n,m
(C)∪ (

⋃h
b=1{e

s−2
b })),

where f s−2
a are the faces appearing in the (s − 2)-th step and es−2

b are the edges obtained from suppressing
some signed paths in the (s−2)-th step. Let x be the number of elements inP. We denote by Fs−1

i (v) the edge
set EGs−2

n,m
(v) \ (

⋃x
i=1 E(Ps−1

i )), where Ps−1
i ∈ P and v ∈ (

⋃x
i=1 V(Ps−1

i )). For any Ps−1
i and any internal vertex v of

Ps−1
i , we split the edges of Fs−1

i (v) away from v. Then suppress the signed path Ps−1
i to edge es−1

i , i ∈ [1, x].
We denote the resulting signed graph by (Gs−1

n,m, σ
s−1). Note that there exists a positive integer l such that

V(Pl
i) ∩ V(∂( f 0

2 )) , ∅ in the l-th step of the transformation process, see Figures 17 and 21.
Next, we draw (Gs−1

n,m, σ
s−1) on the plan as follows. We draw es−1

i in f s−2
j such that edge es−1

i has no
crossings with E(Gs−2

n,m) \ (
⋃x

i=1 E(Ps−1
i )), where f s−2

j is the face whose boundary containing Ps−1
i . And the

embedding of all other vertices and edges in (Gs−1
n,m, σ

s−1) are identical to those in (Gs−2
n,m, σ

s−2). Since any two
distinct paths Ps−1

y and Ps−1
z have no crossings in (Gs−2

n,m, σ
s−2), it follows that we can draw (Gs−1

n,m, σ
s−1) on the

plan such that es−1
y and es−1

z have no crossings, y, z ∈ [1, x]. For any es−1
i , there is a face, denoted by f s−1

i , in
(Gs−1

n,m, σ
s−1) such that es−1

i ∈ E(∂( f s−1
i )) and E(∂( f s−1

i )) ∩ E(∂( f s−2
j )) = ∅ for any f s−2

j in (Gs−2
n,m, σ

s−2), see Figures
22 and 23.

Let s be the minimal positive integer such that |E(∂( f s
i )) \ E(C)| = 1 holds for every f s

i . Then the
transformation process terminates at the s-th step. Since Gn,m is finite, such an s exist. Thus the final signed
graph is denoted by (Gs

n,m, σ
s), see Figure 24. Note that if there is a face f d

y that satisfies |E(∂( f d
y )) \ E(C)| = 1

while the transformation process is still ongoing, then denote f d
y by f d+1

y in the (d + 1)-th step.
Similarly to Case 1, (Gs

n,m, σ
s) is a flow-admissible signed outerplanar graph. Thus, (Gs

n,m, σ
s) admits a 6-
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H2

H1

f 0
2

Figure 21: E(P4
1) ∩ E(C) , ∅

H2

H1

f 4
1

f 4
2

Figure 22: (G4
8,9, σ

4)

H2

H1

f 5
1

f 5
2

f 5
3

Figure 23: (G5
8,9, σ

5)

H2

H1

Figure 24: (Gq
8,9, σ

q)

NZF. Furthermore, since (Gs
n,m, σ

s) is obtained from (Gn,m, σ) through a series of splittings and suppressings,
Remark 2.3 implies that (Gn,m, σ) also admits a 6-NZF.

Consequently, we infer that every flow-admissible (Gn,m, σ) admits a 6-NZF.
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