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Claw-decomposition of generalized Kneser graph GKGn,3,1
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Abstract. A star with three edges is called a claw. The Generalized Kneser Graph GKGn,k,r is the graph
whose vertices are the k-element subsets of n-elements, in which two vertices are adjacent if and only if they
intersect in precisely r elements. In this paper, we prove that the graph GKGn,3,1 has a claw-decomposition
for all n ≥ 6.

1. Introduction

A star with k edges is denoted by Sk and Sk � K1,k. If k=3, then the graph K1,3 is called a claw. If a graph
G has no edges, then it is called a null graph. The degree of a vertex v of G, denoted by DGv is the number
of edges incident with v in G. Let k be a positive integer. A graph G is said to be k-regular, if DGv=k, for all
v ∈ V(G). Let S ⊂ V(G), then the subgraph induced by S is denoted by ⟨S⟩. Let T be a subgraph of G. The
graph obtained by deleting the edges of T is denoted by G∖T. A cycle and a path with k edges is denoted by
Ck and Pk, respectively. If H1,H2, ...,Hl are edge disjoint subgraphs of a graph G such that E(G)=

⋃l
i=1 E(Hi),

then we say that H1,H2, ...,Hl decompose G and we denote it by G=⊕l
i=1Hi. If Hi � Sk for i=1, 2, ..., l, then we

say that G has an Sk-decomposition or a k-star decomposition and we denote it by Sk|G. Let A = {1, 2, 3, ...,n}
and let Pk(A) denotes the set of all k-element subsets of A. The Kneser Graph KGn,k is defined as follows:
V(KGn,k)=Pk(A) and E(KGn,k)={XY|X,Y ∈ Pk(A) and |X ∩ Y| = ∅}. The Generalized Kneser Graph GKGn,k,r is
defined as follows: V(GKGn,k,r)=Pk(A) and E(GKGn,k,r)={XY|X,Y ∈ Pk(A) and |X ∩ Y| = r}.

In 1955, M. Kneser [4] introduced the Kneser graph. In 2015, Rodger and Whitt [5] established the neces-
sary and sufficient conditions for a P3-decomposition of the Kneser graph KGn,2 and the Generalized Kneser
Graph GKGn,3,1. In 2015, Whitt and Rodger [9] proved that the Kneser graph KGn,2 is P4-decomposable if and
only if n ≡ 0, 1, 2, 3(mod 16). In 2018, Ganesamurthy and Paulraja [3] proved that if n ≡ 0, 1, 2, 3(mod 8k), k ≥ 2,
then the Kneser graph KGn,2 can be decomposed into paths of length 2k. In the same paper they also proved
that, for k = 2l, l ≥ 1, KGn,2 has a P2k-decomposition if and only if n ≡ 0, 1, 2, 3(mod 2l+3). In 2024, Cecily Sahai
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et al. [1] proved that if n ≡ 0, 1, 2, 3(mod 4k), where k ≥ 1, then the Kneser graph KGn,2 is Pk-decomposable. In
2025, Cecily Sahai et al. [2] proved that the necessary and sufficient conditions for the existence of a 4-cycle
decomposition of λ-fold Kneser graphs λKGn,2 and λ-fold Bipartite Kneser graphs λBKGn,2. Recently, the
authors proved that KGn,2 is claw-decomposable, for all n ≥ 6, see [6] and KGn,2 is S5-decomposable if and
only if n ≥ 7, n ≡ 0, 1, 2, 3(mod 5), see [7]. Recently the authors [8] proved that KGn,3 is claw-decomposable
if and only if n ≥ 9 and n ≡ 0, 1, 2, 3, 4, 5(mod 9). In this paper, we prove that the Generalized Kneser Graph
GKGn,3,1 is claw-decomposable for all n ≥ 6.

Let G be a graph on n vertices and {1, 2, 3, ..., k} ⊂ V(G). The notation (1; 2, 3, ..., k) denotes a star with
a center vertex 1 and k − 1 pendent edges 12, 13, ..., 1k. Let X and Y be two disjoint subsets of V(G). Then
E(X,Y) denotes the set of edges in G, whose one end vertex is in X and the other end vertex is in Y. The
notation ⟨E(X,Y)⟩ denotes the graph induced by the edges of E(X,Y). If the degree of each vertex of X (or
Y) is 3r, where r is any positive integer, then by fixing each vertex of X (or Y) as a center vertex r times, we
get a claw-decomposition in ⟨E(X,Y)⟩.

To prove our results we use the following:

Theorem 1.1. (Sankari et al.[6]) For all n ≥ 6, the graph KGn,2 is claw-decomposable.

2. Claw-decomposition of GKGn,3,1

As we are looking for a claw-decomposition, we have |V(GKGn,3,1)| ≥ 4. Therefore n ≥ 4. The graph
GKG4,3,1 is a null graph. We know that |E(GKGn,3,1)| = 1

2
(n

3
)(3

1
)(n−3

2
)
, and is divisible by 3 for all n ≥ 5. The

graph GKG5,3,1 is the Petersen graph (see Figure 1), which doesn’t admit a claw-decomposition [6].

Figure 1: GKG5,3,1

Therefore, we look for a claw-decomposition in GKGn,3,1, when n ≥ 6.
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Lemma 2.1. The graph GKG6,3,1 is claw-decomposable.

Proof. We define V(GKG6,3,1)=X ∪ Y ∪ Z, where

X =X1 ∪ X2, where X1 = {1, 2, 3} and X2 = {4, 5, 6}
Y ={{a, b, c}|a, b ∈ X1, a < b and c ∈ X2}

Z ={{a, b, c}|a, b ∈ X2, a < b and c ∈ X1}

So, |X1|=|X2|=1, |Y|=|Z|=9. Note that, the graph GKG6,3,1=⟨Y⟩∪ ⟨Z⟩∪ ⟨E(Y,Z)⟩∪ ⟨E(X1,Y∪Z)⟩∪ ⟨E(X2,Y∪Z)⟩.
We prove that each one of these subgraphs has a claw-decomposition. The graph ⟨Y⟩ can be decom-
posed into six copies of claws as follows: ({1, 2, 4}; {1, 3, 5}, {2, 3, 5}, {1, 3, 6}), ({1, 2, 5}; {1, 3, 6}, {2, 3, 6}, {1, 3, 4}),
({1, 2, 6}; {1, 3, 4}, {2, 3, 4}, {1, 3, 5}), ({2, 3, 4}; {1, 2, 5}, {1, 3, 5}, {1, 3, 6}), ({2, 3, 5}; {1, 2, 6}, {1, 3, 6}, {1, 3, 4}), ({2, 3, 6};
{1, 2, 4}, {1, 3, 4}, {1, 3, 5}). We see that ⟨Z⟩ � ⟨Y⟩ and hence has a claw-decomposition. In ⟨E(Y,Z)⟩, con-
sider the three stars S1 : ({4, 5, 3}; {1, 2, 5}, {1, 3, 6}, {2, 3, 6}), S2 : ({4, 6, 3}; {1, 2, 4}, {1, 3, 5}, {2, 3, 5}) and S3 :
({5, 6, 3}; {1, 2, 6}, {1, 3, 4}, {2, 3, 4}). Now, D

⟨E(Y,Z)⟩∖
⋃3

i=1 Si {a, b, c}=3, for all {a, b, c} ∈ Y. Hence ⟨E(Y,Z)⟩ ∖
⋃3

i=1 Si

has a claw-decomposition. The subgraphs ⟨E(X1,Y ∪ Z)⟩ � ⟨E(X2,Y ∪ Z)⟩ � S9 and hence have a claw-
decomposition.

Let n = 6m, where m ≥ 2 be a positive integer. Let n1 = 6 and n2 = n−n1. Let N1={1, 2, ...,n1} and N2={n1+
1, ...,n}. Define V(GKGn,3,1)=A1 ∪ A2 ∪ A3 ∪ A4, where A1={{a, b, c}|(a, b, c) ∈ P3(N1)}, A2={{a, b, c}|(a, b, c) ∈
P3(N2)}, A3={{a, b, c}|(a, b) ∈ P2(N1), c ∈ N2} and A4={{a, b, c}|(a, b) ∈ P2(N2), c ∈ N1}. So, |A1|=

(n1
3
)
, |A2|=

(n2
3
)
,

|A3|=n2
(n1

2
)

and |A4|=n1
(n2

2
)
. We define the graphs Hi ⊂ GKGn,3,1, 1 ≤ i ≤ 7 as follows: H1 = ⟨A1⟩(� GKG6,3,1),

H2 = ⟨A2⟩(� GKGn2,3,1), H3 = ⟨A3⟩, H4 = ⟨A4⟩, H5 = ⟨E(A3,A4)⟩, H6 = ⟨E(A1,A3 ∪A4)⟩, H7 = ⟨E(A2,A3 ∪A4)⟩.

Remark 2.2. GKGn,3,1=⊕
7
i=1Hi.

Therefore, to prove GKGn,3,1 is claw-decomposable, it is enough to prove that each Hi is claw-decomposable.

Remark 2.3. The graph H1 is claw-decomposable, by Lemma 2.1.

Lemma 2.4. The graph H3 is claw-decomposable.

Proof. For n1 + 1 ≤ t ≤ n, let A3t={{a, b, t}|(a, b) ∈ P2(N1)}. Then ⟨A3t⟩ � KG6,2, for each t. We write
A3=

⋃
n1+1≤t≤n

A3t and the graph H3=n2KG6,2 ⊕
⋃

(a,b)∈P2(N1)
⟨E({a, b, t1}, {a, b, t2})⟩, n1 + 1 ≤ t1 < t2 ≤ n. By Theorem

1.1, the graph KG6,2 is claw-decomposable. Now we prove that, the graph H3 ∖ n2KG6,2 has a claw-
decomposition. Consider the two set of stars from H3 ∖ n2KG6,2 as follows:
S′ = {({1, 6, t2}; {1, 2, t1}, {1, 3, t1}, {1, 4, t1}), ({2, 6, t2}; {2, 3, t1}, {2, 4, t1}, {2, 5, t1}), ({3, 6, t2}; {2, 6, t1}, {3, 5, t1}, {5, 6, t1}),
({4, 6, t2}; {1, 6, t1}, {3, 4, t1}, {3, 6, t1}), ({5, 6, t2}; {1, 5, t1}, {4, 5, t1}, {4, 6, t1}),n1 + 1 ≤ t1 < t2 ≤ n}
S′′= {({1, 2, t2}; {1, 4, t1}, {1, 5, t1}, {1, 6, t1}), ({2, 3, t2}; {2, 4, t1}, {2, 5, t1}, {2, 6, t1}), ({2, 6, t2}; {1, 2, t1}, {4, 6, t1}, {5, 6, t1}),
({3, 4, t2}; {3, 5, t1}, {3, 6, t1}, {4, 5, t1}), ({3, 6, t2}; {1, 3, t1}, {2, 3, t1}, {3, 4, t1}),n1 + 1 ≤ t1 < t2 ≤ n}

Now, remove the stars S′ and S′′ from H3 ∖ n2KG6,2. It is denoted by [H3 ∖ n2KG6,2]∖ (S′ ∪ S′′ ). Consider
the subgraph ⟨E({a, b, t1}, {a, b, t2})⟩, n1+1 ≤ t1 < t2 ≤ n in [H3∖n2KG6,2]∖ (S′ ∪S′′ ). The degree of the vertices
{a, b, t1} in each subgraph ⟨E({a, b, t1}, {a, b, t2})⟩, n1 + 1 ≤ t1 < t2 ≤ n is exactly 6, see Figure 2.
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Figure 2: The subgraph ⟨E({a, b, 7}, {a, b, 8})⟩ of [H3 ∖ n2KG6,2] ∖ (S
′

∪ S
′′

)
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Hence each subgraph ⟨E({a, b, t1}, {a, b, t2})⟩, n1 + 1 ≤ t1 < t2 ≤ n has a claw-decomposition. Hence H3 is
claw-decomposable.

Lemma 2.5. The graph H4 is claw-decomposable.

Proof. Let n = 6m, where m ≥ 2 be a positive integer. For 1 ≤ t ≤ 6, let A4t={{a, b, t}|(a, b) ∈ P2(N2)}. Then
⟨A4t⟩ � KGn2,2, for each t. We write A4=

⋃
1≤t≤6

A4t and the graph H4=6KGn2,2 ⊕
⋃

(a,b)∈P2(N2)
⟨E({a, b, t1}, {a, b, t2})⟩,

1 ≤ t1 < t2 ≤ 6. By Theorem 1.1, the graph KGn2,2 is claw-decomposable. Now, we prove that the graph
H4 ∖ 6KGn2,2 has a claw-decomposition. If m = 2, then the graph H4 ∖ 6KGn2,2 � H3 ∖ n2KG6,2 has a
claw-decomposition, by Lemma 2.4. Now take m > 2. Consider the subgraph

⋃
(a,b)∈P2(N2)

⟨E({a, b, 1}, {a, b, 2})⟩.

We partition the vertex set of this subgraph as follows: For i=1,2, Pi={{a, b, i}|(a, b) ∈ P2({7, 8, . . . ,n − 6})},
Qi={{a, b, i}|a ∈ {7, 8, . . . ,n − 6}, b ∈ {n − 5, . . . ,n} and a < b} and Ri={{a, b, i}|(a, b) ∈ P2({n − 5, . . . ,n})}. We
write ⟨E({a, b, 1}, {a, b, 2})⟩=⟨E(P1,P2)⟩ ∪ ⟨E(P1,Q2)⟩ ∪ ⟨E(P1,R2)⟩ ∪ ⟨E(Q1,P2)⟩ ∪ ⟨E(Q1,Q2)⟩ ∪ ⟨E(Q1,R2)⟩ ∪
⟨E(R1,P2)⟩ ∪ ⟨E(R1,Q2)⟩ ∪ ⟨E(R1,R2)⟩.

The graph ⟨E(R1,P2)⟩ is a null graph. In ⟨E(R1,Q2)⟩, D⟨E(R1,Q2)⟩{a, b, 1}=2(n2−6), for all {a, b, 1} ∈ R1. Which
is a multiple of 3, and hence has a claw-decomposition in ⟨E(R1,Q2)⟩. The graph ⟨E(R1,R2)⟩ � H3 ∖ n2KG6,2
and hence has a claw-decomposition, by Lemma 2.4.

In ⟨E(Q1,P2)⟩, D⟨E(Q1,P2)⟩{a, b, 2}=12, for all {a, b, 2} ∈ P2. Hence ⟨E(Q1,P2)⟩ has a claw-decomposition. In
⟨E(Q1,Q2 ∪R2)⟩, D⟨E(Q1,Q2∪R2)⟩{a, b, 1}= (n2 − 7)+ 10=n2 + 3 and n2 ≡ 0(mod 6), for all {a, b, 1} ∈ Q1. Which is a
multiple of 3, and hence has a claw-decomposition in ⟨E(Q1,Q2 ∪ R2)⟩.

The graph ⟨E(P1,R2)⟩ is a null graph. In ⟨E(P1,Q2)⟩, D⟨E(P1,Q2)⟩{a, b, 1}=12, for all {a, b, 1} ∈ P1. Hence
⟨E(P1,Q2)⟩ has a claw-decomposition. Now, we prove that the graph ⟨E(P1,P2)⟩ has a claw-decomposition.
If m=3, then the graph ⟨E(P1,P2)⟩ �

⋃
(a′ ,b′ )∈{7,8,...,n−6}

⟨E({a′ , b′ , 1}, {a′ , b′ , 2})⟩ and hence has a claw-decomposition,

by Lemma 2.4. Hence if m=3, the graph ⟨E({a, b, 1}, {a, b, 2})⟩ has a claw-decomposition. If m = 4, then the
graph ⟨E(P1,P2)⟩ � ⟨E({a′ , b′ , 1}, {a′ , b′ , 2})⟩, where (a′ , b′ ) ∈ P2(N2) has a claw-decomposition, by previous
case as ⟨E({a′ , b′ , 1}, {a′ , b′ , 2})⟩ � H4 ∖ 6KG12,2 and n2=12. Assume that the graph has a claw-decomposition,
when 4 < m < k. Now we prove that the result is true for m = k. Note that, the graph ⟨E(P1,P2)⟩ �
⟨E({a′ , b′ , 1}, {a′ , b′ , 2})⟩, where (a′ , b′ ) ∈ P2(N2) (here n2=6(k−2)) has a claw-decomposition by our assumption
as ⟨E({a′ , b′ , 1}, {a′ , b′ , 2})⟩ � H4 ∖ 6KGn2−6,2 and n2 = 6(k − 2). Hence, the graph ⟨E(P1,P2)⟩ has a claw-
decomposition. Therefore, the graph ⟨E({a, b, 1}, {a, b, 2})⟩ has a claw-decomposition.

Similarly, each subgraph ⟨E({a, b, t1}, {a, b, t2})⟩, 1 ≤ t1 < t2 ≤ 6, (a, b) ∈ P2(N2) has a claw-decomposition.
Hence H4 is claw-decomposable.

Lemma 2.6. The graph H5 is claw-decomposable.

Proof. Let n = 6m, where m ≥ 2 be a positive integer. For n1+1 ≤ c ≤ n, we write H5=⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩.

First we prove that the subgraph ⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩ has a claw-decomposition, when c=n1 + 1.

Consider the five stars as follows: For x=c + 1 and y=c + 2, S1 : ({x, y, 1}; {1, 2, c}, {1, 3, c}, {1, 4, c}), S2 :
({x, y, 2}; {2, 3, c}, {2, 4, c}, {2, 5, c}), S3 : ({x, y, 3}; {3, 4, c}, {3, 5, c}, {3, 6, c}), S4 : ({x, y, 5}; {1, 5, c}, {4, 5, c}, {5, 6, c})
and S5 : ({x, y, 6}; {1, 6, c}, {2, 6, c}, {4, 6, c}). The stars Si, 1 ≤ i ≤ 5, where x=8, y=9 are shown in Figure 3.
In ⟨E(

⋃
(a,b)∈P2(N1)

{a, b, c},A4)⟩, the degree of each vertex of
⋃

(a,b)∈P2(N1)
{a, b, c} is [4(n2 − 1) + 2[

(n2
2
)
− (n2 − 1)]] +

1=(n2 − 1)(n2 + 2) + 1. Now remove the stars
⋃5

i=1 Si from ⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩ and it is denoted by

⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩ ∖

⋃5
i=1 Si.

In ⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩∖

⋃5
i=1 Si, the degree of each vertex of

⋃
(a,b)∈P2(N1)

{a, b, c} is reduced by one, which

is a multiple of 3. Hence there exists a claw-decomposition in ⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩ ∖

⋃5
i=1 Si.
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Figure 3: The stars Si, 1 ≤ i ≤ 5, where x=8, y=9

Similarly, we proceed the same process if n1 + 2 ≤ c ≤ n − 2, to get a claw-decomposition in
⟨E(

⋃
(a,b)∈P2(N1)

{a, b, c},A4)⟩. If n − 1 ≤ c ≤ n, then take

(x, y) =

(7,n) if c = n − 1
(7, 8) if c = n

in the above construction, to get a claw-decomposition in ⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩. Hence the graph

⟨E(
⋃

(a,b)∈P2(N1)
{a, b, c},A4)⟩, n1+1 ≤ c ≤ n has a claw-decomposition. Therefore, there exists a claw-decomposition

in H5.

Lemma 2.7. The graph H6 is claw-decomposable.

Proof. Let n = 6m, where m ≥ 2 be a positive integer. In ⟨E(A1,A3)⟩, D⟨E(A1,A3)⟩{a, b, c}=9n2, for all {a, b, c} ∈
A1. In ⟨E(A1,A4)⟩, D⟨E(A1,A4)⟩{a, b, c}= 3

(n2
2
)
, for all {a, b, c} ∈ A1. In H6, the degree of each vertex of A1 is

9n2 + 3
(n2

2
)
=3[3n2 +

(n2
2
)
]. Which is a multiple of 3, and hence has a claw-decomposition in H6.

Lemma 2.8. The graph H7 is claw-decomposable.

Proof. Let n = 6m, where m ≥ 2 be a positive integer. In ⟨E(A2,A3)⟩, D⟨E(A2,A3)⟩{a, b, c}=3
(n1

2
)
, for all {a, b, c} ∈ A2.

In ⟨E(A2,A4)⟩, D⟨E(A2,A4)⟩{a, b, c} =18(n2 − 3), for all {a, b, c} ∈ A2. In H7, the degree of each vertex of A2 is
3
(n1

2
)
+ 18(n2 − 3)=3[

(n1
2
)
+ 6(n2 − 3)]. Which is a multiple of 3, and hence has a claw-decomposition in H7.

Theorem 2.9. If n ≡ 0(mod 6), then GKGn,3,1 is claw-decomposable.
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Proof. Let n = 6m, where m ≥ 1 be a positive integer. Let n1 = 6 and n2=6(m − 1). We apply mathematical
induction on m, to prove the theorem. If m=1, then the graph GKG6,3,1 has a claw-decomposition, by
Lemma 2.1. Therefore, the result is true for m=1. Assume that the result is true for all 1 < m < k. Now, we
prove that the result is true for m=k. The graph H1 has a claw-decomposition, by Remark 2.3. The graph
H2 = GKGn2,3,1 � GKG6(k−1),3,1, has a claw-decomposition, by our assumption. The graphs H3, H4, H5, H6
and H7 have a claw-decomposition, by Lemma 2.4, 2.5, 2.6, 2.7 and 2.8 respectively. By remark 2.2, the
graph GKG6k,3,1 is claw-decomposable.

Theorem 2.10. For n > 6 and n ≡ 1, 2, 3, 4, 5(mod 6), the graph GKGn,3,1 is claw-decomposable.

Proof. Let A={1, 2, ...,n}, A1={{1, b, c}|(b, c) ∈ P2(A ∖ {1})} and A2={{a, b, c}|(a, b, c) ∈ P3(A ∖ {1})}. Then A1 and
A2 are disjoint subsets of V(GKGn,3,1) and V(GKGn,3,1)=A1∪A2. The graph GKGn,3,1=⟨A1⟩∪⟨A2⟩∪⟨E(A1,A2)⟩.
Observe that, the graph ⟨A1⟩ � KGn−1,2, and hence has a claw-decomposition, by Theorem 1.1.

Now, we prove that the graph ⟨E(A1,A2)⟩ has a claw-decomposition. If n ≡ 1, 3, 4(mod 6), the degree of
each vertex of A1 in ⟨E(A1,A2)⟩ is exactly 2

(n−3
2
)
, which is a multiple of 3. If n ≡ 2, 5(mod 6), the degree of

each vertex of A2 in ⟨E(A1,A2)⟩ is exactly 3(n − 4). Hence ⟨E(A1,A2)⟩ has a claw-decomposition.
Observe that, the graph ⟨A2⟩ � GKGn−1,3,1. If n ≡ 1(mod 6), the graph GKGn−1,3,1 has a claw-decomposition

by Theorem 2.9. Hence by the above arguments, the graph GKGn,3,1 has a claw-decomposition. If n ≡
2(mod 6), then ⟨A2⟩ has a claw-decomposition by the previous case. Hence the graph GKGn,3,1 has a
claw-decomposition. Similarly, if n ≡ 3, 4, 5(mod 6), then apply the above procedure recursively to get a
claw-decomposition in ⟨A2⟩. Thus GKGn,3,1 is claw-decomposable.

By combining Remark 2.3, Lemma 2.1 to 2.8, Theorem 2.9 and 2.10, we get the following:

Theorem 2.11. For all n ≥ 6, the Generalized Kneser Graph GKGn,3,1 is claw-decomposable.
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