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Several generalizations and variations of Chu-Vandermonde identity

Romeo Mestrovié?

?Maritime Faculty Kotor, University of Montenegro, Kotor, Montenegro

Abstract. In this paper we prove some combinatorial identities which can be considered as generaliza-
tions and variations of remarkable Chu-Vandermonde identity. These identities are proved by using an
elementary combinatorial-probabilistic approach to the expressions for the k-th moments (k = 1, 2) of some
particular cases of investigated discrete random variables by the author of this paper [16]. As applications

of one of these Chu-Vandermonde-type identities, we prove two congruences modulo p* and modulo p°,
where p > 5 is a prime number.

1. Introduction and Preliminaries

As noticed in [1, Section 1.1], the probabilistic method is a powerful tool in tackling many problems
in Discrete Mathematics (Combinatorics, Graph Theory, Number Theory and Combinatorial Geometry).
More recently, it has been applied in the development of efficient algorithmic techniques and in the study
of various computational problems.

In this paper we present three combinatorial identities whose proofs are based on a simple probability
technique consisting on calculations of k-th moments (k = 1,2) of some discrete random variables. Our
proofs consist of showing that these identities essentially compute the moments of order k (k = 1,2) of
the discrete random variable defined in [16]. Notice that this random variable is a generalization of the
complex-valued discrete random variable defined in [20] by providing a statistical analysis for efficient
detection of signal components when missing data samples are present (cf. [21]). On the other hand, the
author of this paper continued the research on the mentioned complex-valued discrete random variables
[16].

Notice that combinatorial identities and combinatorial problems appear in many areas of mathematics,
notably in Number Theory, Probability Theory, Topology, Geometry, Mathematical Optimization, Computer
Science, Ergodic Theory and Statistical Physics.

As usually, throughout our considerations we use the term “multiset” (often written as “set”) to mean
“a totality having possible multiplicities”; so that two (multi)sets will be counted as equal if and only if
they have the same elements with identical multiplicities. Let C and IR denote the fields of complex and
real numbers, respectively. For a given positive integer N, let My denote the collections of all multisets of
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the form
Oy =1{z1,20,...,28: 21,20,...,28 € C). (1)
Furthermore, denote by M the set consisting of all multisets of the form (1), i.e.,
M= My,
N=1
Following Definition 1.2 from [16], the random variable X(m, ®y) was generalized in [16] as follows.

Definition 1.1. ([16, Definition 1.1]) Let N and m be arbitrary nonnegative integers such that 1 < m < N. For
given not necessarily distinct complex numbers z1,zy, . .., zn, let ©n € My be a multiset defined by (1). Define the
discrete complex-valued random variable X(m, Oy) as

m
Prob | X(m, ®y) = sz]
i=1
1 m m
= NN tlltZI"'ltm}C{llzl"'/N}:Zzt{=ZZV1,‘}| (2)
G ) P P
_qlm, ... M)
)
where {n1,ny,...,ny) is an arbitrary fixed subset of {1,2,...,N} such that 1 < n; < np < --+ <y < N.

Moreover, q(ny,ny, ..., 0y) is the cardinality of a collection of all subsets {t1,ts,...,t,} of the set {1,2,..., N} such
that Y1y 2z = Y10z,

Notice that the above definition is correct taking into account that there are (Z )indexsets T c {1,2,...,N}
with m elements. Moreover, a very short, but not strongly exact version of Definition 1.1 is given as follows
(cf. [16, Definition 1.2']).

Definition 1.1'. Let N and m be arbitrary nonnegative integers such that 1 < m < N. For given not
necessarily distinct complex numbers zi, 2y, ...,2zn, let @y € My be a multiset defined by (1). Choose a
random subset S of size m (the so-called m-element subset) without replacement from the set {1,2,...,N}.
Then the complex-valued discrete random variable X(m, ®y) is defined as a sum

X(m,dy) = 2 Zn-

nes

It was proved in [16] the following result (cf. [16, proof of Theorem 2.1] as a particular case).

Theorem 1.2. ([16, the expressions (3) and (5) of Theorem 1.2]). Let N and m be positive integers such that N > 2
and 1 < m < N. Let Oy = {z1,22,...,2n} be any multiset with z1,z,,...,zy € C. Then the expected value of
the random variable X(m, ®n) from Definition 1.1 and the second moment of the random variable |X(m, Dy)| are
respectively given by

N
ELX(m, @) = 35 )70 )
i=1

and

N N
E[[X(m, Dx)P] = ﬁ (N=m) Y lzf+ (-1 Yz |. @
i=1 i=1
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Notice thatin the case when X (m, ®y) is a real-valued random variable (i.e., if in Definition 1.1z, z, ..., z,,
are real numbers), then a related expression for the third moment E[(X(m, ®y))*] of X(m, ®y) can be proved
similarly as the above expression (4) given in [16, Theorem 2.1].

It was indicated in [16, Section 3] that for some particular cases of sets ®(N) (given by (1)) and some
values m, the expressions (3) and (4) concerning the associated random variables X(m, ®y) yield some
combinatorial identities. For a comprehensive list of combinatorial identities, see [6] (also see [17] and [8,
Chapter 5]). Motivated by this fact, by using some other particular cases of the random variables X(m, )
from Definition 1.1, in the next section we deduce some new and some known combinatorial identities
which can be considered as generalizations of Chu-Vandermonde identity. Notice that Chu-Vandermonde
identity is often called Vandermonde’s identity or sometimes Vandermonde’s formula.

2. Chu-Vandermonde-type identities and their proofs
We start with the following identity.

Identity 2.1. Let ny,ny,...,ns be arbitrary positive integers and le z1,z,...,zs be arbitrary complex numbers
(s > 2). If m is a a positive integer such that m < Y,;_; n;, then

ni\[ns ng
Z (kl)(kz)"'(ks)(klzl +hozo + - + kozs)

):?:1 kj=m
kq<nqkp<ny,.ks<ns (5)
(X i\ m(Xi nizi)
m Yianm

where the summation ranges over all nonnegative integers k; (i =1,2,...,s) such that ki < ny,kp <ny, ... ks < ng
and Y}y ki = m.

Proof. Put }.i_; n; = N and consider the multiset @y defined by

Oy =1{z1,...,21,20, .-, 20, 0. . Zs, o+, Zs).
—_———— —— —_———
ny np ns
Now consider the random variable X(m, ®y) given by Definition 1.1. Then by the expression (3) of Theorem
1.2, we have
m(Y5_, niz;
B[X(m, N)] = B2 (6)
Zi:l n;

On the other hand, for each s-tuple (ki, kz, . . ., ks) of nonnegative integers ki, k», ..., ks such that ky < ny,kp <
Ny, ..., ks < ngand }.}_; ki = m, by (3), we get

_s,.— 1 Tllnz...ns
X(m, Dy) = ;‘klzl] - (ij;]l ;i (kl)(kz) (kS). ’

Then by the definition of the expectation of a complex-valued discrete random variable, from (7) we
find that

Prob

E[X(m, N)]
_ 1 ny\(nz ns
T i o

ky<ny kp<ny,..ks<ns

where the summation ranges over allnonnegativeintegersk; (i = 1,2, ...,s)such thatk; <ny,kp <np, ... ks <
nsand Y3, ki = m.
Finally, comparing the equalities (6) and (8), we immediately obtain (5). O
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Remark 2.2. Recently, by using functional equations of the generating function of certain class of polynomials, a new
Chu-Vandermonde-type identity (Vandermonde type convolution formula) is derived in [10, Theorem 5.4 of Section
5]. As a special case of this result, is the following identity [10, Corollary 5.5 of Section 5]:

i(k1+01—1)(k2+n—’01—1)_(k1+k2+n—1)
1 n—ou - n !
01:0

where ki > 1, ky > 1 and n are nonnegative integers. Another generalization of Chu-Vandermonde identity was
given in [9]. Moreover, two diferent interpretations of this identity are recently considered in [19], as an identity for

polynomials, and as an identity for infinite matrices.

Remark 2.3. IfPs_1(z) = Y5 nz Visa complex polynomial of the variable z of degree s — 1 with integer coefficients
ni, My, ..., ns >0 (ns #0), then taking z; = 2~ (i = 1,2,...,s) into the identity (5), it becomes

Z (Zi)(Zi) ... (Z:)(kl +hoz+ - +kzh

S ko=
):‘i:l ki=m
ky<nq kpsny,..ks<ns

m Zzs‘—1 n;
= — - P,_1(z ,
Zle ni( m s 1( )
where the summation ranges over all nonnegative integers k; (i =1,2,...,s) such that ki < ny,ky <ny,... ks < ng
and Y. ki = m.

Remark 2.4. As usually, if we use the convention that (;) = 0 for all nonnegative integers a and b such that b > a,
then the conditions ky < ny,ky < ny, ..., ks < ng which appear under the first sum ), - of (5) can be omitted.

A particular case of the Identity 2.1 is the Identity 2.5 given below, which is a well known “multino-
mial” generalization of the Vandermonde identity (often called Vandermonde convolution formula or Chu-
Vandermonde convolution) (see, e.g., [17]).

Identity 2.5. Let ny,1ny,...,1s (s > 2) be arbitrary positive integers. If m is a positive integer such that m < Zle n;,

then
n1\(n2 ns\ _ (Xioni
I LG5 ®

kl Snl,kzsﬂz,...,ks <ng

where the summation ranges over all nonnegative integers k; (i = 1,2,...,s) such that ki < ny,kp <ny, ..., ks < n
and Y. 1 ki = m.

Proof. Taking z1 =z, = -+ = z; = 1 into the equality (5), we immediately obtain the equality (9). O

Remark 2.6. There are well known algebraic and combinatorial proofs of the identity (9) (see, e.g., [25]). Notice also
that for s = 2, the identity (9) with ki = k, n1 = a and ny = b simplifies to the Chu-Vandermonde identity given by
(see, e.g., [2,p. 671)

o (a\( b a+b
Ll o
k=0

which also holds for any complex numbers a and b. Notice that the identity (10) is named after A.T. Vandermonde
(1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie (Chu Shih-Chieh) (see [3, pp.
59-60] for the history). This identity plays an important role in Combinatorics, Combinatorial Number Theory and
Probability Theory (see [8], [7] and [17]). As indicated in [17, p. 8], Vandermonde convolution formula is perhaps
the most widely used combinatorial identity. In the literature there are many proofs of this identity and its several
generalizations. A proof given in [23] was established by giving probabibilstic interpretations to the summands.
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Taking s = 2 and z1/z» = z (2> # 0) into (5), it simplifies to the following Vandermonde-type convolution
formula.

Identity 2.7. Let ny and n; be arbitrary positive integers and let z be any complex numbers. If m is a positive integer
such that m < nqy + ny, then

Z (il)(mni k)(kZ + (m _ k)) _ (1’11 + 1’12) 21’!’[(1’112 + 1”12) ' (11)

m ny+n
=0 1 2

Remark 2.8. Observe that takingz = 1, n1 = aand n, = binto (11), it immediately reduces to the Chu-Vandermonde
identity given by (10).

Substituting s = 3z1/z3 = zand zo/z3 = w (z3 # 0) into (5), it reduces to the following Vandermonde-type
convolution formula.

Identity 2.9. Let ny, ny and ns be arbitrary positive integers and let z and w be arbitrary complex numbers. If m is
a positive integer such that m < ny + ny + n, then

Z (7’[1)(112)( 3 )(k1Z + kzw + (m - k1 - kz))

k1 k2 m — k1 - kz
k20kp >0 (12)
_ [+ no + 13\ 2m(niz + nyw + ns)

m ny + 1y +ns

Taking z = w = 1/2 into (12), we obtain the following identity.

Identity 2.10. Let n1, ny and nz be arbitrary positive integers and let zy and z, be arbitrary complex numbers. If m
is a positive integer such that m < ny + n + n, then

ni\(nz ns
N 1 M

0<ky +kp<m
k120ky>0 (13)
_ 2m(ny +np + 2n3) (ny + np + 13

ny + 1y + n3 m )

Another special case of Identity 2.1 is given as follows.
Identity 2.11. Let s and I be arbitrary positive integers, and let m be a positive integer such that m < sl. Then

I\ l m(s+ 1) (sl
Y (kl)(kz)'"(ks)(kl +2p 4otk = —— (m) (14)

s L=
):‘izl ki=m
ky <Lkp<l,...ks<l

where the summation ranges over all nonnegative integers k; (i = 1,2,...,s) such that Y.y ki = mand ky < Ik, <
L... ks <L

Proof. Substituting z; = iforalli=1,2,...,sand n; = np, = --- = ng = [ into (5), it immediately reduces to
the equality (14). O

As a consequence of Identity 2.11, we obtain the following “supercongruence” closely related to the
remarkable Wolstenhlme's theorem which asserts that

2p-1) _ 3
(p—l)_l (mod p°)
for all primes p > 3 ([24]; also see [12, p. 3] and [14]).
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Congruence 2.12. Let p > 5 be a prime. Then for each positive integer s there holds

1
() (F (ki + 2k + sk = S o iy, (15)
k) 2
o kgks20
In particular, we have
AN ) (k244 sk) =0 (mod p. (16)
i, k1 J\ko ks

Ky kg ks 20

Proof. If we substitute [ = m = p into the equality (14), then its right hand side is equal to (SJrTl)p(S;) Since by

the classical Glaisher’s congruence [5, p. 21] (or more general, Ljunggren’s congruence [4]; also see [12, the
congruences (15), p. 7, (35) and (36), p. 11] (cf. [15, Section 3.3] and [13]), for any prime p > 5 and a positive
integer s, we have

(55) =s (mod p3),

and hence,

4
> p 5 (mod p*).

Substituting the above congruence into (14) with I = m = p, we immediately obtain the congruence (15).
Finally, reducing the modulus in (18) to (mod p), implies the congruence (16). O

(s+Dp (szﬂ) _s(s+1p

Let us recall that a prime p is said to be a Wolstenholme prime (see, e.g., [11] and [12, Section 7]; this is
Sloane’s sequence A088164 from [18]) if it satisfies the congruence

2p-1) _ 4
(p—1)=1 (mod p%).

It is well known (see [5, p. 21] and [12, p. 14]) that p is a Wolstenholme prime if and only if p divides he
numerator of the Bernoulli number B,_3. It can be shown that for any Wolstenholme prime, the congruence
(15) holds modulo p®, i.e., we have the following assertion.

Congruence 2.13. Let p be a Wolstenholme prime. Then for each positive integer s there holds

y (”)(’7)---(:)&1 +2ky 4o 4 5ky) = S(S;W (mod p°). (17)
Ii ki=r °

k1 )\k2

Ky K ks 20

Proof. Notice that by a classical result of Glaisher ([5, p. 21]; also see [12, the conguence (15), p. 7] and the
Jacobsthal’s congruence [4]), for any Wolstenholme prime p,

(S;f) =s (mod p4).

Then the rest of the proof is quite similar to that of the previous Congruence 2.12, and hence may be
omitted. O

Another consequence of Identity 2.1 is given as follows.
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Identity 2.14. Let n > 2 and s be fixed positive integers and let k = ky +kyn +- - -+ ksn®~! be the base n representation
of a positive integer k < n® (with 0 < ky,ky, ..., ks <n —1). If m is a positive integer such that m < s(n — 1), then

Y L T L A A
Z§_ki:”1 kl k2 ks

kls;t—l,kzgn—l,...,kgsn—l (18)
s (S — 1H-1
= 1)( w1 |

Proof. Setting ny = np = -+ =ng =n—1and z; = n"! (i = 1,2,...,s) into the identity (5) and using the

(s(n 1)) _ s(n— 1)(s(n 1)-1

identity ), immediately gives the identity (18) O

The binary case of Identity 2.14 can be reformulated as follows.

Corollary 2.15. Let s and m be positive integers such that m < s. Then the sum of all positive integers less than 2°
whose binary representation contains exactly m 1's is equal to (2° — 1)(;1’_11) (as usually, it is assumed that (8) =1).

Proof. Taking n = 2 into (21), we have

s—1
(i + 2 4o+ 271k = (2 - 1)( )
):15':1 kj=m " 1
Ky k... ks€l0,1)

O

Remark 2.16. Note that Corollary 2.15 can be easily proved by induction on s > 1 and also by using a simple
counting argument.

A quadratic analogue of Identity 2.1 is given as follows.

Identity 2.17. Let ny,ny,...,1s be arbitrary positive integers and let z1,z»,...,zs be arbitrary complex numbers
(s = 2). If mis a positive integer such that 2 < m < Y.}_, n;, then

ni\(n n
Z (ki)(k;) s (k§)|k121 +kozop+ -+ kSZs|2

S ko=
Zi:] kj=m

ky<ny ky<ng,..ks<ns (19)
_ Yiqgni—2 - 2 (Xiaami—2 - 2
—( 1 ;Tlilzd 1 I |;Tl12il,
where the summation ranges over all nonnegative integers k; (i = 1,2,...,s) such that ki < ny,kp <ny,... ks < ng
and Y;_ ki=m
Proof. Put }.;_; n; = N and as in the proof of Identity 2.1, consider the multiset @y defined by

Oy =1{z1,...,21,20, ..., 20, e} Zs, - -, Zs).
———— — N—
n Ny ns

Now consider the random variable X(m, @) given by Definition 1.1. Then by the expression (4) of Theorem
1.2, we have

ElIX(n, &y)F] = %(Z i + 1)|an| 0)
i=1
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On the other hand, for each s-tuple (k, kz, . . ., k;) of nonnegative integers ki, kz, .. ., ks such that ky < ny,kp <
Na,..., ks < ngand Y.;_; ki = m, by (2) we get

X(m, ®y) = Z k,-zi] = %(Zi)(:ﬁ) .. (Z) (1)
i=1 m

Then by definition of the expectation of a discrete random variable, from (21) we find that

Prob

E[|X(m, Dy)I’]
_ 1 m(m2) (s 2 (22)
= (Z) Zszk_"’ (kl )(kz) (ks)|k1Z1 + kzZz + + kSZS| ,

ky<ny kp<ng,..ks<ns

where the summation ranges over allnonnegativeintegersk; (i = 1,2, ...,s)such thatk; <ny,kp <np, ... ks <
nsand Y;_ ki = m.

Note that if m = }.;_; n; := N, then the sum on the left hand side of (19) consists of one term (with
ki = n1,ky = ny, ..., ks = ns) equals to | Y;_; niz;|?, which is (because of (ﬁ:i) = 0) identically equal to the the
right hand side of (19). Finally, if m < N —1, then comparing the equalities (20) and (22), using the identities

Ny _ N(N-1) [N-2 Ny _ N(N-1)
(m) = m(m-1) \m- )and (m) — m(N-m)

(ﬁ: :%), we immediately obtain (19). [
In particular, Identity 2.17 implies the following one.

Identity 2.18. Let s and I be arbitrary positive integers, and let m be a positive integer such that m < sl. Then

Z (kll)(klz) - (kls)(kl + 2Ky + -+ + sks)?

Zle kj=m
kq<lky<l,...ks<l (23)
_ m(s + 1)(3s%Im + 3slm + s — 4sm — sl — 2m) (sl
a 12(s1 — 1) m)

where the summation ranges over all nonnegative integers k; (i = 1,2,...,s) such that Y.;_y ki = mand ky < 1k, <
L... k<L

Proof. Substitutingz; = iforalli=1,2,...,sandny = ny = --- = n; = linto (19), and taking }.;_; i = s(s+1)/2
and i, i = s(s + 1)(2s + 1)/6, it immediately reduces to the identity (23). O

Furthermore, notice that by linearity, Identity 2.1 can be immediadely extended in matrix forms as
follows.

Identity 2.19. Denote by KM*N the vector space of all matrices over the field K with M rows and N columns (K = C
or K =Rand M,N > 1). Let ny,ny, ..., ns be arbitrary positive integers and let A1, A, ..., As € KMXN pe arbitrary
M x N matrices. If m is a positive integer such that m < Y., n;, then

ni\[ns ng
Z (kl)(kz)---(ks)(klAl +hoAg + - + kAy)

s -
):izl kj=m

ky<ny ky<ng,..ks<ns (24)
_ (Z,S-zl Tli) m(Yioy niAi)
m Yot ’

where the summation ranges over all nonnegative integersk; (i = 1,2,...,s)suchthatk; < ny,ky <ny, ... ks <ng
and Y. 1 ki = m.
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Identity 2.20. Denote by KN*N the algebra of all square matrices of order N (N > 1) over the field K = C or K = R.
Let n1,ny, ..., n, be arbitrary positive integers and let Aq, Ay, ..., As € KN*N pe arbitrary square matrices of order
N. If m is a positive integer such that m < Y.;_ n;, then

ny\[(nz N 2
Z (kl)(kz)”'(ks)(klAl +hoAs + - + kAy)

S ko=
):‘izl ki=m

ky<ny ky<ng,...ks<ns (25)

(P (B e

i=1

where the summation ranges over all nonnegative integers k; (i = 1,2,...,s) such that ky < ny,ky <ny,... ks < ng
and Y.;_ ki = m.

Identity 2.21. Denote by KM<N the vector space of all matrices over the field K with M rows and N columns (K = C
or K=Rand M,N > 1). Let A* € KN*M be the conjugate transpose (Hermitian transpose) of a matrix A € KM*N,
Let ny,ny, ..., n, be arbitrary positive integers and let A1, A, ..., As € KMXN pe arbitrary M X N matrices. If m is
a positive integer such that m < Y.:_, n;, then

L (- fmeades

):7.':1 k;=m

ky<nq kp<ny,...ks<ns (26)

=(Z?;;f"1_2)inAA +( )(ZnA)(ZnA

i=1

where the summation ranges over all nonnegative integersk; (i = 1,2,...,s)suchthatk; < ny,ky <ny, ... ks <ng
and Y;_ ki=m

3. Conclusion

We believe that it is possible to define and to investigate the multivariate random variable analogue
of the random variable X(m, ®y). Then it would be most likely be possible to generalize several obtained
identities in this paper.
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