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Inequalities for a rational function with restricted zeros
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Abstract. Recently, several authors have investigated the extremal problems for rational functions in the
supremum norm on the unit disk in the plane. These investigations primarily focus on Bernstein and Turán-
type norm estimates, which provide non-trivial generalizations and refinements of various polynomial
inequalities. In this paper, we focus on obtaining bounds for the derivative of rational functions in both
directions, which leads to more precise versions of certain polynomial inequalities for derivatives and polar
derivatives. Furthermore, our findings generalize several well-known results from the classical literature
on rational inequalities.

1. Introduction

Geometric function theory studies complex interactions between rational functions, going beyond sim-
ple polynomial comparisons and play a crucial role in approximation theory. These inequalities have been
extensively studied in a good number of recent papers, emphasizing their crucial role in approximation
theory (see, e.g., [5]-[8], [10], [13], [19]). In their investigations, the researchers have often used the unit disk
in the complex plane as a prototype for bounded domains while studying the extremal features of rational
functions and their derivatives. In order to determine the maximum modulus of an analytic function or its
derivative in the unit disk, one only needs to examine the values on the boundary due to the maximum
modulus principle. We denote by Pn the class of all complex polynomials P(z) :=

∑n
ν=0 cνzν of degree n, and

P′(z) is the derivative of P(z). If P ∈ Pn, the estimate of |P′(z)| on |z| = 1 is as follows:

max
|z|=1
|P′(z)| ≤ n max

|z|=1
|P(z)|. (1)

Inequality (1) is a classical result of Bernstein [3], who established it in 1912. One may easily notice that an
improvement in (1) is implied by the restriction on the zeros of P(z). It was conjectured by Erdös and later
proved by Lax [9] that if P ∈ Pn and P(z) , 0 in |z| < 1, then (1) can be replaced by

max
|z|=1
|P′(z)| ≤

n
2

max
|z|=1
|P(z)|. (2)
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The reverse inequality of (2) was established by Turán in 1939. Specifically, Turán [12] demonstrated that if
P ∈ Pn and P(z) has all its zeros within |z| ≤ 1, then

max
|z|=1
|P′(z)| ≥

n
2

max
|z|=1
|P(z)|. (3)

Recently, Ahangar and Shah [1] generalized (2) by proving that if P ∈ Pn and P(z) , 0 in |z| < k, k ≥ 1, then
for |z| = 1,

|P′(z)| ≤
n∥P∥

2

{
1 −

k − 1
k + 1

|P(z)|2

∥P∥2

}
, (4)

where ||P(z)|| = max
|z|=1
|P(z)|.

Equality in (4) holds for P(z) = (z + k)n, evaluated at z = 1.
Geometric function theory investigates extremal problems involving complex-variable functions while
expanding on classical polynomial inequalities in various ways. Another approach is to create rational
counterparts to classical polynomial inequalities, the most well-known examples being Bernstein and
Turán-type norm estimates. This type of research has a significant impact on the development of classical
inequalities and their practical applications, such as those in physical systems.
Let W(z) :=

∏n
ν=1(z − bν) and we consider the set of rational functions

Rn := Rn(b1, b2, ..., bn) =
{ P(z)

W(z)
: P ∈ Pn

}
.

The Blaschke product

B(z) :=
n∏
ν=1

(1 − bνz
z − bν

)
,

is defined for every collection of poles bν ∈ C, with |bν| , 1; ν = 1, 2, ...,n. Note that B(z) ∈ Rn and |B(z)| = 1
for |z| = 1.
Borwein and Erdélyi [4] (see also Li, Mohapatra, and Rodriguez [11] or Rusak [16]) provided a new
perspective on the inequalities (1)-(4) and extended them to rational functions with specified poles. For
r ∈ Rn, we have the following Bernstein-type inequality for rational functions, similar to (1):

|r′(z)| ≤ |B′(z)|max
|z|=1
|r(z)| for |z| = 1. (5)

The above inequality (5) was first mentioned in Rusak’s paper [16]. Subsequently, Borwein and Erdélyi [4]
rigorously proved it with refinements, and independently, Li, Mohapatra, and Rodriguez [11] arrived at the
same result. In the same paper (see also Borwein and Erdélyi [4]), Li, Mohapatra, and Rodriguez proved
that if r ∈ Rn and r(z) , 0 in |z| < 1, then for |z| = 1, we have

|r′(z)| ≤
|B′(z)|

2
max
|z|=1
|r(z)|, (6)

whereas, if r ∈ Rn has all its zeros in |z| ≤ 1, then for |z| = 1, we have

|r′(z)| ≥
|B′(z)|

2
max
|z|=1
|r(z)|. (7)

Since the establishment of inequalities (6) and (7), a large number of papers on rational approximation
theory have been published. As a generalization of (6), Aziz and Zargar [2] proved that if r ∈ Rn and
r(z) , 0 in |z| < k, k ≥ 1, then for |z| = 1, we have

|r′(z)| ≤
1
2

{
|B′(z)| − n

(
k − 1
k + 1

)
|r(z)|2

||r||2

}
||r(z)||, (8)
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where here and throughout ||r(z)|| = max
|z|=1
|r(z)|.

Wali and Shah [19] improved (7) and proved that if r ∈ Rn and r(z) has all its zeros in |z| ≤ 1, then for |z| = 1,
we have

max
|z|=1
|r′(z)| ≥

1
2

{
|B′(z)| +

( √
|cn| −

√
|c0|

√
|cn|

) }
|r(z)|. (9)

The growing interest of these inequalities in geometric function theory in the recent years is due to their
wide range of applications in various fields of science and engineering and discrete dynamical systems.
We refer the interested readers to the works listed in ([14], [15], [18], [20],) for the latest insights on rational
inequalities and their applications.
The purpose of this work is to prove various refinements of the above inequalities and related conclusions,
resulting in more precise versions of certain polynomial inequalities for derivatives and polar derivatives.
This framework unifies and simplifies the derivation of these generalizations, resulting in new and old
inequalities for a variety of polynomial operators.

2. Main results

It is common to look into the geometric properties of rational functions in general, specifically the norm
estimates of their derivatives on the unit disk. The primary goal here is to look into the extensions of
various results found in the literature on this subject. We will assume that all poles b1, b2, ..., bn, of the
function r(z) are located on |z| > 1. We start by refining (8). Furthermore, the findings strengthen some
existing inequalities.

Theorem 2.1. Let r(z) = P(z)
W(z) ∈ Rn, where P(z) = zm(c0 + c1z + · · · + cn−mzn−m), 0 ≤ m < n and r(z) have no zeros

in |z| < k, k ≥ 1 except a zero of order m at the origin. Then for all z on |z| = 1, we have

|r′(z)| ≤
||r(z)||

2

{
|B′(z)| −

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]
|r(z)|2

||r(z)||2

}
. (10)

The result is best possible and equality in (10) holds for

r(z) =
zm(z + k)n−m

(z − b)n and B(z) =
(

1 − bz
z − b

)n

, at z = 1, b > 1.

Taking m = 0, we get the following refinement of (8):

Corollary 2.2. Let r(z) = P(z)
W(z) ∈ Rn, where P(z) = c0 + c1z+ · · ·+ cnzn, and r(z) has no zeros in |z| < k, k ≥ 1. Then

for all z on |z| = 1, we have

|r′(z)| ≤
||r(z)||

2

{
|B′(z)| −

[
n(k − 1)

1 + k
+

2
1 + k

( √
|c0| −

√
kn|cn|

√
|c0|

)]
|r(z)|2

||r(z)||2

}
. (11)

The result is best possible and equality in (11) holds for

r(z) =
(z + k)n

(z − b)n and B(z) =
(

1 − bz
z − b

)n

, at z = 1, b > 1.

Remark 2.3. The bound achieved in (11) yields a consistently sharper bound compared to that derived
from (8), except in the case when all zeros of r(z) lie on the unit circle |z| = 1.

For k = 1 in (11), we get the following refinement of (6):
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Corollary 2.4. Let r(z) = P(z)
W(z) ∈ Rn, where P(z) = c0 + c1z+ · · ·+ cnzn, and r(z) has no zeros in |z| < 1. Then for all

z on |z| = 1, we have

|r′(z)| ≤
||r(z)||

2

{
|B′(z)| −

( √
|c0| −

√
|cn|

√
|c0|

)
|r(z)|2

||r(z)||2

}
.

Remark 2.5. If we assume that r(z) has a pole of order n at z = α with |α| > 1, then W(z) = (z − α)n and
B(z) =

(
1−αz
z−α

)n
.

With this substitution, we have

r(z) =
P(z)

(z − α)n ,

r′(z) =
( P′(z)

(z − α)n −
nP(z)

(z − α)n+1

)
and B′(z) =

n(1 − αz)n−1(|α|2 − 1)
(z − α)n+1 .

Using these observations in Theorem 2.1 and letting |α| → ∞, we get the following result:

Corollary 2.6. Let P(z) = zm(c0 + c1z + · · · + cn−mzn−m), 0 ≤ m < n and P(z) has no zeros in |z| < k, k ≥ 1 except a
zero of order m at the origin. Then for all z on |z| = 1, we have

|P′(z)| ≤
||P(z)||

2

{
n −

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]
|P(z)|2

||P(z)||2

}
. (12)

The result is best possible and equality in (12) holds for P(z) = zm(z + k)n−m, evaluated at z = 1.

Taking m = 0 in (12), we get the following refinement of (4):

Corollary 2.7. Let P ∈ Pn and P(z) has no zeros in |z| < k, k ≥ 1. Then for all z on |z| = 1, we have

|P′(z)| ≤
||P(z)||

2

{
n −

[
n(k − 1)

1 + k
+

2
1 + k

( √
|c0| −

√
kn|cn|

√
|c0|

)]
|P(z)|2

||P(z)||2

}
. (13)

The result is best possible and equality in (13) holds for P(z) = (z + k)n, evaluated at z = 1.

For k = 1 in (13), we get the following refinement of (2):

Corollary 2.8. Let P ∈ Pn and P(z) has no zeros in |z| < 1. Then for all z on |z| = 1, we have

|P′(z)| ≤
||P(z)||

2

{
n −

( √
|c0| −

√
|cn|

√
|c0|

)
|P(z)|2

||P(z)||2

}
.

Next, we prove the following extension of (9).

Theorem 2.9. Let r(z) = P(z)
W(z) ∈ Rn, where P(z) = zm(c0 + c1z+ · · ·+ cn−mzn−m), 0 ≤ m ≤ n and r(z) has all its zeros

in |z| ≤ k, k ≤ 1. Then for all z on |z| = 1, we have

max
|z|=1
|r′(z)| ≥

1
2

{
|B′(z)| +

n(1 − k) + 2mk
1 + k

+
2k

1 + k

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|r(z)|. (14)

The result is best possible and equality in (14) holds for

r(z) =
zm(z + k)n−m

(z − b)n and B(z) =
(

1 − bz
z − b

)n

, at z = 1, b > 1.
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Taking m = 0, we get the following generalization of (9):

Corollary 2.10. Let r(z) = P(z)
W(z) ∈ Rn, and r(z) has all its zeros in |z| ≤ k, k ≤ 1. Then for all z on |z| = 1, we have

max
|z|=1
|r′(z)| ≥

1
2

{
|B′(z)| +

n(1 − k)
1 + k

+
2k

1 + k

( √
kn|cn| −

√
|c0|

√
kn|cn|

) }
|r(z)|. (15)

The result is best possible and equality in (15) holds for

r(z) =
(z + k)n

(z − b)n and B(z) =
(

1 − bz
z − b

)n

, at z = 1, b > 1.

Remark 2.11. If we assume that r(z) has a pole of order n at z = α with |α| > 1, then W(z) = (z − α)n and
B(z) =

(
1−αz
z−α

)n
. With this substitution, we have

r′(z) =
(z − α)nP′(z) − n(z − α)n−1P(z)

(z − α)2n

= −
{nP(z) − (z − α)P′(z)

(z − α)n+1

}
= −

DαP(z)
(z − α)n+1 ,

where

DαP(z) := nP(z) − (z − α)P′(z),

is the polar derivative of P(z) with respect to the complex number α. It generalizes the ordinary derivative
in the following sense:

P′(z) = lim
α→∞

DαP(z)
α − z

,

uniformly with respect to z for |z| ≤ R, R > 0. Further, as in Remark 2.5, we have

B(z) =
(

1 − αz
z − α

)n

,

implying that

B′(z) =
n(1 − αz)n−1(|α|2 − 1)

(z − α)n+1 .

With this choice, from (14) for |z| = 1, we get

|DαP(z)| ≥
1
2

{n(|α|2 − 1)
|z − α|

+
n(1 − k) + 2mk

1 + k
|z − α|

+
2k

1 + k
|z − α|

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|P(z)|

≥
1
2

{n(|α| − 1)(|α| + 1)
|α| + 1

+
n(1 − k) + 2mk

1 + k
(|α| − 1)

+
2k(|α| − 1)

1 + k

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|P(z)|

=
|α| − 1

2

{
n +

n(1 − k) + 2mk
1 + k

+
2k

1 + k

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|P(z)|.
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Thus, from Theorem 2.9, we immediately get the following result for the polar derivative of polynomial
P(z):

Corollary 2.12. Let P(z) = zm(c0 + c1z + · · · + cn−mzn−m) and P(z) has all its zeros in |z| ≤ k, k ≤ 1 with m−fold
zeros at the origin. Then for all z on |z| = 1, and for every complex number α with |α| ≥ 1, we have

max
|z|=1
|DαP(z)| ≥ n

(
|α| − 1
1 + k

) {
1 +

k
n

(
m +

√
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

)}
|P(z)|. (16)

For k = 1 in (16), we get the following result which is a generalization of a result due to Wali and Shah [19].

Corollary 2.13. Let P(z) = zm(c0 + c1z + · · · + cn−mzn−m) and P(z) has all its zeros in |z| ≤ 1 with m−fold zeros at
the origin. Then for all z on |z| = 1, and for every complex number α with |α| ≥ 1, we have

max
|z|=1
|DαP(z)| ≥

(
|α| − 1

2

) {
n +m +

√
|cn−m| −

√
|c0|

√
|cn−m|

}
|P(z)|.

3. Auxiliary results

For the proofs of our results, we need the following lemmas.

Lemma 3.1. If P ∈ Pn and P(z) has no zeros in |z| < k, k ≥ 1, then for all z on |z| = 1 other than the zeros of P(z),
we have

Re
(zP′(z)

P(z)

)
≤

1
1 + k

{
n −

( √
|c0| −

√
kn|cn|

√
|c0|

)}
. (17)

Proof of Lemma 3.1. Without loss of generality, we will prove the above inequality with the assumption
that cn = 1, by the use of principle of mathematical induction on the degree n, and for this, we first verify
that the result holds for n = 1.
If n = 1, then P(z) = z − w with |w| ≥ k, k ≥ 1, and therefore for all z on |z| = 1 other than the zeros of P(z),
we have

Re
(zP′(z)

P(z)

)
= Re

( z
z − w

)
≤

1
1 + |w|

.

Since k ≥ 1 and |w| ≥ k, then it follows easily

1
1 + |w|

≤
1

1 + k

{
1 −

( √
|w| −

√
k

√
|w|

)}
.

So,

Re
(zP′(z)

P(z)

)
≤

1
1 + k

{
1 −

( √
|w| −

√
k

√
|w|

)}
.

which is nothing but (17) when n = 1.
Assume that the result holds for the polynomials of degree n. Let Q(z) = (z − w)P(z) with |w| ≥ k, k ≥ 1
where P(z) is a polynomial of degree n having all its zeros in |z| ≥ k, k ≥ 1. Then for z on |z| = 1 other than
the zeros of Q(z), we get by using induction hypothesis

Re
(zQ′(z)

Q(z)

)
= Re

( z
z − w

)
+ Re

(zP′(z)
P(z)

)
≤

1
1 + k

{
1 −

( √
|w| −

√
k

√
|w|

)}
+

1
1 + k

{
n −

( √
|c0| −

√
kn

√
|c0|

)}
.
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To complete the induction principle, we need to show that for all |z| = 1 other than the zeros of Q(z),

Re
(zQ′(z)

Q(z)

)
≤

1
1 + k

{
n + 1 −

( √
|w||c0| −

√

kn+1
√
|w||c0|

)}
. (18)

Clearly, the inequality (18) holds if

√
|w| −

√
k

√
|w|

+

√
|c0| −

√
kn

√
|c0|

≥

√
|w||c0| −

√

kn+1
√
|w||c0|

,

which is equivalent to

1 −

√
k
w
+

√
kn+1

|w||c0|
≥

√
kn

|c0|
,

which on simplification and using the fact that all the zeros of P(z) lie in |z| ≥ k, k ≥ 1 gives the desired
assertion. This proves Lemma 3.1 completely.

Lemma 3.2. If P(z) = zm(c0 + c1z + · · · + cn−mzn−m) is a polynomial of degree n having all its zeros in |z| ≥ k, k ≥ 1,
except a zero of order m ≥ 0 at the origin, then for all z on |z| = 1 other than the zeros of P(z), we have

Re
(zP′(z)

P(z)

)
≤

n
1 + k

+
k

1 + k

{
m −

1
k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)}
.

Proof of Lemma 3.2. Let P(z) = zmH(z), where H(z) = b0 + b1z · · · + bn−mzn−m, m ≥ 0, then for all z on |z| = 1
other than the zeros of P(z), we have ,

Re
(zP′(z)

P(z)

)
= m + Re

(zH′(z)
H(z)

)
. (19)

Since H(z) is a polynomial of degree n − m having no zero in |z| < k, k ≥ 1, therefore, on applying Lemma
3.1 to H(z) in (19), we get for all z on |z| = 1 other than the zeros of P(z), that

Re
(zP′(z)

P(z)

)
≤ m +

1
1 + k

{
n −m −

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)}
,

which is equivalent to

Re
(zP′(z)

P(z)

)
≤

n
1 + k

+
k

1 + k

{
m −

1
k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)}
.

This completes the proof of Lemma 3.2.

Lemma 3.3. If |z| = 1, then

Re
(

zW′(z)
W(z)

)
=

n − |B′(z)|
2

,

where W(z) =
∏n

v=1(z − bv).

The above lemma is due to Aziz and Zargar [2].
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Lemma 3.4. If r ∈ Rn, and r∗(z) = B(z)r
(

1
z

)
, then for |z| = 1, we have

|r′(z)| + |(r∗(z))′| ≤ |B′(z)|max
|z|=1
|r(z)|.

The above lemma is due to Li, Mohapatra and Rodriguez ([11], Theorem 2).

Lemma 3.5. If P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1, then for all z on |z| = 1 other than zeros of P(z), we
have

Re
(zP′(z)

P(z)

)
≥

1
1 + k

{
n + k

( √kn|cn| −
√
|c0|

√
kn|cn|

)}
. (20)

The above lemma is due to Singha and Chanam [17].

4. Proofs of the main results

Proof of Theorem 2.1. Recall that r ∈ Rn and r(z) has no zeros in |z| < k, k ≥ 1, except a zero of order

m, 0 ≤ m < n, at the origin. That is, r(z) = P(z)
W(z) where P(z) = zmH(z) and h(z) = cn−m

n−m∏
j=1

(z − z j), cn−m , 0,

|z j| ≥ k ≥ 1, j = 1, 2, ...,n −m. Suppose first k > 1, then for all z on |z| = 1, we have

Re
(

zr′(z)
r(z)

)
= Re

(
zP′(z)
P(z)

)
− Re

(
zW′(z)
W(z)

)
.

On using Lemma 3.2 and Lemma 3.3, we have for all z on |z| = 1, that

Re
(

zr′(z)
r(z)

)
≤

n
1 + k

+
k

1 + k

(
m −

1
k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

))
−

n − |B′(z)|
2

=
n +mk
1 + k

−
1

1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)
−

n − |B′(z)|
2

=
1
2

{
|B′(z)| −

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)] }
. (21)

If r∗(z) = B(z)r( 1
z ), then it easily follows for |z| = 1, that∣∣∣∣∣z(r∗(z))′

r(z)

∣∣∣∣∣2 = ∣∣∣∣∣|B′(z)| −
zr′(z)
r(z)

∣∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣∣z(r′(z))
r(z)

∣∣∣∣∣2 − 2|B′(z)|Re
(zr′(z)

r(z)

)
,

which on using (21) for |z| = 1, gives∣∣∣∣∣z(r∗(z))′

r(z)

∣∣∣∣∣2 ≥ |B′(z)|2 +
∣∣∣∣∣z(r′(z))

r(z)

∣∣∣∣∣2
− |B′(z)|

{
|B′(z)| −

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]}
=

∣∣∣∣∣z(r′(z))
r(z)

∣∣∣∣∣2 + |B′(z)|
[

n(k − 1) − 2mk
1 + k

+
2

1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]
.
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Equivalently for |z| = 1, we have

{
|(r′(z))|2 + |B′(z)||r(z)|2

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]} 1
2

≤ |r∗(z))′|,

which in combination with Lemma 3.4, gives

|(r′(z))|2 + |B′(z)||r(z)|2
[

n(k − 1) − 2mk
1 + k

+
2

1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]
≤ |B′(z)|2||r||2 + |r′(z)|2 − 2|B′(z)||r′(z)|||r||,

which after simplification gives

|r′(z)|

≤
||r(z)||

2

{
|B′(z) −

[
n(k − 1) − 2mk

1 + k
+

2
1 + k

( √
|c0| −

√
kn−m|cn−m|
√
|c0|

)]
|r(z)|2

||r(z)||2

}
, for |z| = 1. (22)

For k = 1, the above inequality (22) is trivially true for z with |z| = 1 such that r(z) = 0 by (6). This completes
the proof of Theorem 2.1.

Proof of Theorem 2.9. Since r ∈ Rn and r(z) has all its zeros in |z| ≤ k, k ≤ 1. That is, r(z) = P(z)
W(z) where

P(z) = zmH(z) and H(z) = cn−m

n−m∏
j=1

(z − z j), cn−m , 0, |z j| ≤ k ≤ 1, j = 1, 2, ...,n − m. By direct calculation, we

obtain for |z| = 1, other than the zeros of r(z), that

Re
(

zr′(z)
r(z)

)
= Re

(
zP′(z)
P(z)

)
− Re

(
zW′(z)
W(z)

)
= m + Re

(
zh′(z)
h(z)

)
− Re

(
zW′(z)
W(z)

)
.

On using Lemmas 3.3 and 3.5, we get

Re
(

zr′(z)
r(z)

)
≥ m +

1
1 + k

{
n −m + k

( √kn−m|cn−m| −
√
|c0|

√
kn−m|cn−m|

)}
−

(
n − |B′(z)|

2

)
=

1
2

{
|B′(z)| +

n(1 − k) + 2mk
1 + k

+
2k

1 + k

( √kn−m|cn−m| −
√
|c0|

√
kn−m|cn−m|

)}
,

for all z on |z| = 1, other than the zeros of r(z). Hence, we have

|r′(z)| ≥
1
2

{
|B′(z)| +

n(1 − k) + 2mk
1 + k

+
2k

1 + k

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|r(z)|, (23)

for all z on |z| = 1, other than the zeros of r(z). Since (23) is trivially true for z on |z| = 1 such that r(z) = 0. It
follows that for all z on |z| = 1,

max
|z|=1
|r′(z)| ≥

1
2

{
|B′(z)| +

n(1 − k) + 2mk
1 + k

+
2k

1 + k

( √
kn−m|cn−m| −

√
|c0|

√
kn−m|cn−m|

) }
|r(z)|,

which is (14), and this completes the proof of Theorem 2.9.
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Remark 4.1. In fact, excepting the case when all the zeros of P(z) lie on |z| = k, the bound obtained in
Corollary 2.7 is always sharper than the bound obtained in (4). As an illustration we consider the following
polynomial of degree 4 to compare the bounds.
Let P(z) = z4 + z3 + 2z2 + z + 81. Clearly the zeros of P(z) are −2.2724 ± 2.2107i and 1.7724 ± 2.2176i, which
all lie in |z| > 2. By taking k = 2, we obtain from (4) for |z| = 1, that

|P′(z)| ≤
n||P||

2

{
1 −

1
3
|P(z)|2

||P||2

}
,

while as Corollary 2.7 gives

|P′(z)| ≤
n||P||

2

{
1 −

23
54
|P(z)|2

||P||2

}
,

showing that (13) gives a considerable improvement over the bound obtained from (4).
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