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Abstract. We have introduced a new subclass of harmonic univalent functions denoted by Tk
H(α, γ, β),

which is a harmonic analogue to the functions class Wβ(α, γ) (see [4]). It is observed that there is an
analytic bridge between two classes Tk

H(α, γ, β) andWβ(α, γ). Various geometric properties such as sharp
coefficient bounds, growth theorem, sufficient condition, invariance property under convolution and convex
combination, radius of starlikeness, convexity and close-to-convexity of the partial sums of functions are
discussed.

1. Introduction and preliminaries

The study of planar harmonic mappings in the context of geometric functions theory is of interest after
the pioneering work of Clunie and Sheil-Small [7], and also for their wide applications. For example, by
making use of harmonic mapping on a suitable convex domain fluid flow problem has been solved in
[3, 8]. Note that if f is complex-valued harmonic, then its partial sum can be treated as an approximation
of f by the complex-valued harmonic polynomial. Thus, approximation of a univalent harmonic map by
a univalent harmonic polynomial might lead to new applications in fluid flow problems. In [14–17], the
idea of such works has been initiated by considering the sub-families of SH, sense-preserving univalent
harmonic maps. We refer [18, 20, 22–24] and the references therein that deal with some of the recent works.
Thus, it is interesting to study the various well-known subfamilies of SH. Let H be the class of complex-
valued harmonic function f in the open unit diskD normalized by f (0) = 0 = fz(0) − 1. Any function f in
H has the canonical representation of the form f = h + 1. Here, both h and 1 are analytic functions in D
and are called the analytic and co-analytic parts of f , respectively. In particular, for 1(z) = 0, the class H
reduces to the class A, consisting of analytic functions in D with f (0) = 0 and f ′(0) = 1. If f ∈ H then the
Jacobian J f (z) of f is defined by J f (z) = |h′(z)|2− |1′(z)|2 and we say f is sense preserving if J f (z) > 0 inD. Let
SH be the subclass ofH consisting of univalent and sense-preserving harmonic mappings inD. If 1(z) = 0
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inD then the class SH reduces to the sub class S ⊂ A, consisting of univalent analytic functions inD. Set
H0 := { f ∈ H : fz(0) = 0} and thus f ∈ H0 has of the form

f = h + 1, with h(z) = z +
∞∑

n=2

anzn and 1(z) =
∞∑

n=2

bnzn, z ∈ D. (1)

We also need the following definitions. SetH k
0 ⊂ H0 defined by

H
k
0 := { f = h + 1 ∈ H : h′(0) − 1 = 1′(0) = h′′(0) = h(k)(0) = 1(k)(0) = 0},

where k ≥ 1. Thus, each f ∈ H k
0 has the representation

f = h + 1, with h(z) = z +
∞∑

n=k+1

anzn and 1(z) =
∞∑

n=k+1

bnzn, z ∈ D. (2)

Clearly, for k = 1, we haveH1
0 ≡ H0. For p ≥ k + 1 and q ≥ k + 1, the (p, q)−th harmonic sections (or partial

sums) of f = h + 1 ∈ H k
0 is denoted by sp,q( f ) and is given by sp,q( f ) = sp(h) + sq(1),with

sp(h)(z) = z +
p∑

j=k+1

a jz j and sq(1)(z) =
q∑

j=k+1

b jz j, z ∈ D.

Following the standard notations, the subclass of SH for which fz(0) = 0 is denoted by S0
H. We further

denote KH, S∗H and CH as the sub-families of the function class SH consisting of the functions f such that
the image f (D) is a convex, starlike and close-to-convex region, respectively. For a detailed treatment of the
subject, we refer to the monograph by Duren[9]. Following important results due to Avci and Zlotkiewicz
[6], and Clunie and Sheil-Small [7] respectively are required for our investigation.

Lemma 1.1. Let f = h+1 ∈ H0 be of the form (1). If
∑
∞

n=2 n(|an|+ |bn|) ≤ 1 then f ∈ S∗H and if
∑
∞

n=2 n2(|an|+ |bn|) ≤ 1
then f ∈ KH.

Lemma 1.2. If f = h + 1 ∈ H0 and the function Fλ = h + λ1 is close-to-convex for all complex number λ with
|λ| = 1, then f is close-to-convex and univalent.

One of the classical problems in geometric function theory is to study the invariance properties of the
sections of the functions of certain subfamilies of analytic functions in D. Indeed, the partial sum of
univalent and/or starlike functions need not retain the same properties in the whole domain. Szegö [33]
proved that nth partial sums of univalent functions are univalent in the smaller disk of radius 1/4 and this
constant cannot be replaced by a larger number. Though, this problem is explored for various classical
subfamilies of S, finding the largest radius of the univalence of the sections of the functions in the family
S is still an open problem. For the more detailed survey on sections of univalent mappings found in
the survey article due to Szegö [34] and also in the recent survey by Ravichandran [27]. Even later on,
nth partial sums of functions have been addressed by many researchers in different contexts. Owa et al.
[21] systematically compute the radii of stalikeness and convexity of sp(h) for p = 3, 4 upon taking h(z) as
z/(1−z)2 and z/(1−z). Those results were validated by the authors numerically as well as graphically using
computer algebra. Notably, the classical Koebe function z/(1 − z)2 and z/(1 − z) act as extremals to various
problems in univalent function theory. The radius of convexity of the sections of the functions, which are
convex in a particular direction, is found in [19]. In [24] and [1], the nth partial sums of certain subfamilies
of the close-to-convex functions have been discussed. In [32], Srivatava et al. investigated the ratio of
a function related to the Hurwitz-Lerch zeta function and its sequence of partial sums in the context of
meromorphic functions. Analogue to the classical problems on sections of analytic univalent functions, the
problem of finding the radii of univalence, starlikeness, convexity, close-to-convexity, etc. for sp,q( f ), where
f ∈ SH (or S0

H) are also open. The harmonic analogue of the problems on partial sums initially found in the
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work of [14, 15]. For some notable literature in this direction, we refer [16–18, 20, 22–24]. It is also important
to note that q-calculus plays a significant role in geometric function theory because of its vast applications
in engineering and sciences. Though it has vast applications in classical univalent theory, not much is
explored in harmonic cases. Very recently, Rehman et al. [28] gave lower bounds for the ratio of some
normalized q-Mittag-Leffler function and their sequences of partial sums. In [2], the authors introduced
Janowski-type harmonic q-starlike functions associated with symmetrical points. In addition to the results
on partial sums, other geometric properties such as distortion, convolution, and radii of univalency are also
presented. Also see [13, 30, 31], wherein the authors have used q-calculus to study interesting geometric
aspects of univalent analytic and harmonic mappings. In the context of convolution, we recall the proof
of the famous Pólya-Schoenberg conjecture by Ruscheweyh and Sheil-Small, which guarantees that the
class of univalent convex functions is closed under convolution. They also showed that starlikeness and
close-to-convexity are preserved under convolution with convex univalent functions. However, a harmonic
analogue of this containment does not hold and has proved to be challenging. We recall that, for f1 = h1+11
and f2 = h2 + 12 inH , their convolution is defined by f1 ∗ f2 = h1 ∗ h2 + 11 ∗ 12.

In a recent paper Ali et al. [4] considered the functions classWβ(α, γ), consisting of normalized analytic
functions h ∈ A satisfying

ℜ

{
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

}
> 0,

where α ≥ 0, γ ≥ 0 and β < 1. In that paper, by making use of duality techniques, they have studied
the starlikeness of a certain integral operator. They also found the necessary and sufficient conditions that
assure the starlikeness of the generalized integral transform. With variants to this, few more results based
on duality and order of convexity found in [5, 35, 36]. In this sequel, we introduce the following harmonic
analogue of the closely related family studied in [4].

Definition 1.3. For α, γ ≥ 0, 0 ≤ β < 1 and k ≥ 1, a function f = h+ 1 ∈ H k
0 is said to be in the class Tk

H(α, γ, β) if
for every z ∈ D it satisfies the inequality

ℜ

(
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

)
>

∣∣∣∣(1 − α + 2γ)
1(z)

z
+ (α − 2γ)1′(z) + γz1′′(z)

∣∣∣∣.
It is observed that, the family Tk

H(α, γ, β) unifies several previously studied families of harmonic mappings.
For examples, Tk

H(α, 0, 0) ≡ Gk
H(α; r) (cf.[18]); T1

H(0, 0, β) ≡ 10
H(β) (cf.[17]); T1

H(1, 0, β) ≡ PH(β) (cf.[14, 25]);
T1

H(1 + 2γ, γ, β) ≡ W0
H(γ, β) (cf.[26]); T1

H(1 + 2γ, γ, 0) ≡ W0
H(γ) (cf.[11]), etc. Throughout we denote

T1
H(α, 0, β) ≡ G1

H(α, β) and Tk
H(α, γ, 0) ≡ Tk

H(α, γ).
The organisation of the paper is as follows. Section 2 established one-to-one correspondence between

the classWβ(α, γ) and its harmonic analogue Tk
H(α, γ, β). Various basic properties, such as sharp coefficient

estimates, growth theorem, and sufficient conditions for a function in the class Tk
H(α, γ, β) are also presented.

In section 3, it is shown that the family Tk
H(α, γ, β) is closed under convex combinations and convolutions.

The rest of the paper is devoted to studying the radii related problems in geometric function theory. In
particular, for different values of the parameters p and q, we obtain radii of the sections sp,q( f ) of functions
f in Tk

H(α, γ, β). This includes, radii of starlikeness, convexity and close-to-convexity of the partial sums of
functions. Relevant connections with known results are also pointed out.

2. Bounds on coefficients and growth estimates

The first result provides a one-to-one correspondence between the class Tk
H(α, γ, β) of harmonic mappings

and the classWβ(α, γ) of analytic functions.

Theorem 2.1. The function f = h + 1 is in Tk
H(α, γ, β) if and only if for each complex number ε with |ε| = 1, the

analytic function h + ε1 belongs toWβ(α, γ).
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Proof. Let f = h+1 ∈ Tk
H(α, γ, β) and write Fε = h+ ε1. Then by Definition 1.3 and for each complex number

εwith |ε| = 1, we have

ℜ

[
(1 − α + 2γ)

Fε(z)
z
+ (α − 2γ)F′ε(z) + γzF′′ε (z)

]
≥ ℜ

[
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z)

]
−

∣∣∣∣ε ((1 − α + 2γ)
1(z)

z
+ (α − 2γ)1′(z) + γz1′′(z)

) ∣∣∣∣ > β.
Therefore, Fε ∈ Wβ(α, γ). Conversely, suppose that Fε ∈ Wβ(α, γ). Then for z ∈ D, we have ℜ{(1 − α +
2γ)Fε(z)/z + (α − 2γ)F′ε(z) + γzF′′ε (z)} > β implies that

ℜ

[
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

]
> −ℜ

[
ε

{
(1 − α + 2γ)

1(z)
z
+ (α − 2γ)1′(z) + γz1′′(z)

}]
. (3)

Set A := (1 − α + 2γ)
1(z)

z
+ (α − 2γ)1′(z) + γz1′′(z), θ0 = arg{A}. Therefore, A = |A|eiθ0 . For each fixed z ∈ D

and arbitrarily chosen complex number ε, with |ε| = 1, that is, ε = ei(π−θ0), (3) becomes,

ℜ

[
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

]
> −ℜ

[
ei(π−θ0)

· A
]

= −ℜ
[
ei(π−θ0)

|A|eiθ0
]
= −ℜ(eiπ)|A| = |A|, z ∈ D.

This shows that f ∈ Tk
H(α, γ, β).

In the following two theorems, we establish sharp coefficient estimates for functions in the family Tk
H(α, γ, β).

Theorem 2.2. Let f = h + 1 ∈ Tk
H(α, γ, β) be of the form (2). Then for each n ≥ k + 1,

|bn| ≤
1 − β

1 + (n − 1)α + (n2 − 3n + 2)γ
. (4)

The estimate is the best possible.

Proof. Suppose that f = h + 1 ∈ Tk
H(α, γ, β). It is observed that

(1 − α + 2γ)
1(z)

z
+ (α − 2γ)1′(z) + γz1′′(z) =

∞∑
n=k+1

{
1 + (n − 1)α + (n2

− 3n + 2)γ
}
bnzn−1.

Now, upon use of series expansion of 1(z) with z = reiθ
∈ D, we get

1
2π

∫ 2π

0

[
(1 − α + 2γ)

1(reiθ)
reiθ + (α − 2γ)1′(reiθ) + γreiθ1′′(reiθ)

]
e−i(n−1)θdθ

=
{
1 + (n − 1)α + (n2

− 3n + 2)γ
}
bnrn−1.

A simple computation implies that
{
1 + (n − 1)α + (n2

− 3n + 2)γ
}
|bn|rn−1

≤ 1 − β. Taking r→ 1−, we obtain
the estimate (4). The bound is best possible for the function

f (z) = z +
1 − β

1 + (n − 1)α + (n2 − 3n + 2)γ
zn.

Indeed, since f ∈ Tk
H(α, γ, β), clearly |bn| =

1 − β
1 + (n − 1)α + (n2 − 3n + 2)γ

. This completes the proof.
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Theorem 2.3. Let f = h + 1 ∈ Tk
H(α, γ, β) be of the form (2) with k ≥ 1. Then for any n ≥ k + 1, we have

(i) |an| + |bn| ≤
2(1 − β)

1 + (n − 1)α + (n2 − 3n + 2)γ

(ii)
∣∣∣∣|an| − |bn|

∣∣∣∣ ≤ 2(1 − β)
1 + (n − 1)α + (n2 − 3n + 2)γ

(iii) |an| ≤
2(1 − β)

1 + (n − 1)α + (n2 − 3n + 2)γ
.

Equality holds true for the functions

fξ(z) = z +
∞∑
j=1

2(1 − β)
1 + jξα + jξ( jξ − 1)γ

z jξ+1, where ξ = k, k + 1, · · · , 2k − 1; z ∈ D. (5)

Proof. Let f = h + 1 ∈ Tk
H(α, γ, β). Then by Theorem 2.1, we have for each ε with |ε| = 1, Fε = h(z) +

ε1(z) ∈ Wβ(α, γ). This implies that, there exists a Carathéodory function p, which is of the form p(z) =
1+

∑
∞

n=k+1 pn−1zn−1 withℜ(p(z)) > 0 inD, such that (1− α+ 2γ)Fε/z+ (α− 2γ)F′ε + γzF′′ε = β+ (1− β)p(z).Or,
equivalently we have

(1 − α + 2γ)
h(z) + ε1(z)

z
+ (α − 2γ)(h(z) + ε1(z))′ + γz(h(z) + ε1(z))′′ = β + (1 − β)p(z).

Upon further simplification and comparing the coefficients of zn−1 in both the sides of the resulting equation
for all n ≥ k + 1, we get

(1 − β)pn−1 = (an + εbn)
(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
. (6)

Since |pn| ≤ 2 for n ≥ k + 1 and ε (|ε| = 1) is arbitrary, it follows from (6) that,

(|an| + |bn|)(1 + (n − 1)α + (n2
− 3n + 2)γ) ≤ 2(1 − β).

This completes the proof of (i). The proof of (ii) and (iii) immediately follows from (i) as we have
∣∣∣∣|an|− |bn|

∣∣∣∣ ≤
|an| + |bn| and |an| ≤ |an| + |bn|. Now to show the sharpness, upon considering the functions given by (5),
we have, ℜ{(1 − α + 2γ) fξ(z)/z + (α − 2γ) f ′ξ(z) + γz f ′′ξ (z) − β} > 0. Hence, fξ ∈ TξH(α, γ, β) ⊂ Tk

H(α, γ, β) for
ξ = k, k + 1, · · · , 2k − 1.When ξ = k, for n = jk + 1, j = 1, 2, · · · , we have

fn(z) = z +
∞∑

n=2

2(1 − β)
1 + (n − 1)α + (n − 1)(n − 2)γ

zn

is the extremal of (i). Indeed,

|an| =
2(1 − β)

1 + jkα + jk( jk − 1)γ
=

2(1 − β)
1 + (n − 1)α + (n2 − 3n + 2)γ

for all n = jk + 1, where j = 1, 2, · · · and ξ = k + 1, k + 2, · · · , (2k − 1).

The next result gives the variation of | f (z)| as z varies over D for the family Tk
H(α, γ, β). The proof directly

follows from Theorem 2.3 and hence is omitted.

Theorem 2.4. If f ∈ Tk
H(α, γ, β) is of the form (2), then

|z| −
∞∑

n=k+1

2(1 − β)|z|n

1 + (n − 1)α + (n − 1)(n − 2)γ
≤ | f (z)| ≤ |z| +

∞∑
n=k+1

2(1 − β)|z|n

1 + (n − 1)α + (n − 1)(n − 2)γ
. (7)
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The following result gives a sufficient condition for a function to be in the class Tk
H(α, γ, β).

Theorem 2.5. If f ∈ S0
H is of the form (2) for k ≥ 1 and satisfies the condition

∞∑
n=k+1

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
(|an| + |bn|) ≤ 1 − β, (8)

then f ∈ Tk
H(α, γ, β).

Proof. Suppose that f = h + 1 ∈ H k
0 is in the class S0

H and (8) holds true. Now, we find that

ℜ

[
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

]
=ℜ

[
1 +

∞∑
n=k+1

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
anzn−1

− β
]

≥ 1 − β −
∞∑

n=k+1

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
|an|.

Application of (8) yields

ℜ

[
(1 − α + 2γ)

h(z)
z
+ (α − 2γ)h′(z) + γzh′′(z) − β

]
≥

∞∑
n=k+1

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
|bn|

≥

∣∣∣∣(1 − α + 2γ)
1(z)

z
+ (α − 2γ)1′(z) + γz1′′(z)

∣∣∣∣.
This implies f ∈ Tk

H(α, γ, β).

3. Convex combinations and convolutions

In this section, we establish the results which show that the family is closed under convex combinations
and convolutions.

Theorem 3.1. The functions class T1
H(α, γ, β) is closed under convex combinations.

Proof. Let f j = h j + 1 j ∈ T1
H(α, γ, β), for j = 1, 2, · · · ,n and

∑n
j=1 t j = 1 (0 ≤ t j ≤ 1). Then

ℜ

[
(1 − α + 2γ)

h j(z)
z
+ (α − 2γ)h′j(z) + γzh′′j (z) − β

]
>

∣∣∣∣(1 − α + 2γ)
1 j(z)

z
+ (α − 2γ)1′j(z) + γz1′′j (z)

∣∣∣∣.
Therefore, the convex combination of f j’s is of the form

∑n
j=1 t j f j(z) =: f (z) = h(z) + 1(z), where h(z) =∑n

j=1 t jh j(z) and 1(z) =
∑n

j=1 t j1 j(z). Note that, both h and 1 are analytic in D and satisfy normalization
conditions h(0) = 1(0) = h′(0)− 1 = 1′(0) = 0. Subsequently, utilizing the definition of T1

H(α, γ, β) upon f , the
result follows.

Theorem 3.2. Let ϕ be in the classWβ(α, γ), thenℜ(ϕ(z)/z) > 1/(2 − β).

Proof. Let ϕ ∈ Wβ(α, γ). Therefore, it has the Taylor-Maclaurin series expansion of the form ϕ(z) =
z+

∑
∞

n=2 cnzn. Thus, by Definition, we haveℜ{(1− α+ 2γ)ϕ(z)/z+ (α− 2γ)ϕ′(z)+ γzϕ′′(z)} > β. This implies
that

ℜ

[
1 +

∞∑
n=2

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
cnzn−1

]
> β, z ∈ D.
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Further simplification yields

ℜ

[
1 +

1
2 − β

∞∑
n=2

(
1 + (n − 1)α + (n2

− 3n + 2)γ
)
cnzn−1

]
>

1
2 − β

, z ∈ D.

As 0 ≤ β < 1, we haveℜ (p(z)) > 1/(2 − β) ≥ 1/2 inD, where p(z) = 1 + {1/(2 − β)}
∑
∞

n=2{1 + (n − 1)α + (n2
−

3n+2)γ}cnzn−1. Set a sequence {sn}
∞

n=0 defined by s0 = 1 and sn−1 =
2 − β

1 + (n − 1)α + (n2 − 3n + 2)γ
, for all n ≥ 2,

also when n→∞, sn → 0. It is observed that sn−1 − sn ≥ sn − sn+1 gives α2 + (3n− 2)αγ− γ+ 3nγ2(n− 1) ≥ 0,
which is always true for each n ∈ N. This shows that {sn}

∞

n=0 is the sequence of non-negative numbers
which is a convex null sequence. Therefore, by [29, Lemma 1, pp-146], (also see [10]) the function q(z) =
1
2
+

∞∑
n=2

2 − β
1 + (n − 1)α + (n2 − 3n + 2)γ

zn−1 is analytic andℜ (q(z)) > 0 inD. Furthermore, we have

ϕ(z)
z
= 1 +

∞∑
n=2

cnzn−1 = p(z) ∗
(
1 +

∞∑
n=2

2 − β
1 + (n − 1)α + (n2 − 3n + 2)γ

zn−1
)
.

Let us consider m(z) = 1 +
∞∑

n=2

2 − β
1 + (n − 1)α + (n2 − 3n + 2)γ

zn−1. Then m(z) is analytic in D with m(0) = 1.

Also, as ℜ(q(z)) > 0, we have ℜ(m(z)) > 1/2. Therefore ℜ(m(z)) > 1/2 and ℜ(p(z)) > 1/(2 − β). From
application of [29, Lemma 4, pp-146], we conclude thatℜ

[
ϕ(z)/z

]
> 1/(2 − β) for z ∈ D. This completes the

proof.

Theorem 3.3. Let ϕ1 and ϕ2 be inWβ(α, γ). Then ϕ1 ∗ ϕ2 ∈ Wβ(α, γ).

Proof. Suppose that ϕ1(z) = z +
∑
∞

n=2 cnzn and ϕ2(z) = z +
∑
∞

n=2 dnzn are members of Wβ(α, γ). Since

ϕ2 ∈ Wβ(α, γ), then by Theorem 3.2 we haveℜ
(
ϕ2(z)/z

)
> 1/(2 − β). Set ϕ(z) = (ϕ1 ∗ϕ2)(z) = z+

∑
∞

n=2 cndnzn.
Using the fact that zϕ′(z) = zϕ′1(z) ∗ ϕ2(z), we obtain

1
1 − β

[
(1 − α + 2γ)

ϕ1(z)
z
+ (α − 2γ)ϕ′1(z) + γzϕ′′1 (z) − β

]
∗
ϕ2(z)

z

=
1

1 − β

[
(1 − α + 2γ)

ϕ(z)
z
+ (α − 2γ)ϕ′(z) + γzϕ′′(z) − β

]
. (9)

Since ϕ1 ∈ Wβ(α, γ), then the expression in the square bracket of left hand side of (9) is positive. Further, by
Theorem 3.2, we haveℜ

(
ϕ2(z)/z

)
> 1/(2 − β). Thus, the phrase inside the square bracket of right hand side

of (9) is positive through the applications of [29, Lemma 4, pp-146] (also see [10]), and hence ϕ = ϕ1 ∗ ϕ2 is
inWβ(α, γ).

The next result follows from Theorem 3.2. Hence we state the result without proof.

Theorem 3.4. If f1 and f2 are in T1
H(α, γ, β) then f1 ∗ f2 is in T1

H(α, γ, β).

4. Radii of starlikeness and convexity of 10
H

(β) and G1
H

(α, β)

In this section, some radii related problem such as radius of starlikeness and radius of convexity for the
functions in both the classes 10

H(β) and G1
H(α, β) are obtained.

Theorem 4.1. Let f = h + 1 ∈ 10
H(β), where h and 1 are of the form (1). Then f is starlike in |z| < r1, where r1 is the

smallest positive root in (0, 1) of the equation

1 − 6r + 3r2 + 4rβ − 2r2β = 0. (10)
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Proof. Given that f = h+ 1 ∈ 10
H(β). For 0 < r < 1, let fr(z) = r−1 f (rz) = r−1h(rz)+ r−11(rz). Therefore, we have

fr(z) = z +
∞∑

n=2

anrn−1zn +

∞∑
n=2

bnrn−1zn, z ∈ D. (11)

Let us consider

P =
∞∑

n=2

n(|an| + |bn|)rn−1. (12)

To prove 10
H(β) is starlike, we will make use of Lemma 1.1. That means we will show that 1 − P ≥ 0 for

r < r1. In fact, using Theorem 2.3, we have

1 − P ≥ 1 −
∞∑

n=2

2(1 − β)nrn−1 = 1 − 2(1 − β)
2r − r2

(1 − r)2 .

Therefore, 1 − P ≥ 0 for r < r1, whenever r1 is the smallest positive root in (0, 1) of (10). More precisely,
solving (10) we get f is starlike if |z| < r1, where r1 = 1 − (

√
4β2 − 10β + 6)/(3 − 2β).

Taking β = 0 in Theorem 4.1, we have the following.

Corollary 4.2. Let f = h + 1 ∈ 10
H, where h and 1 have the form (1). Then f is starlike in |z| < r1 ≈ 0.1835034191.

Theorem 4.3. Let f = h + 1 ∈ G1
H(α, β) with α > 0, where h and 1 are of the form (1). Then f is starlike in |z| < r2,

where r2 is the smallest positive root in (0, 1) of the equation

r
1 − r

+ r
(
1 −

1
α

) ∫ 1

0

u
1
α

1 − ru
du =

α
2(1 − β)

. (13)

Proof. Let f = h+ 1 ∈ G1
H(α, β) with α > 0. Following the proof of Theorem 4.1 and Lemma 1.1, it suffices to

show that P ≤ 1 for r < r2. In fact, we observe that for α > 0, the coefficient inequalities from Theorem 2.3
and (12) gives

P ≤ 2(1 − β)
∞∑

n=2

nrn−1

1 + (n − 1)α
≤

2(1 − β)
α

(
r1− 1

α

∞∑
n=2

∫ r

0
tn−2+ 1

α dt
)′

=
2(1 − β)
α

(
r1− 1

α

∫ r

0
t

1
α

∞∑
n=2

tn−2dt
)′
≤

2(1 − β)
α

[
r1− 1

α
r

1
α

1 − r
+

(
1 −

1
α

)
r−

1
α

∫ r

0

t
1
α

1 − t
dt

]
.

Further, substituting t = ru, the above inequality gives

P ≤
2(1 − β)
α

[ r
1 − r

+ r
(
1 −

1
α

) ∫ 1

0

u
1
α

1 − ru
du

]
.

If r < r2, r2 ∈ (0, 1), then P ≤ 1, where r2 is a root of (13). This completes the proof.

Theorem 4.4. Let f = h + 1 ∈ 10
H(β), where h and 1 are of the form (1). Then f is convex in |z| < r3, where r3 is a

unique root in (0, 1) of the equation

1 − (11 − 8β)r + 3(3 − 2β)r2
− (3 − 2β)r3 = 0. (14)
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Proof. For 0 < r < 1, let fr(z) as given in (11) and set Q =
∞∑

n=2

n2(|an| + |bn|)rn−1. Therefore, by Lemma 1.1, it is

sufficient to show that Q ≤ 1, that is, 1 −Q ≥ 0 for r < r3. In fact, from Theorem 2.3, we have

1 −Q ≥ 1 − 2(1 − β)
∞∑

n=2

n2rn−1
≥ 1 − 2(1 − β)

 ∞∑
n=2

nrn


′

= 1 − 2(1 − β)

r
∞∑

n=2

nrn−1


′

.

Which upon further simplifications, gives

1 −Q ≥ 1 − 2(1 − β)
[2r2
− r3

(1 − r)2

]′
= 1 − 2(1 − β)

( (1 − r)2(4r − 3r2) + 2(2r2
− r3)(1 − r)

(1 − r)4

)
≥

1 − 3r + 3r2
− r3
− 2(1 − β)(r3

− 3r2 + 4r)
(1 − r)3 .

Thus, 1 − Q ≥ 0 for all r < r3. This shows that f is convex in |z| < r3 where r3 is a unique root in (0, 1) of
(14).

Taking β = 0 in Theorem 4.4, we have the following.

Corollary 4.5. Let f = h + 1 ∈ 10
H, where h and 1 are of the form (1). Then f is convex in |z| < r3 ≈ 0.0986023.

Theorem 4.6. Let f = h+ 1 ∈ G1
H(α, β) with α > 0, 0 ≤ β < 1 where h and 1 have the form (1). Then f is convex in

|z| < r4, where r4 is the smallest positive root in (0, 1) of the equation

(3 − 1
α )r − (2 − 1

α )r2

(1 − r)2 + r
(
1 −

1
α

)2 ∫ 1

0

u
1
α

1 − ru
du =

α
2(1 − β)

. (15)

Proof. Using the steps as in Theorem 4.4, the coefficient inequalities and Lemma 1.1, the result follows.

5. Results on partial sums of functions in Tk
H

(α, γ, β)

In this section we derive the properties of the sections sp,q( f ) of functions f ∈ Tk
H(α, γ, β).

Theorem 5.1. Let f ∈ T1
H(α, γ, β) be of the form (1). Then for each q ≥ 2, s1,q( f ) ∈ T1

H(α, γ, β) for all |z| < 1/2.

Proof. Suppose that f = h + 1 ∈ T1
H(α, γ, β). Therefore, the corresponding partial sum is given by

s1,q( f )(z) = s1(h)(z) + sq(1)(z) = z +
q∑

j=2

b jz j (z ∈ D).

Now, we have

ℜ

(
(1 − α + 2γ)

s1(h)(z)
z

+ (α − 2γ)s′1(h)(z) + γzs′′1 (h)(z) − β
)
= 1 − β. (16)

Application of Theorem 2.2 yields∣∣∣∣(1 − α + 2γ)
sq(1)(z)

z
+ (α − 2γ)s′q(1)(z) + γzs′′q (1)(z)

∣∣∣∣
=

∣∣∣∣(1 − α + 2γ)
1
z

q∑
j=2

b jz j + (α − 2γ)
q∑

j=2

jb jz j−1 + γ

q∑
j=2

j( j − 1)b jz j−1
∣∣∣∣

≤

q∑
j=2

(1 − β)|z j−1
| ≤ (1 − β)

|z|
1 − |z|

< 1 − β, (17)

for all |z| < 1/2. Thus, from (16) and (17), we conclude that s1,q( f ) ∈ T1
H(α, γ, β) for |z| < 1/2.
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Theorem 5.2. Let f ∈ T1
H(α, γ, β) be of the form (1). Then for each complex number ε with |ε| = 1 and |z| < 1/2, we

have

ℜ

(
(1 − α + 2γ)

s3(h) + εs3(1)
z

+ (α − 2γ)(s3(h) + εs3(1))′ + γz(s3(h) + εs3(1))′′ − β
)
>

1
4
−
β

2
.

Proof. Set

Fε(z) := (1 − α + 2γ)
h(z) + ε1(z)

z
+ (α − 2γ)(h(z) + ε1(z))′ + γz(h(z) + ε1(z))′′. (18)

Therefore by Theorem 2.1, Fε ∈ Wβ(α, γ). This implies that ℜ(Fε(z)) > β ≥ 0. Further, as f ∈ H1
0 , so

h(0) = 0 = h′(0) − 1, 1(0) = 0 = 1′(0). Therefore, we have Fε(0) = 1. Now, from (18) it is a simple
exercise that Fε(z) = 1 +

∑
∞

j=1 c jz j, where c j = (1 + α j + j( j − 1)γ)(a j+1 + εb j+1), for j = 1, 2, · · · . Clearly,
s3(h)(z) = z + a2z2 + a3z3 and s3(1)(z) = b2z2 + b3z3. Thus, we have

(1 − α + 2γ)
s3(h) + εs3(1)

z
+ (α − 2γ)(s3(h) + εs3(1))′ + γz(s3(h) + εs3(1))′′ = 1 + c1z + c2z2.

Using [12, Problem 2.1.9, pp-35], we obtain that, |c2− c2
1/2| ≤ 2(1−β)− |c2

1|/2, implies |2c2− c2
1| ≤ 4(1−β)− |c2

1|.
Now, let 2c2 − c2

1 = c, so that c2 = c/2 + c2
1/2 and |c| ≤ 4(1 − β) − |c2

1|. Also, let c1z = r + is and
√

cz = η + iδ,
where r, s, η and δ are real numbers. Then for |z| < 1/2, we have r2 + s2 = |c1|

2
|z|2 ≤ |c1|

2/4, and

δ2 = |c||z|2 − η2
≤
|c|
4
− η2

≤
4(1 − β) − |c1|

2

4
− η2

≤ 1 − β − r2
− s2
− η2. (19)

Therefore, we have

ℜ(1 + c1z + c2z2
− β) =ℜ

(
1 + c1z +

c
2

z2 +
c2

1

2
z2

)
− β = 1 + r +

η2

2
−
δ2

2
+

r2

2
−

s2

2
− β

≥
1
2
+ r + η2 + r2 +

β

2
− β =

(
r +

1
2

)2

+
1
4
+ η2

−
β

2
≥

1
4
−
β

2
.

This completes the proof.

Theorem 5.3. Let f = h + 1 ∈ T1
H(α, γ, β) be of the form (1) and suppose that p and q satisfy one of the following

conditions: (i) 3 ≤ p < q; (ii) p > q ≥ 3. Then sp,q( f ) ∈ T1
H(α, γ, β) for |z| < r5 := min{R1,R2}, where R1,R2

respectively, are the smallest positive root in (0, 1) of the equations:

1 − β − 2r + (1 + β)r2
− 2(1 − β)rp(1 + r) = 0; (20)

1 − β − 2r + (1 + β)r2
− (1 − β)(1 + r)(rp + rq) = 0. (21)

Proof. Suppose that f = h + 1 ∈ T1
H(α, γ, β). We have sp,q( f )(z) = sp(h)(z) + sq(1)(z) for all z ∈ D. Let us

consider

σp(h)(z) =
∞∑

j=p+1

a jz j, σq(1)(z) =
∞∑

j=q+1

b jz j, z ∈ D,

and |ε| = 1. Then h = sp(h)+σp(h) and 1 = sq(1)+σq(1). To claim the result, it suffices to show that sp(h)+εsq(1)
is in the classWβ(α, γ) for each εwith |ε| = 1. Indeed, if f ∈ T1

H(α, γ, β), then

ℜ

(
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α − 2γ)(sp(h) + εsq(1))′ + γz(sp(h) + εsq(1))′′ − β
)

≥ ℜ

[
(1 − α + 2γ)

h + ε1
z
+ (α − 2γ)(h + ε1)′ + γz(h + ε1)′′

]
−

∣∣∣∣(1 − α + 2γ)
σp(h) + εσq(1)

z
+ (α − 2γ)(σp(h) + εσq(1))′ + γz(σp(h) + εσq(1))′′

∣∣∣∣ − β. (22)
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In the notion of subordination, we have

(1 − α + 2γ)
h + ε1

z
+ (α − 2γ)(h + ε1)′ + γz(h + ε1)′′ ≺

1 + z
1 − z

, (z ∈ D),

where the symbol ≺ denotes the usual subordination. This implies that

ℜ

(
(1 − α + 2γ)

h + ε1
z
+ (α − 2γ)(h + ε1)′ + γz(h + ε1)′′

)
≥

1 − |z|
1 + |z|

, (z ∈ D). (23)

We complete the proof by dividing it into the following cases.
Case (i): 3 ≤ p < q. Now by applications of Theorems 2.2 and 2.3, we have∣∣∣∣(1 − α + 2γ)

σp(h) + εσq(1)
z

+ (α − 2γ)(σp(h) + εσq(1))′ + γz(σp(h) + εσq(1))′′
∣∣∣∣

≤

q∑
j=p+1

2(1 − β)|z| j−1 +

∞∑
j=q+1

2(1 − β)|z| j−1 =

∞∑
j=p+1

2(1 − β)|z| j−1 =
2(1 − β)|z|p

1 − |z|
. (24)

Now from (22), using (23) and (24), we get

ℜ

(
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α − 2γ)(sp(h) + εsq(1))′ + γz(sp(h) + εsq(1))′′ − β
)

≥
1 − |z|
1 + |z|

−
2(1 − β)|z|p

1 − |z|
− β =

1 − β − 2|z| + (1 + β)|z|2 − 2(1 − β)|z|p(1 + |z|)
1 − |z|2

.

The right hand side of the above inequality is greater than or equal to 0 implies |z| = R1 is the smallest
positive root of (20).

Case (ii): p > q ≥ 3. Following the steps as in Case (i) along with applications of Theorems 2.2 and 2.3,
yields∣∣∣∣(1 − α + 2γ)

σp(h) + εσq(1)
z

+ (α − 2γ)(σp(h) + εσq(1))′ + γz(σp(h) + εσq(1))′′
∣∣∣∣

≤
2(1 − β)|z|p

1 − |z|
+

(1 − β)|z|q(1 − |z|p−q)
1 − |z|

=
(1 − β)(|z|p + |z|q)

1 − |z|
. (25)

From inequality (22) using inequalities (23) and (25), we obtain

ℜ

(
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α − 2γ)(sp(h) + εsq(1))′ + γz(sp(h) + εsq(1))′′ − β
)

≥
1 − |z|
1 + |z|

−
(1 − β)(|z|p + |z|q)

1 − |z|
− β, (26)

which is greater than equal to 0 for |z| = R2, where R2 is the root of (21). Hence, sp,q ∈ T1
H(α, γ, β) for

|z| < r5 := min{R1,R2}. This completes the proof.

For the case when β = 0, from Theorem 5.3, immediately we have

Corollary 5.4. Let f = h + 1 ∈ T1
H(α, γ) be of the form (1) and suppose that p and q satisfy one of the following

conditions: (i) 3 ≤ p < q; (ii) p > q ≥ 3. Then sp,q( f ) ∈ T1
H(α, γ) for |z| < 1/2.

It is an easy exercise to see the following results hold true.

Theorem 5.5. Let f = h + 1 ∈ T1
H(α, γ) be of the form (1). If p = 2 < q, then s2,q( f ) ∈ T1

H(α, γ) in |z| < r =
3 −
√

5
2

≈ 0.381966; if p ≥ 4 and q = 2, then sp,2( f ) ∈ T1
H(α, γ) in |z| < r = 0.433797.
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Theorem 5.6. Let f ∈ Tk
H(α, γ, β) be of the form (2) with k ≥ 1. Then for each q ≥ k + 1, s1,q( f ) ∈ Tk

H(α, γ, β), for
|z| < r6 where r6 is the unique root in (0, 1) of the equation rk + r − 1 = 0.

Theorem 5.7. Let f = h + 1 ∈ Tk
H(α, γ, β) be of the form (2) with k ≥ 2. Suppose that p and q satisfy

one of the following conditions: (i) p = q = k + 1; (ii) p = k + 1, q = k + 2; (iii) q > p ≥
[U] + 1; (iv) p > q ≥ [V] + 1; with U :=

{
ln(r6 − r6β − 2β − r2

6 − r2
6β) − ln(4 − 4β − 2r6 + 2r6β)

}
/ln r6, and

V :=
{
ln(r6 − 2β + 3r6β − r2

6 − r2
6β) − ln(2 + r6 − 2β − βr6 − r2

6 + r2
6β)

}
/ln r6. Here r6 is the unique smallest root

in (0, 1) of the equation rk + r − 1 = 0 and the symbol [U] means the maximum integer no more than U. Then
sp,q( f ) ∈ Tk

H(α, γ, β).

Proof. Let f = h + 1 ∈ Tk
H(α, γ, β) for α, γ ≥ 0. To justify our claim, we verify the statement for each of the

given conditions.
Case (i): p = q = k + 1. Clearly, we have sk+1(h) + εsk+1(1) = z + ak+1zk+1 + εbk+1zk+1. Therefore, suitable

applications of Theorem 2.3, it is observed that

ℜ

[
(1 − α + 2γ)

sk+1(h) + εsk+1(1)
z

+ (α − 2γ)(sk+1(h) + εsk+1(1))′ + γz(sk+1(h) + εsk+1(1))′′ − β
]

=ℜ
[
1 + (1 + kα + (k2

− k)γ)(ak+1 + εbk+1)zk
− β

]
≥ 1 − β −

(
1 + kα + (k2

− k)γ
)∣∣∣∣(ak+1 + εbk+1)zk

∣∣∣∣
≥ 1 − β − 2(1 − β)|z|k > (1 − β)(1 − 2rk

6) = (1 − β)(2r6 − 1) > 0

holds true for all |z| < r6, which is the unique root of rk + r − 1 = 0. Thus, sk+1,k+1( f ) ∈ Tk
H(α, γ, β).

Case (ii): p = k + 1, q = k + 2. Following the steps as in Case (i), we have

ℜ

[
(1 − α + 2γ)

sk+1(h) + εsk+2(1)
z

+ (α − 2γ)(sk+1(h) + εsk+2(1))′ + γz(sk+1(h) + εsk+2(1))′′ − β
]

=ℜ
[
(1 − α + 2γ)

sk+1(h) + εsk+1(1)
z

+ (α − 2γ)
(
sk+1(h) + εsk+1(1)

)′
+ γz

(
sk+1(h) + εsk+1(1)

)′′
+ ε

(
1 + (k + 1)α + (k2 + k)γ

)
bk+2zk+1

− β
]

≥ (1 − β)(1 − 2|z|k − |z|k+1) > (1 − β)(1 − 2rk
6 − rk+1

6 ) = (1 − β)(r2
6 + r6 − 1) > 0.

Indeed, the right hand side of the above inequality is positive follows from the fact that (1−β)(rk
6+r6−1) = 0

implies (1−β)rk
6 = (1−β)(1−r6). That means (1−β)(1−2rk

6−rk+1
6 ) = (1−β)(1−2+2r6−r6+r2

6) = (1−β)(r2
6+r6−1).

Hence, sk+1,k+2( f ) ∈ Tk
H(α, γ, β).

Case (iii): q > p ≥ [U] + 1. This implies that

p >
{
ln(r6 − r6β − 2β − r2

6 − r2
6β) − ln(4 − 4β − 2r6 + 2r6β)

}
/ln r6,

which upon simplification gives

2(1 − β)rp
6 < (1 − r6)

( r6

2 − r6
− β

)
. (27)

Let us consider

Fε(z) = (1 − α + 2γ)
h(z) + ε1(z)

z
+ (α − 2γ)(h(z) + ε1(z))′ + γz(h(z) + ε1(z))′′

= 1 +
∞∑

n=k+1

(an + εbn)
(
1 + α(n − 1) + γ(n2

− 3n + 2)
)
zn−1

= 1 + (1 + kα + (k2
− k)γ)(ak+1 + εbk+1)zk + · · · , z ∈ D.
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Therefore, Fε(0) = 1,ℜ(Fε(z)) > 0. Thus, application of [18, Lemma 2.6, pp-358] gives

ℜ

(
Fε(z)

)
≥

1 − |z|k

1 + |z|k
, z ∈ D. (28)

From the inequality (22), using (24), (27) and (28) we have

ℜ

[
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α − 2γ)(sp(h) + εsq(1))′ + γz(sp(h) + εsq(1))′′ − β
]

≥
1 − |z|k

1 + |z|k
−

2(1 − β)|z|p

1 − |z|
− β >

1 − rk
6

1 + rk
6

−
2rp

6

1 − r6
− β =

r6

2 − r6
−

2(1 − β)rp
6

1 − r6
− β > 0

holds true for all |z| < r6, which is the unique root of rk + r − 1 = 0. Sinceℜ
(
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α −

2γ)(sp(h)+ εsq(1))′ + γz(sp(h)+ εsq(1))′′
)

is harmonic, it assumes its minimum for |z| ≤ r6 on the circle |z| = r6.

Therefore, we have sp,q( f ) ∈ Tk
H(α, γ, β).

Case (iv): p > q ≥ [V] + 1. This implies that

q >
{
ln(r6 − 2β + 3r6β − r2

6 − r2
6β) − ln(2 + r6 − 2β − βr6 − r2

6 + r2
6β)

}
/ln r6,

which upon simplification gives

(1 − β)(1 + r6)rq
6 < (1 − r6)

( r6

2 − r6
− β

)
. (29)

Therefore, for |z| < r6, we have

|z|p + |z|q

1 − |z|
≤
|z|q+1 + |z|q

1 − |z|
<

rq
6(r6 + 1)

1 − r6
. (30)

Using (25), (28), (29) and (30) in (22) for |z| < r6, we see that

ℜ

[
(1 − α + 2γ)

sp(h) + εsq(1)
z

+ (α − 2γ)(sp(h) + εsq(1))′ + γz(sp(h) + εsq(1))′′ − β
]

≥
1 − |z|k

1 + |z|k
−

(1 − β)(|z|p + |z|q)
1 − |z|

− β ≥
1 − rk

6

1 + rk
6

−
(1 − β)rq

6(1 + r6)

1 − r6
− β

=
r6

2 − r6
−

(1 − β)rq
6(1 + r6)

1 − r6
− β > 0.

This shows that sp,q( f ) ∈ Tk
H(α, γ, β).

6. Radii of starlikeness and close-to-convexity of the partial sums

In this section, the value of the radius r is determined so that the partial sum s1,q( f ) is starlike and sp,q( f )
is close-to-convex in the disk |z| < r for the functions f ∈ Tk

H(α, γ, β).

Theorem 6.1. Let f = h + 1 ∈ Tk
H(α, γ, β) be of the form (2) with k ≥ 1, then for each q ≥ k + 1, s1,q( f ) is starlike in

|z| < r7, where r7 is the smallest positive root in (0, 1) of the equation

1 − 3r + 3r2
− r3 + (1 − β)((2k − 1)rk+1

− krk
− (k − 1)rk+2) + (1 − β)2(kr2k+1

− (k + 1)r2k) = 0. (31)
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Proof. By assumption, we have s1,q( f )(z) = s1(h)(z) + sq(1)(z) = z +
∑q

j=k+1 b jz j. Set H(z) = z and G(z) =∑q
j=k+1 b jz j. Then s1,q( f )(z) = H(z) + G(z). Now, since

ℜ

zH′(z) − zG′(z)

H(z) + G(z)

 =ℜ


z −
∑q

j=k+1 jb jz j

z +
∑q

j=k+1 b jz j

 and lim
z→0


z −

∑q
j=k+1 jb jz j

z +
∑q

j=k+1 b jz j

 = 1.

Therefore, it suffices to prove that

A :=ℜ
{
z −

q∑
j=k+1

jb jz j
} {

z +
q∑

j=k+1

b jz j
}
> 0 for |z| = r7.

In fact, application of Theorem 2.2, gives

A ≥ |z|2 −
q∑

n=k+1

(1 − β)(n − 1)|z|n+1
−

( q∑
n=k+1

(1 − β)|z|n
)( q∑

n=k+1

(1 − β)n|z|n
)
.

Further simplifications yields

A(1 − |z|)3

|z|2
≥ 1 − 3|z| + 3|z|2 − |z|3 + (1 − β)

(
(2k − 1)|z|k+1

− k|z|k − (k − 1)|z|k+2
)

+ (1 − β)2
(
k|z|2k+1

− (k + 1)|z|2k
)
.

Thus, for |z| = r7, where r7 is the smallest positive root in (0, 1) of (31), we have
A(1 − |z|)3

|z|2
≥ 0. Since s1,q( f )

is a sense preserving harmonic mapping, then s1,q( f ) is starlike in |z| < r7.

Theorem 6.2. Let f = h + 1 ∈ Tk
H(α, γ, β) be of the form (2) with k ≥ 1. Then for each q ≥ k + 2, s1,q( f ) is close-to-

convex and univalent in |z| < r8, where r8 is the smallest positive root in (0, 1) of 1−2r+r2+(1−β)[krk+1
−(k+1)rk] = 0.

Proof. We have s1,q( f ) = s1(h)(z) + sq(1)(z) . Since s′1(h)(0) = 1 > s′q(1)(0) = 0, to apply Lemma 1.2, we will
prove that for all ε with |ε| = 1, the function s1,q(F) = s1(h)(z) + εsq(1)(z) is close-to-convex and univalent in
|z| < r8. That means, it suffices to prove

ℜ{s′1,q(F)(z)} = 1 +ℜ
{ q∑

j=k+1

ε jb jz j−1
}
> 0 for |z| < r8.

This immediately follows from Theorem 2.2.

Theorem 6.3. Let f = h+ 1 ∈ Tk
H(α, β, γ) be of the form (2) with k ≥ 1. Then for each p ≥ k+ 1, q ≥ k+ 1, sp,q( f ) is

close-to-convex and univalent in |z| < r9, where r9 is the smallest positive root in (0, 1) of 1−2r+ r2+2(1−β)[krk+1
−

(k + 1)rk] = 0.

Proof. To prove that sp,q( f ) is close-to-convex and univalent in |z| < r9, by Lemma 1.2 it is enough to show
that for all εwith |ε| = 1, the function sp,q(F) = sp(h)(z)+ εsq(1)(z) is close-to-convex and univalent in |z| < r9.

In fact, it suffices to prove thatℜ
{
s′p,q(F)(z)

}
> 0, for |z| < r9. In deed, if p < q, then

ℜ{s′p,q(F)(z)} ≥ 1 −
p∑

j=k+1

| ja jz j−1
| −

q∑
j=k+1

| jb jz j−1
| ≥ 1 − 2(1 − β)

p∑
j=k+1

j|z| j−1 + (1 − β)
q∑

j=p+1

j|z| j−1

≥
1 − 2|z| + |z|2 + 2(1 − β)(k|z|k+1

− (k + 1)|z|k)
(1 − |z|)2 > 0,
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for |z| < r9. The case when p = q, we obtain

ℜ{s′p,q(F)(z)} = 1 −
p∑

j=k+1

j(|a j| + |b j|)|z| j−1
≥ 1 − 2(1 − β)

p∑
j=k+1

j|z| j−1

≥
1 − 2|z| + |z|2 + 2(1 − β)[k|z|k+1

− (k + 1)|z|k]
(1 − |z|)2 > 0,

for |z| < r9. Finally, for p > q, we have

ℜ{s′p,q(F)(z)} ≥ 1 − 2(1 − β)


q∑

j=k+1

j|z| j−1 +

p∑
j=q+1

j|z| j−1

 = 1 − 2(1 − β)
p∑

j=k+1

j|z| j−1 > 0,

for |z| < r9. Thus, sp,q( f )(z) is close-to-convex and univalent in |z| < r9.
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