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Abstract. In this paper, we consider bv(s)-metric spaces, introduced as a generalization of metric spaces,
rectangular metric spaces, b-metric spaces, rectangular b-metric spaces, and v-generalized metric spaces.
Next, we introduce the concept of strong bv(s)-metric spaces and explore some of their properties. We
provide proofs of the Banach contraction principle in strong bv(s)-metric spaces. Then, we define mutual
Reich contraction and present results that generalize many known results in fixed point theory. Finally, we
extend these results to a set of operators and prove that equilibrium is a global attractor for any scheme
presented in this paper which has numerous applications in dynamical systems.

1. Introduction

The metric space which most closely corresponds to our intuitive understanding of space is the 3-
dimensional Euclidean space. In fact, the notion of ”metric” is a generalization of the Euclidean metric
arising from the basic long known properties of the Euclidean distance.

A metric (distance) space suggests that given two points of the space there should be a real number that
measures the distance between them. Accordingly, to discuss a ”metric” it is natural to begin with a pair
(X, d), where X is a set and d : X×X→ R+ is a mapping of the cartesian product X×X into the nonnegative
realsR+. If d(x, y) is the distance between two points x, y ∈ X , it is natural to assume that for each x, y, z ∈ X,
distance d satisfied the following axioms:

d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles) (1)

d(x, y) = d(y, x) (symmetry) (2)

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality) (3)

Since the core concept is distance, it is logical to state that two metric spaces are equivalent if there exists
a (necessarily one-to-one) distance-preserving mapping from one to the other. These mappings are known
as isometries.
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The concepts of metric and metric space have been expanded in numerous ways. For a comprehensive
understanding of these extensions, one can refer to several authoritative sources, including the books
referenced as [8, 12], and [20]. Additionally, detailed overviews can be found in the survey papers [3] and
[13], which provide an in-depth examination of the various generalizations and their implications in the
field.

In papers [2] and [5], authors introduced the concept of b-metric spaces, which generalize traditional
metric spaces, and demonstrated the contraction principle within this framework. Recently, numerous
researchers have derived fixed point results for both single-valued and set-valued functions within the
context of b-metric spaces (see, for example, [4, 5, 16, 18, 19]).

Definition 1.1. ([2, 5]) Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X×X→ [0,∞)
is said to be a b-metric if and only if for all x, y, z ∈ X he following conditions are satisfied:

d(x, y) = 0 ⇐⇒ x = y, (4)

d(x, y) = d(y, x), (5)

d(x, z) ≤ s[d(x, y) + d(y, z)]. (6)

The pair (X, d) is called a b-metric space. Obviously, for s = 1 one obtains a metric on X.
Along with the inequality (6), called the s-relaxed triangle inequality, one considers also the s-relaxed

polygonal inequality

d(x0, xn) ≤ s [d(x0, x1) + d(x1, x2) + · · · + d(xn−1, xn)] ,

for all x0, x1, . . . , xn ∈ X and all n ∈N (see [2, 5, 6]).
Cobzas and Czerwik in [4] introduced the concept of strong b-metric spaces in the following way: A

mapping d : X × X→ [0,∞) s called a strong b-metric if it satisfies the conditions (4) and (5) and

d(x, y) ≤ d(x, z) + s · d(y, z), (7)

for some s ≥ 1 and all x, y, z ∈ X. Taking into account the symmetry of d, the inequality (7) is equivalent to

d(x, y) ≤ min{s · d(x, z) + d(y, z), d(x, z) + s · d(y, z)}, (8)

for all x, y, z ∈ X. Also (7) implies the s-relaxed triangle inequality.
In the 1960s, Gähler in [9] introduced the concept of a 2-metric space, which stands apart topologically

from other generalizations of metric spaces. Geometrically, d(x, y, z) represents the area of the triangle with
vertices x, y, and z in the universal set X (see [10]).

Definition 1.2. ([9]) A mapping d : X×X×X→ R+ is said to be a 2-metric on the set X if the following conditions
are satisfied:

1. For all x, y ∈ X (x , y), there exists a point z ∈ X such that d(x, y, z) , 0,
2. d(x, y, z) = 0 when at least two of x, y, z are equal,
3. d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X,
4. d(x, y, z) ≤ d(x, y,w) + d(x,w, z) + d(w, y, z) for all x, y, z,w ∈ X.

The structure of a 2-metric space is denoted by the ordered pair (X, d). Mustafa et al. in [17] proposed a
novel metric structure known as the b2-metric, which generalizes both the 2-metric and the b-metric. Their
work included the derivation of fixed point theorems under distinct contractive conditions within ordered
b2-metric spaces.

Definition 1.3. ([17]) A mapping d : X × X × X → R+ is said to be a b2-metric on the set X if following condition
are satisfied:
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1. For all x, y ∈ X (x , y), there exists a point z ∈ X such that d(x, y, z) , 0,
2. d(x, y, z) = 0 when at least two of x, y, z are equal,
3. d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X,
4. d(x, y, z) ≤ K

(
d(x, y,w) + d(x,w, z) + d(w, y, z)

)
for all x, y, z,w ∈ X, and for some K ≥ 1.

If d is a b2-metric on X, then the ordered pair (X, d,K) is called a b2-metric space with parameter K. It is clear
that each 2-metric is a b2-metric, and a b2-metric coincides with a 2-metric when the parameter K = 1.

In [11], authors also introduced the concept of strong b2-metric spaces in which many known properties
are ensured.

Definition 1.4. ([11])A mapping ds : X × X × X→ R+ is said to be a strong b2-metric on the set X if the following
conditions are satisfied:

1. For all x, y ∈ X (x , y), there exists a point z ∈ X such that ds(x, y, z) , 0;
2. ds(x, y, z) = 0 when at least two of x, y, z are equal;
3. ds(x, y, z) = ds(y, x, z) = ds(z, y, x) for all x, y, z ∈ X;
4. ds(x, y, z) ≤ ds(x, y,w) + ds(x,w, z) + K · ds(w, y, z) for all x, y, z,w ∈ X, where K ≥ 1 is a constant.

If ds is a strong b2-metric on X, then the ordered pair (X, ds,K) is called a strong b2-metric space with
parameter K. It is obvious that strong b2-metric is coincident with the 2-metric given in [9] for K = 1.

Mitrović and Radenović in [14] introduce the concept of bv(s)-metric space as follows.

Definition 1.5. Let X be a nonempty set, d : X ×X→ [0, 1), and let v ∈N. Then, (X, d) is said to be a bv(s)-metric
space if for all x, y ∈ X and for all distinct points u1,u2, . . . ,uv ∈ X, each of them different from x and y, the following
hold:

d(x, y) = 0 ⇐⇒ x = y (9)

d(x, y) = d(y, x) (10)

There exists a real number s ≥ 1 such that

d(x, y) ≤ s
[
d(x,u1) + d(u1,u2) + · · · + d(uv, y)

]
. (11)

Common fixed point theorems for a sequence of mappings have been studied by several authors for bv(s)
[7]. Reich [23] generalized Banach fixed point theorem for single-valued as well as multivalued mappings.
We are particularly interested for Banach, Kannan, and specially Reich type of mappings, which have been
the focus of intensive research by many authors. Some important fixed point results for those types of
mappings in the framework of complete metric spaces are proved in [14–16, 18, 21].

2. Main results

In this paper, we introduce for the first time in the literature concept of strong bv(s)-metric space as
follows.

Definition 2.1. Let X be a nonempty set, d : X × X → [0, 1), and let v ∈ N. Then, (X, d) is said to be a strong
bv(s)-metric space if for all x, y ∈ X and for all distinct points u1,u2, . . . ,uv ∈ X, each of them different from x and y,
the following hold:

d(x, y) = 0 ⇐⇒ x = y, (12)

d(x, y) = d(y, x). (13)

There exists a real number s ≥ 1 such that

d(x, y) ≤ d(x,u1) + d(u1,u2) + · · · + s · d(uv, y). (14)
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Constant s is the index of the strong bv(s) -metric space. Obviously, a bv(s)-metric space is a strong bv(s)-
metric space taking s = 1. As the inequality (14) implies (11), a strong bv(s)-metric space is a bv(s)-metric
space.

Definition 2.2. Let (X, ds) be a strong bv(s)-metric space, {xn} be a sequence in X and x ∈ X.

1. The sequence {xn} is said to be convergent in (X, ds) and converges to x, if for every ϵ > 0 there exists n0 ∈ N

such that ds(xn, x) < ϵ for all n > n0 and this fact is represented by lim
n→∞

xn = x.

2. The sequence {xn} is said to be Cauchy sequence in (X, ds) if for every ϵ > 0 there exists n0 ∈ N such that
ds(xn, xn+p) < ϵ for all n > n0, p > 0 or equivalently, if lim

n→∞
ds(xn, xn+p) = 0, for all p > 0.

3. (X, ds) is said to be a complete strong bv(s)-metric space if every Cauchy sequence in X converge to some x ∈ X.

The following two lemmas are new, but analogous to the corresponding lemmas from the [14], for the
bv(s)-metric space. Consequently, the proofs of these lemmas are short and very similar to the lemmas from
[14].

Lemma 2.3. Let (X, ds) be a strong bv(s)-metric space, T : X→ X, and let {xn} be a sequence in X defined by x0 ∈ X
and xn+1 = Txn, such that xn , xn+1, (n ≥ 0). Suppose that λ ∈ [0, 1) and

ds(xn+1, xn) ≤ λds(xn, xn−1), (15)

for all n ∈ N. Then, xn , xm for all distinct n,m ∈ N.

Lemma 2.4. Let (X, ds) be a strong bv(s)-metric space and let {xn} be a sequence in X such that xn (n ≥ 0) are all
different. Suppose that λ ∈ [0, 1) and c1, c2 are real nonnegative numbers such that

ds(xm, xn) ≤ λds(xm−1, xn−1) + c1λ
m + c2λ

n, (16)

for all m,n ∈ N. Then {xn} is Cauchy sequence.

In this paper, we give a proof of the Banach contraction principle in strong bv(s)-metric spaces.

Theorem 2.5. (The Banach contraction principle in strong bv(s)-metric spaces) Let (X, ds) be a complete strong
bv(s)-metric space and T : X→ X be a mapping satisfying

ds(Tx,Ty) ⩽ λds(x, y) (17)

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary point. We define a sequence {xn} by xn+1 = Txn for all n ⩾ 0.
Case I. If xn = xn+1 then xn is fixed point of T and the proof holds.
Case II. Suppose that xn , xn+1 for all n ⩾ 0. From Lemma 2.3 we have xn , xm, for all distinct n,m ∈ N.

(15) we obtain
ds(xm, xn) ⩽ λds(xm−1, xn−1).

From Lemma 2.4 we obtain that {xn} is a Cauchy sequence in X. As (X, ds) is complete space, there exists
x∗ ∈ X scuh that

lim
n→∞

xn = x∗.

Next we will proove that x∗ is the unique fixed point of T. For any n ∈ N the following holds:

ds(x∗,Tx∗) ⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + ds(xn+2, xn+3) + . . . + ds(xn+ν−2, xn+ν−1)
+ ds(xn+ν−1, xn+ν) + s · ds(xn+ν,Tx∗)
⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + ds(xn+2, xn+3) + . . . + ds(xn+ν−2, xn+ν−1)
+ ds(xn+ν−1, xn+ν) + s · ds(Txn+ν−1,Tx∗)
⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + ds(xn+2, xn+3) + . . . + ds(xn+ν−2, xn+ν−1)
+ ds(xn+ν−1, xn+ν) + sλ · ds(xn+ν−1, x∗)
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Since, lim
n→∞

ds(x∗, xn) = 0 and lim
n→∞

ds(xn, xn+1) = 0, we have

ds(x∗,Tx∗) = 0 i.e., Tx∗ = x∗.

Now, we will show that x∗ is unique. Let us assume that there is another fixed point x.

ds(x, x∗) = ds(Tx,Tx∗) ⩽ λds(x, x∗) < ds(x, x∗).

Since λ < 1, it must be ds(x, x∗) = 0, i.e., x = x∗.

Remark 2.6. If ν = 1 and s = 1 from Theorem 2.5 we obtain a Banach fixed point theorem in metric spaces.

Remark 2.7. If ν = 1 from Theorem 2.5 we obtain a Banach fixed point theorem. (See Theorem 12.4. in [12]).

The Banach contraction theorem is one of the most significant results in nonlinear analysis and applied
mathematics. Numerous algorithms and mathematical methods have been developed using this principle,
such as solutions to various types of equations: algebraic, differential, fractional differential equations, and
integral ([1],[21]). In this paper, we present generalization of the classical Reich contraction by involving
two operators on a metric space rather than a single map. We prove theorem regarding the existence of
common fixed points when mutual contraction relations exists between operators. Furthermore, we extend
this results to a family of operators. The following definition is a generalization of the Reich contraction
principle, named mutually Reich contraction principle.

Definition 2.8. Let T1,T2 : X→ X and (X, ds) be a strong bv(s)-metric space. T1, T2 are mutually Reich contractive
if exists α, β, γ ⩾ 0, α + β + γ < 1 and max{β, γ} < 1

s such that for all x, y ∈ X

ds(T1x,T2y) ⩽ αds(x, y) + βds(x,T1x) + γds(y,T2y). (18)

From [18] (Theorem 1.) we obtain the following variant in bv(s)-metric spaces.

Theorem 2.9. Let (X, ds) be a complete strong bv(s)-metric space and let T1,T2 : X→ X be a mapping satisfying:

ds(T1x,T2y) ⩽ αds(x, y) + βds(x,T1x) + γds(y,T2y),

for all x, y ∈ X, where α, β, γ are nonnegative constants with α + β + γ < 1 and max{β, γ} < 1
s . Then, T1, T2 have a

unique common fixed point.

Proof. Let x ∈ X. Let us define sequence

x0 = x, x1 = T1x0, x2 = T2x1, x3 = T1x2, x4 = T2x3, . . . .

Then, according to the definition of mutual Reich contractivity (18),

ds(x1, x2) = ds(T1x0,T2x1) ⩽ αds(x0, x1) + βds(x0,T1x0) + γds(x1,T2x1) = αds(x0, x1) + βds(x0, x1) + γds(x1, x2).

Therefore, we obtained ds(x1, x2) ⩽
α + β

1 − γ
ds(x0, x1). Consequently, we obtained ds(x2, x3) ⩽

α + γ

1 − β
ds(x1, x2).

Now, let

λ = max
{
α + β

1 − γ
,
α + γ

1 − β

}
< 1.

Thus, ds(xn, xn+1) ⩽ λnds(x0, x1). We show that {xn} is a Cauchy sequence. Suppose that xn , xn+1 for some
n ⩾ 0, then from Lemma 2.3 we obtain xn , xm for all distinct n,m ∈ N. Now,

ds(xm, xn) ⩽ αds(xm−1, xn−1) + βds(xm−1, xm) + γds(xn−1, xn)

⩽ αds(xm−1, xn−1) + βλm−1ds(x0, x1) + γλn−1ds(x0, x1)

= αds(xm−1, xn−1) + (βλm−1 + γλn−1)ds(x0, x1)
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Since
∞∑

k=0
λk is convergent, than {xn} is a Cauchy sequence. By completeness of (X, ds) there exists x∗ ∈ X such

that
lim
n→∞

xn = x∗.

We now show that x∗ is a common fixed point of T1 and T2. For instance, for n ∈ N, (n + ν) even,

ds(x∗,T1x∗) ⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + . . . + ds(xn+ν−2, xn+ν−1) + ds(xn+ν−1, xn+ν) + s · ds(xn+ν,T1x∗)
⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + . . . + ds(xn+ν−2, xn+ν−1) + ds(xn+ν−1, xn+ν) + s · ds(T2xn+ν−1,T1x∗)
⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + . . . + ds(xn+ν−1, xn+ν) + s(αds(xn+ν−1, x∗) + βds(xn+ν−1,T2xn+ν−1)
+ γds(x∗,T1x∗))
⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + . . . + ds(xn+ν−1, xn+ν) + s(αds(xn+ν−1, x∗) + βds(xn+ν−1, xn+ν) + γds(x∗,T1x∗))

(1 − sγ)ds(x∗,T1x∗) ⩽ ds(x∗, xn+1) + ds(xn+1, xn+2) + . . . + ds(xn+ν−1, xn+ν) + s(αds(xn+ν−1, x∗) + βds(xn+ν−1, xn+ν))

Since, lim
n→∞

ds(x∗, xn) = 0, lim
n→∞

ds(xn, xn+1) = 0, and max{β, γ} < 1
s , we have

ds(x∗,T1x∗) = 0 i.e., T1x∗ = x∗.

The same analysis can be performed for T2 taking an odd natural (n + ν). Now, we will show that x∗ is
unique. Let us assume that there is another common fixed point x.

ds(x, x∗) = ds(T1x,T2x∗) ⩽ αds(x, x∗) + βds(x,T1x) + γds(x∗,T2x∗) = αds(x, x∗).

Since α < 1, ds(x, x∗) = 0, i.e., x = x∗.

Remark 2.10. Taking T1 = T2 = T for bv(s)-metric space we obtain Theorem 2.1. from [14].

Remark 2.11. Taking ν = 1 for strong b-metric space we obtain Theorem 1. in [18].

Definition 2.12. Let T1,T2 : X → X and (X, ds) be a strong bv(s)-metric space. T1, T2 are mutually Banach
contractive if exists α ∈ [0, 1), such that for all x, y ∈ X

ds(T1x,T2y) ⩽ αds(x, y). (19)

Definition 2.13. Let T1,T2 : X → X and (X, ds) be a strong bv(s)-metric space. T1, T2 are mutually Kannan
contractive if exists β, γ ⩾ 0, β + γ < 1, such that for all x, y ∈ X

ds(T1x,T2y) ⩽ βds(x,T1x) + γds(y,T2y). (20)

Remark 2.14. The definition of a mutual Reich contraction (Definition 2.8) generalizes that of mutual Banach
contraction Definition 2.12 for β = 0, γ = 0 and mutual Kannan contraction Definition 2.13 by taking α = 0.

Theorem 2.15. Let (X, ds) be a complete strong bv(s)-metric space and T1,T2 : X → X are mutually Banach
contractive, then T1, T2 have a unique common fixed point.

Remark 2.16. A proof is analogue to the proof of Theorem 2.9 taking β = 0, γ = 0. If T1 = T2 = T in previous, we
obtain Theorem 2.5.

Theorem 2.17. Let (X, ds) be a complete strong bv(s)-metric space and T1,T2 : X → X are mutually Kannan
contractive, then T1, T2 have a unique common fixed point.

Remark 2.18. A proof is analogue to the proof of Theorem 2.9 taking α = 0.
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In the following results, we provide sufficient conditions for the existence of a common fixed point of a
set operators satisfying mutual relations of Reich type.

Definition 2.19. Let (X, ds) be a strong bv(s)-metric space and F = {Ti : X → X; i ∈ I}. Then, x∗ ∈ X is a fixed
point of F if Ti(x∗) = x∗, for all i ∈ I.

To investigate the behavior of sequences generated by a family of operators, we consider the iterative
scheme defined as for all k ⩾ 1, x0 ∈ X, Tik ∈ F , consider the iterative scheme

xk = Tik xk−1. (21)

This framework is highly popular and used within non-autonomous discrete dynamical systems. To
our knowledge, there is extensive literature on autonomous dynamical systems, specifically of the form
xk+1 = Txk. This model is very general and suitable for a wide range of algorithms that address significant
problems in applied mathematics.

Definition 2.20. Point x ∈ X is a global attractor for the scheme (21), if

lim
n→∞
ωn(x) = x∗,

for all x ∈ X, where ωn := Tin ◦ Tin−1 ◦ . . . ◦ Ti1 ◦ Ti1 .

Theorem 2.21. Let (X, ds) be a complete strong bv(s)-metric space and F = {Ti : X → X; i ∈ I}. If there exists
i0 ∈ I such that for all i ∈ I, Ti,Ti0 are mutually Reich contractive with constants αi, βi, γi such that supi βi < 1

s ,
supi γi < 1

s , then the following hold:

1. F has a unique fixes point x∗ ∈ X.
2. x∗ is the only fixed point of each Ti, for all i ∈ I.

Proof. According to Theorem 2.9 (for T1 = T2), since Ti0 is a Reich contraction, it has a unique fixed point
x∗ ∈ X,Ti0 (x∗) = x∗. Let us examine if this element is a fixed point of every Ti. The definition of mutual Reich
contraction 18 implies that

ds(Ti(x∗),Ti0 (x∗)) ⩽ βids(x∗,Ti(x∗)) + γids(x∗,Ti0 (x∗)),

then
ds(Ti(x∗), x∗) ⩽ βids(x∗,Ti(x∗)).

Since βi < 1, then ds(Ti(x∗), x∗) = 0 and x∗ is a fixed point of any Ti. Let us prove now that x∗ is the only fixed
point of Ti. If there were another fixed point, Ti(x) = x,

ds(x,Ti0 (x)) = ds(Ti(x),Ti0 (x)) ⩽ γids(x,Ti0 (x)),

and γi < 1, then x would be another fixed point of Ti0 and consequently x = x∗.

Theorem 2.22. Let (X, ds) be a complete strong bv(s)-metric space and F = {Ti : X → X; i ∈ I}. If there
exists i0 ∈ I such that for all i ∈ I, Ti,T j are mutually Reich contractive with constants αi j, βi j, γi j such that
max{sup βi j, supγi j} < 1

s , for any i, j ∈ I, then F has a unique fixed point x∗ that is a global attractor for any scheme
of type (21).

Proof. From Theorem 2.21, F has a unique fixed point x∗. For any x ∈ X, let us define

x0 = x, x1 = Ti1 (x0), x2 = Ti2 (x1), . . . , xn = Tin (xn−1).

Then,
ds(x1, x2) = ds(Ti1 (x0),Ti2 (x1)) ⩽ αi1i2 ds(x0, x1) + βi1i2 ds(x0,Ti1 (x0)) + γi1i2 ds(x1,Ti2 (x1))
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and
ds(x1, x2) ⩽ αi1i2 ds(x0, x1) + βi1i2 ds(x0, x1) + γi1i2 ds(x1, x2).

Let α := supαi j, β := sup βi j, γ := supγi j, then

ds(x1, x2) ⩽
α + β

1 − γ
ds(x0, x1).

Iteretively, just like in Theorem 2.9, we obtain

ds(xn, xn+1) ⩽ λnds(x0, x1), where λ := max
{
α + β

1 − γ
,
α + γ

1 − β

}
< 1.

Similar to the Theorem 2.9, we can get the required result.

3. Conclusion

In this paper, we introduced a new concept of a generalized metric space, named strong bv(s)-metric
space. First, we proved the existence and uniqueness of a fixed point using the Banach contraction. Then,
we introduced the concept of mutual Reich contraction between operators T1 and T2 defined on a strong
bv(s)-metric space, which generalizes the structure of a metric space. Mutual Reich contractivity extends
the notion of Reich contraction on a metric space from a single map to a pair of self-maps. When T1 = T2,
this reduces to the classical Reich maps. We provided sufficient conditions for the existence of a common
fixed point for T1 and T2 under mutual Reich contractivity. These results were then extended to a set
F of operators, regardless of cardinality (finite or infinite). Additionally, we studied the convergence of
iterative schemes of the form xk = Tik xk−1, where xk ∈ X and Tik ∈ F . Under certain conditions, the common
fixed point of F acts as a global attractor for these systems. In future research, the results of this study
can be expanded to establish fixed points under various contraction conditions, emphasizing particularly
significant insights into proximal point methods using optimization techniques, exploring an equilibrium
point that generalizes the classical fixed point.
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