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Abstract. This article is concerned with a class of nonsmooth multiobjective semi-infinite programming
problems with equilibrium constraints in the setting of Hadamard manifolds (abbreviated as, (NSIMPEC)).
We formulate Wolfe as well as Mond-Weir type dual problems related to (NSIMPEC) and derive several
duality results that relate (NSIMPEC) and the corresponding dual models. Non-trivial numerical examples
are incorporated to demonstrate the validity of the results established in this paper. To the best of our
knowledge, this is for the first time that Wolfe and Mond-Weir dual models have been considered for
(NSIMPEC) in the setting of Hadamard manifolds.

1. Introduction

In the last few decades, it has been observed that numerous real-life problems emerging in various areas
related to engineering, technology and science can be formulated in a more effective way on manifold setting
instead of Euclidean space, see [4, 15]. Further, extending and generalizing the methods of optimization
from the setting of Euclidean spaces to the setting of manifolds have several crucial advantages. For
instance, by appropriately using the notions of the Riemannian geometry, several constrained mathematical
optimization problems can be conveniently converted into unconstrained problems. Apart from this,
numerous non-convex optimization problems can be converted into convex problems by employing the
Riemannian geometry perspective (see, for instance, [25, 27]). Furthermore, it is a common observation that
numerous important constraints which naturally arise in certain mathematical programming problems
have a relative interior that can be viewed as Hadamard manifolds, for instance, the hypercube (0, 1)n

(see, for instance, [24]) endowed with the metric Z−2(I − Z)−2 = diag
(
z−2

1 (1 − z1)−2 , . . . , z−2
n (1 − zn)−2

)
and

the set containing every symmetric positive definite matrix Sn
++ (see, for instance, [20]) with the metric

− log det X are Hadamard manifolds. As a result, a wider range of mathematical programming problems
can be solved by formulating the problems in the framework of Riemannian and Hadamard manifolds.
In recent times, various other notions and concepts involved in mathematical programming have been
extended from Euclidean spaces to Riemannian and Hadamard manifolds by several authors; see, for
instance, [4, 23, 32, 33, 36, 37, 42–44].
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In theory of mathematical programming, an optimization problem accompanied by certain comple-
mentarity constraints or variational inequality constraints is referred to as a mathematical programming
problem with equilibrium constraints (in brief, (MPEC)). One of the first attempts in investigating such
optimization problems is due to Harker and Pang [13], who explored existence of efficient solutions for
(MPECs). Due to its immense scope of applicability in numerous fields of science, technology and engi-
neering (see, for instance, [28, 29]), (MPECs) have been studied by numerous authors in recent years. For
further details and updated survey of (MPEC) and its applications, we refer the readers to [9, 21, 31, 41]
and the references cited therein.

Multiobjective semi-infinite programming comprises of those optimization problems in which more
than one objective functions are optimized simultaneously over some feasible set that is determined by
infinitely many constraints. In case there is only one objective function, such problems reduce to a standard
semi-infinite programming problem (abbreviated as, (SIP)). These problems have wide applications in
various branches of mathematics, physics and engineering, see [7, 8, 11, 16] and the references cited therein.

Several regularity and optimality criteria for (MPEC) was investigated by Chen and Florian [6]. Ye [45]
studied necessary as well as sufficient criteria of optimality for (MPEC). Flegel and Kanzow [9] studied
Abadie-type and Slater-type constraint qualifications for (MPEC). First-order optimality criteria for (MPEC)
was derived by Flegel and Kanzow [10] by using Guignard constraint qualification. Optimality criteria
and several duality relations for (MPEC) were deduced by Singh and Mishra [31]. Optimality conditions
for multiobjective (MPEC) was explored by Ardali et al. [1] by using the notion of convexificators. Duality
models for (MPEC) were studied by Pandey and Mishra [22]. Duality for nonsmooth (MPEC) was explored
bu Guu et al. [12]. Recently, Treanţă et al. [33] studied optimality conditions for multiobjective (MPEC) on
Hadamard manifolds.

Motivated by the results derived in [6, 19, 31, 33, 34, 45], nonsmooth multiobjective semi-infinite pro-
gramming problems in the setting of Hadamard manifolds (abbreviated as, (NSIMPEC)) is investigated in
this paper. We formulate the Wolfe type and Mond-Weir type dual models related to (NSIMPEC). We derive
several duality results, namely, the weak duality, strong duality as well as strict converse duality results
relating (NSIMPEC) and the corresponding dual models. Non-trivial numerical examples are incorporated
to demonstrate the validity of results established in this paper.

The novelty and the contributions of the present paper are twofold. Firstly, the results that are derived
in this article generalize the corresponding results deduced by [34] on Hadamard manifolds, which is a
wider space, and for more general category of mathematical programming problems, that is, (NSIMPEC).
Secondly, the results derived by [12, 22, 31] are extended to the setting of semi-infinite optimization problems
on Hadamard manifolds by the results that are deduced in this article. To the best of our knowledge, this
is for the first time that duality models for (NSIMPEC) have been investigated in the setting of Hadamard
manifolds.

The remaining portion of the article unfolds in the following manner. We recall some basic definitions
and mathematical preliminaries that will be helpful in Section 2. We formulate (NSIMPEC) in the Hadamard
manifold setting and introduce (ACQ) for (NSIMPEC) in Section 3. Further, we present KKT type necessary
criteria of optimality employing (ACQ). In Section 4, we formulate Wolfe and Mond-Weir dual problems
related to (NSIMPEC) and derive several duality results relating (NSIMPEC) and the corresponding dual
models. In Section 5, we draw conclusions to our work in this article and further discuss some future
research directions.

2. Notations and mathematical preliminaries

We shall use the standard symbolsN and Rn to signify the set consisting of every natural number and
the Euclidean space having dimension n, respectively. The non-negative orthant of Rn, denoted by Rn

+, is
defined as:

Rn
+ := {(z1, z2, ..., zn) : z j ≥ 0, ∀ j = 1, 2, ...,n}.
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LetA be any arbitrary infinite set. The vector space denoted by the symbol R|A| is the set given by:

R|A| := {(ηl)l∈A : ηl = 0 for every l ∈ A, except ηl , 0 for finitely many l ∈ A}.

We use the symbol R|A|+ to denote the positive cone of the linear space R|A|. That is, set theoretically, we
have

R|A|+ := {η = (ηl)l∈A ∈ R
|A| : ηl ≥ 0, ∀l ∈ A}.

Let c, d ∈ Rn be an arbitrary pair of vectors inRn. We shall use the following notation for inequalities in the
sequel:

c ≺ d⇐⇒ c j < d j, ∀ j = 1, 2, . . . ,n.

c ⪯ d⇐⇒

c j ≤ d j, ∀ j = 1, 2, . . . ,n,
cl < dl, for at least one l ∈ {1, 2, . . . ,n}.

Let us consider any subset B ⊂ Rn. The linear hull, the closure and the convex hull of the set B in Rn is
signified by the symbols span(B), cl(B) and co(B), respectively. Further, the notation pos(B) is employed
to signify the positive conic hull of B. The following sets will be employed in the sequel (see, [14]):

B
− := {u ∈ Rn : uTv ≤ 0, ∀v ∈ B},

B
s := {u ∈ Rn : uTv < 0, ∀v ∈ B},

B
⊥ := {u ∈ Rn : uTv = 0, ∀v ∈ B}.

Let B1,B2 ⊂ Rn. Then the following relations are well-known:

pos(B1 ∪ B2) = pos(B1) + pos(B2), span(B1 ∪ B2) = span(B1) + span(B2).

We shall be using the notation M to signify a smooth manifold having dimension n, where n is any natural
number. Let y∗ ∈ M be arbitrary. The set that contains every tangent vector at the element y∗ ∈ M is
known as the tangent space at y∗, and is signified by Ty∗M . For any element y∗ ∈M , Ty∗M is a real linear
space, having a dimension n, n ∈ N. In case we are restricted to real manifolds, Ty∗M is isomorphic to the
n-dimensional Euclidean space Rn.

A Riemannian metric, denoted by the notation G on the set M is a 2-tensor field that is symmetric as
well as positive-definite. For every pair of elements w1,w2 ∈ Ty∗M , the inner product of w1 and w2 is given
by:

⟨w1,w2⟩y∗ = Gy∗ (w1,w2),

where the symbol Gy∗ denotes the Riemannian metric at the element y∗ ∈ M . The norm corresponding to
the inner product ⟨w1,w2⟩y∗ is denoted by ∥ · ∥y∗ (or simply, ∥ · ∥, when there is no ambiguity regarding the
subscript).

Let a, b ∈ R, a < b and ν : [a, b]→M be any piecewise differentiable curve that joins the elements y∗ and
ẑ in M . That is, we have:

ν(a) = y∗, ν(b) = ẑ.

The length of the curve ν is denoted by the notation l(ν) and is defined in the following manner:

l(ν) :=
∫ b

a
∥ν′(t)∥dt.

For any differentiable curve ν, a vector field Y is referred to be parallel along the curve ν, provided that the
following condition holds:

∇ν′Y = 0.
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If ∇ν′ν′ = 0, then ν is termed as a geodesic. If ∥ν∥ = 1, then the curve ν is said to be normalised.
For every element y∗ ∈ M , the exponential function expy∗ : Ty∗M → M is given by expy∗ (ŵ) = ν(1),

where ν is a geodesic which satisfies ν(0) = y∗ and ν′(0) = ŵ. A Riemannian manifold M is referred to as
geodesic complete, provided that the exponential function expu(v) is defined for every arbitrary v ∈ Ty∗M
and u ∈M .

A Riemannian manifold is referred to as a Hadamard manifold (or, Cartan-Hadamard manifold) pro-
vided that M is simply connected, geodesic complete as well as has a nonpositive sectional curvature
throughout. Henceforth, in our discussions, the notation M will always signify a Hadamard manifold of
dimension n, unless it is specified otherwise.

Let y∗ ∈ M be some arbitrary element lying in the Hadamard manifold M . Then, the exponential
function on the tangent space expy∗ : Ty∗M → M is a globally diffeomorphic function. Moreover, the
inverse of the exponential function exp−1

y∗ : M → Ty∗M satisfies exp−1
y∗ (y∗) = 0. Furthermore, for every

pair of arbitrary elements y∗1, y
∗

2 ∈ M , there will always exist some unique normalized minimal geodesic
νy∗1,y

∗

2
: [0, 1]→M , such that the geodesic ν satisfies the following:

νy∗1,y
∗

2
(τ) = expy∗1

(τexp −1
y∗1

(y∗2)), ∀τ ∈ [0, 1].

Thus, every Hadamard manifold M of dimension n is diffeomorphic to the corresponding n-dimensional
Euclidean space Rn.

The following definition of contingent cone is from [17].

Definition 2.1. Let F ⊆M and z ∈ cl(F ). Then the contingent cone (in other terms, Bouligand tangent cone) of
F at z is symbolized by T (F , z), and is given by:

T (F , z) := {w ∈ TzM : ∃tn ↓ 0,∃wn ∈ TzM ,wn → w,∀n ∈N, expz(tnwn) ∈ F }.

The following definition is from Udrişte [35].

Definition 2.2. Any subset S of a Hadamard manifold M termed as geodesic convex set, provided that every pair of
distinct elements z1, z2 ∈ S and for the geodesic γz1,z2 : [0, 1]→M that connects the elements z1 and z2, we have

γz1,z2 (t) ∈ S, ∀t ∈ [0, 1],

where, γz1,z2 (t) = expz1

(
t exp−1

z1
z2

)
.

The following definitions are from Barani [2].

Definition 2.3. Let Θ : M → R be any locally Lipschitz function. Let z1, z2 ∈M be arbitrary elements. Then, the
generalized directional derivative of Θ at z2 in the direction w ∈ Tz2M , is denoted by the symbol Θ◦(z2; w), and is
defined as follows

Θ◦(z2; w) := lim sup
z1→z2,t↓0

Θ

(
expz1

t
(
d expz2

)
exp−1

z2
z1

w
)
−Θ(z1)

t
,

where
(
d expz2

)
exp−1

z2
z1

: Texp−1
z2

z1

(
Tz2M

)
≃ Tz2M → Tz1M is the differential of the exponential function at exp−1

z2
z1.

Definition 2.4. Let Θ : M → R be any locally Lipschitz function. Then, the generalized gradient (in other words,
Clarke subdifferential) of Θ at z1 ∈M , denoted by ∂cΘ(z1), is a subset of Tz1M , and is defined by

∂cΘ(z1) =
{
ζ ∈ Tz1M | Θ◦(z1; w) ≥ ⟨ζ,w⟩z1 , ∀w ∈ Tz1M

}
.

The following definitions are from Chen and Fang [5].
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Definition 2.5. Let D ⊆M be any geodesic convex set. Let Θ : D→ R be any locally Lipschitz function.
(i) The function Θ : D→ R is termed as geodesic pseudoconvex at z2 ∈ D, provided that for each z1 ∈ D and for any
ξi ∈ ∂cΘ(z2) we have

Θ(z1) −Θ(z2) < 0 =⇒
〈
ξi, exp−1

z2
(z1)

〉
z2

< 0.

The function Θ : D→ R is termed as geodesic strictly pseudoconvex at z2 ∈ D, provided that for each z1 ∈ D and for
any ξi ∈ ∂cΘ(z2) we have

Θ(z1) −Θ(z2) ≤ 0 =⇒
〈
ξi, exp−1

z2
(z1)

〉
z2

< 0.

(ii) The function Θ : D→ R is termed as geodesic quasiconvex at z2 ∈ D, provided that for each z1 ∈ D and for any
ξi ∈ ∂cΘ(z2) we have

Θ(z1) −Θ(z2) ≤ 0 =⇒
〈
ξi, exp−1

z2
(z1)

〉
z2

≤ 0.

Remark 2.6. (a) If Θ : D → R be a smooth function, then ∂cΘ(z2) = {gradΘ(z2)}. In that case, the definitions
given above reduce to the corresponding definitions of smooth geodesic pseudoconvex and geodesic quasiconvex
functions from [3].

(b) If M = Rn, D be some convex subset of M and Θ : D → R be any smooth function, then, ∂cΘ(z2) =
{gradΘ(z2)} = {∇Θ(z2)}, and exp−1

z2
(z1) = z1 − z2. Consequently, the notions of geodesic (strict) pseudo-

convexity and quasiconvexity defined above reduce to the corresponding well-known notions of differentiable
(strict) pseudoconvexity and quasiconvexity from Mangasarian [18] for Rn.

For further detailed exposition on Hadamard manifolds, we refer the readers to [30, 35, 38–40] and the
references cited therein.

3. Problem formulation for (NSIMPEC)

We consider a nonsmooth multiobjective semi-infinite programming problem with equilibrium con-
straints defined on Hadamard manifolds (abbreviated as, (NSIMPEC)) as follows:

(NSIMPEC) Minimize Φ(y) :=
(
Φ1(y), . . . ,Φm(y)

)
,

subject to Ψt(y) ≤ 0, ∀t ∈ T ,

ϑ j(y) = 0, ∀ j ∈ Iϑ := {1, . . . , q},
M j(y) ≥ 0, ∀ j ∈ S := {1, . . . , p},
N j(y) ≥ 0, ∀ j ∈ S := {1, . . . , p},

N j(y)M j(y) = 0, ∀ j ∈ S := {1, . . . , p},

where all the functions Φ j ( j ∈ I := {1, . . . ,m}), Ψt (t ∈ T ), ϑ j ( j ∈ Iϑ) and N j, M j ( j ∈ S) are locally
Lipschitz real-valued functions defined on some finite-dimensional Hadamard manifold M . The index set
T is considered to be arbitrary (possibly infinite). The set containing all feasible elements of the problem
(NSIMPEC) is signified by the symbol F .

For any arbitrary y∗ ∈ F , we employ the notation A (y∗) to signify the set containing each of the active
constraint multipliers at y∗, that is:

A (y) := {η ∈ R|T |+ : ηtΨt(y) = 0, ∀t ∈ T }.

The following definitions will be employed in the sequel (see, for instance, [34, 37]).
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Definition 3.1. Let y∗ ∈ F . The element y∗ is termed as a Pareto efficient solution of (NSIMPEC), provided that
there exists no other element y ∈ F , satisfying:

Φ(y) ⪯ Φ(y∗).

Definition 3.2. Let y∗ ∈ F . The element y∗ is termed as a weak Pareto efficient solution of (NSIMPEC), provided
that there exists no other element y ∈ F , satisfying:

Φ(y) ≺ Φ(y∗).

Let y∗ ∈ F be arbitrary. The index sets that are defined below will be crucial in the subsequent discussions
of the article.

L(y) := {t ∈ T | Ψt(y) = 0},

J+(y∗) :=
{
j ∈ S | M j(y∗) > 0

}
,

J0(y∗) :=
{
j ∈ S | M j(y∗) = 0

}
,

J+0(y∗) :=
{
j ∈ S | M j(y∗) > 0,N j(y∗) = 0

}
,

J0+(y∗) :=
{
j ∈ S | M j(y∗) = 0,N j(y∗) > 0

}
,

J00(y∗) :=
{
j ∈ S | M j(y∗) = 0,N j(y∗) = 0

}
.

Remark 3.3. Every index set that is defined above obviously depends on the particular choice of feasible element
y∗ ∈ F . Nevertheless, in the remaining portion of the article, we shall not indicate such dependence explicitly when
it will be easily perceivable from the context.

The following definition is an extension of the notion of strong stationary element of (NSIMPEC) given by
Tung [34] from the setting of Euclidean space to the setting of Hadamard manifold.

Definition 3.4. Any arbitrary feasible element y∗ ∈ F is termed as a strong stationary element of (NSIMPEC),
provided that there exist α ∈ Rm

+ , σΨ ∈ A (y∗), σϑ ∈ Rq, σM ∈ Rp, σN ∈ Rp, satisfying:

0 ∈
∑
j∈I

α j∂cΦ j(y∗) +
∑
t∈T

σΨt ∂cΨt(y∗)+
∑
j∈Iϑ

σϑj ∂cϑ j(y∗)

−

∑
j∈S

σMj ∂cM j(y∗) −
∑
j∈S

σNj ∂cN j(y∗),

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.

Let y∗ ∈ F be any feasible element of (NSIMPEC). Let σΨ ∈ R|T |+ , σϑ ∈ Rq, σM ∈ Rp, σN ∈ Rp. We now define
some index sets that will be employed in the rest of the article.

J+
Iϑ

(y∗) :=
{

j ∈ Iϑ(y∗) | σϑj > 0
}
,

J−
Iϑ

(y∗) :=
{

j ∈ Iϑ(y∗) | σϑj < 0
}
,

J+0+(y∗) :=
{

j ∈ J0+(y∗) | σMj > 0
}
,

J−0+(y∗) :=
{

j ∈ J0+(y∗) | σMj < 0
}
,

Ĵ++0(y∗) :=
{

j ∈ J+0(y∗) | σNj > 0
}
,

Ĵ−+0(y∗) :=
{

j ∈ J+0(y∗) | σNj < 0
}
,
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J+00(y∗) :=
{

j ∈ J00(y∗) | σMj > 0, σNj = 0
}
,

J−00(y∗) :=
{

j ∈ J00(y∗) | σMj < 0, σNj = 0
}
,

Ĵ+00(y∗) :=
{

j ∈ J00(y∗) | σMj = 0, σNj > 0
}
,

Ĵ−00(y∗) :=
{

j ∈ J00(y∗) | σMj = 0, σNj < 0
}
.

The following definitions and theorem are from [33].

Definition 3.5. Let y∗ ∈ F be any arbitrary feasible element of (NSIMPEC). Then the linearized cone of (NSIMPEC)
at y∗, denoted by C Lin(y∗), is defined as follows:

C Lin(y∗) := {v ∈ Ty∗M | ⟨ξΨt , v⟩ ≤ 0, ∀ξΨt ∈ ∂cΨt(y∗), ∀t ∈ L,

⟨ξϑj , v⟩ = 0, ∀ξϑt ∈ ∂cϑ j(y∗), ∀ j ∈ Iϑ,

⟨ξMj , v⟩ = 0, ∀ξMj ∈ ∂cM j(y∗), ∀ j ∈ J0+,

⟨ξMj , v⟩ ≥ 0, ∀ξMj ∈ ∂cM j(y∗), ∀ j ∈ J00,

⟨ξNj , v⟩ ≥ 0, ∀ξNj ∈ ∂cN j(y∗), ∀ j ∈ J00,

⟨ξNj , v⟩ = 0, ∀ξNj ∈ ∂cN j(y∗), ∀ j ∈ J+0}.

For any arbitrary feasible element y∗ ∈ F , we define the following sets for our convenience:

GΨ :=
⋃
t∈L

∂cΨt(y∗), Gϑ :=
⋃
j∈Iϑ

∂cϑ j(y∗), GM1 :=
⋃
j∈J0+

∂cM j(y∗),

GM2 :=
⋃
j∈J00

−∂cM j(y∗), GN1 :=
⋃
j∈J+0

∂cN j(y∗), GN2 :=
⋃
J00

−∂cN j(y∗).

Remark 3.6. From Definition 3.5, it readily follows that

C Lin(y∗) = (GΨ)− ∩ (Gϑ)⊥ ∩
(
GM1

)⊥
∩

(
GM2

)−
∩

(
GN1 )

)⊥
∩

(
GN2 )

)− .
Definition 3.7. Let y∗ ∈ F be any arbitrary feasible element of (NSIMPEC). The Abadie constraint qualification
(abbreviated as, (ACQ)) holds at the point y∗, if the following inclusion is satisfied:

C Lin(y∗) ⊆ T (F , y∗).

Theorem 3.8. Let y∗ ∈ F be a weak Pareto efficient solution of (NSIMPEC). If (ACQ) holds at y∗, and the set

∆1 := pos
(
Gψ ∪ GM2 ∪ GN2

)
+ span

(
Gϑ ∪ GM1 ∪ GN1

)
is closed, then y∗ is a strong stationary element of

(NSIMPEC).

4. Duality

In the present section, the Wolfe type, as well as the Mond-Weir type dual models related to (NSIMPEC)
are formulated. Further, weak, strong as well as strict converse duality results relating (NSIMPEC) and the
corresponding dual models are established by invoking generalized geodesic convexity hypothesis.
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4.1. Wolfe type duality

Let y∗ ∈ F be any arbitrary feasible element of (NSIMPEC) and let w ∈ M . Let α ∈ Rm
+ , σ =

(σΨ, σϑ, σM, σN ) ∈ R|T |+ × R
q
× Rp

× Rp and e := (1, . . . , 1) ∈ Rm. The corresponding Wolfe type dual
model related to (NSIMPEC) depending on the feasible element y∗ ∈ F is denoted by WD(y∗) and is
formulated as:

(WD(y∗)) Maximize L (w, α, σ) := Φ(w) +
(∑

t∈T

σΨt Ψt(w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

σMj M j(w) −
∑
j∈S

σNj N j(w)
)
e,

subject to 0 ∈
∑
j∈I

α j∂cΦ j(w) +
∑
t∈T

σΨt ∂cΨt(w) +
∑
j∈Iϑ

σϑj ∂cϑ j(w) −
∑
j∈S

σMj ∂cM j(w) −
∑
j∈S

σNj ∂cN j(w),

σMj ≥ 0, ∀ j ∈ J00(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗),

σMj = 0, ∀ j ∈ J+0(y∗), σNj = 0, ∀ j ∈ J0+(y∗), and
∑
j∈I

α j = 1.

The set containing each feasible point of WD(y∗) is denoted by FW(y∗). We define an auxiliary function
H : M → R as follows

H(y) :=
∑
j∈I

α jΦ j(y) +
∑
t∈T

σΨj Ψt(y) +
∑
j∈Iϑ

σϑj ϑ j(y) −
∑
j∈S

[
σMj M j(y) + σNj N j(y)

]
,

for every y ∈ M . In the following theorem, we derive weak duality relations that relate (NSIMPEC) and
(WD)(y∗).

Theorem 4.1. Let y∗ ∈ F and (w, α, σ) ∈ FW(y∗) be arbitrary feasible elements of (NSIMPEC) and (WD(y∗))
respectively. Further, let us suppose that J−0+ ∪ Ĵ−+0 = ∅. Then the following assertions hold true.

(i) If for every j ∈ I,H is a geodesic pseudoconvex function at w, then

Φ(y∗) ⊀ L (w, α, σ) .

(ii) If for every j ∈ I, Φ j is a strictly geodesic pseudoconvex function at w, then

Φ(y∗) ⪯̸ L (w, α, σ) .

Proof. From the given hypothesis, we have y∗ ∈ F . Then it follows that

Ψt(y∗) ≤ 0, ∀t ∈ T , ϑ j(y∗) = 0, ∀ j ∈ Iϑ,
M j(y∗),N j(y∗) ≥ 0, ∀ j ∈ S, N j(y∗)M j(y∗) = 0, ∀ j ∈ S.

Again, we have (w, α, σ) ∈ FW(y∗). Therefore, there exist ξΦj ∈ ∂cΦ j(w) ( j ∈ I), ξΨt ∈ ∂cΨt(w) (t ∈ T ),

ξϑj ∈ ∂cϑ j(w) ( j ∈ Iϑ), ξMj ∈ ∂cM j(w) ( j ∈ S), ξNj ∈ ∂cN j(w) ( j ∈ S), such that∑
j∈I

α jξ
Φ
j +

∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j = 0, (1)

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.
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(i) On contrary, we suppose that Φ(y) ≺ L(w, α, σ). Then, we have

Φi(y∗) < Φi(w) +
∑
j∈L

σΨj Ψ j(w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
,

for all i ∈ I. Since y∗ ∈ F , (w, α, σ) ∈ FW(y∗), α ∈ Rm
+ , it follows that∑

i∈I

αiΦi(y∗) +
∑
j∈L

σΨj (y∗) +
∑
j∈Iϑ

σϑj ϑ j(y∗) −
∑
j∈S

[
σMj M j(y∗) + σNj N j(y∗)

]
<

∑
i∈I

αiΦi(w) +
∑
j∈L

σΨj (w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
.

(2)

From the definition ofH , it follows from (2) thatH(y∗) < H(w). By invoking the geodesic pseudoconvexity
restriction onH at w, we get

⟨ξH , exp−1
w (y∗)⟩w < 0, ∀ξH ∈ ∂cH(w),

which is a contradiction to (1). Therefore, the proof is complete.

(ii) On contrary, we suppose that Φ(y) ⪯ L(w, α, σ). Then there exists some k ∈ I, such that

Φi(y∗) ≤ Φi(w) +
∑
j∈L

σΨj Ψ j(w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
, (3)

for all i ∈ I, i , k and the above inequality holds strictly for i = k. Since y ∈ F , (w, α, σ) ∈ FW(y∗), α ∈ Rm
+ , it

follows from (3) that∑
i∈I

αiΦi(y∗) +
∑
j∈L

σΨj (y∗) +
∑
j∈Iϑ

σϑj ϑ j(y∗) −
∑
j∈S

[
σMj M j(y∗) + σNj N j(y∗)

]
≤

∑
i∈I

αiΦi(w) +
∑
j∈L

σΨj (w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
.

(4)

From the definition of H , it follows from (4) that H(y∗) ≤ H(w). By invoking the strict geodesic pseudo-
convexity restriction onH at w, we get

⟨ξH , exp−1
w (y∗)⟩w < 0, ∀ξH ∈ ∂cH(w),

which is a contradiction to (1). Therefore, the proof is complete.

Remark 4.2. (a) If M = Rn and each of the objective and constraint functions of (NSIMPEC) is differentiable,
then, Theorem 4.1 reduces to Proposition 15 derived by Tung [34].

(b) Theorem 4.1 extends Theorem 4 of Singh and Mishra [31] for more general category of optimization problems
and generalizes it from Rn to Hadamard manifolds.

In the following theorem, we provide strong duality result relating (NSIMPEC) and (WD(y∗)) by employing
certain generalized geodesic convexity assumptions.

Theorem 4.3. Let us assume that y∗ ∈ F be a weak Pareto efficient solution of (NSIMPEC) such that (ACQ) holds

at y∗ and the set ∆1 := pos
(
Gψ ∪ GM2 ∪ GN2

)
+ span

(
Gϑ ∪ GM1 ∪ GN1

)
is closed. Further, let us suppose that

J−0+ ∪ Ĵ−+0 = ∅. Then there exist α ∈ Rm
+ , σΨ ∈ R|T |+ , σϑ ∈ Rq, σM ∈ Rp, σN ∈ Rp such that (y∗, α, σ) ∈ FW(y∗) and

Φ(y∗) = L (y∗, α, σ).
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Further, the following assertions hold true.
(i) If every assumption of weak duality theorem (Theorem 4.1 (i)) are satisfied, then

(
y∗, α, σ

)
is a weak Pareto

efficient solution of WD(y∗).
(ii) If every assumption of weak duality theorem (Theorem 4.1 (ii)) are satisfied, then

(
y∗, α, σ

)
is a Pareto efficient

solution of WD(y∗).

Proof. According to the given hypothesis, y∗ ∈ F be a weak Pareto efficient solution of (NSIMPEC) and
(ACQ) holds at y∗. Then from Theorem 3.8 it follows that there exist α ∈ Rm

+ , σΨ ∈ A (y∗), σϑ ∈ Rq, σM ∈ Rp,
σN ∈ Rp, ξΦj ∈ ∂cΦ j(y∗) ( j ∈ I), ξΨt ∈ ∂cΨt(y∗) (t ∈ T ), ξϑj ∈ ∂cϑ j(y∗) ( j ∈ Iϑ), ξMj ∈ ∂cM j(y∗) ( j ∈ S),

ξNj ∈ ∂cN j(y∗) ( j ∈ S), such that the following conditions are satisfied∑
j∈I

α jξ
Φ
j +

∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j +
∑
j∈S

σNj ξ
N

j = 0,

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.

Since σΨ ∈ A (y∗), we have σΨt Ψt(y∗) = 0, ∀t ∈ T . Then, it follows that∑
t∈T

σΨt Ψt(y∗) = 0. (5)

Again, since y∗ ∈ F we obtain the following∑
j∈Iϑ

σϑj ϑ j(y∗) = 0. (6)

Since σMj = 0, for every j ∈ J+0(y∗) and σMj ≥ 0, for every j ∈ J00(y∗), it follows that∑
j∈S

σMj M j(y∗) = 0. (7)

Similarly, as σNj = 0, for every j ∈ ∪J0+(y∗), and σNj ≥ 0, for every j ∈ J00(y∗), it follows that∑
j∈S

σNj N j(y∗) = 0. (8)

Thus, we infer that
(
y∗, α, σ

)
∈ FW(y∗). Moreover, it follows from (5), (6), (7) and (8) that∑

t∈T

σΨt Ψ
Ψ
t (y∗) +

∑
j∈Iϑ

σϑj ϑ j(y∗) −
∑
j∈S

σMj M j(y∗) −
∑
j∈S

σNj N j(y∗) = 0.

Hence we have

Φ(y∗) = L (y∗, α, σ).

(i) On contrary, we suppose that
(
y∗, α, σ

)
is not a weak Pareto efficient solution of DW(y∗). Then there exists

(w, α′, σ′) ∈ FW(y∗) such that

L
(
y∗, α, σ

)
≺ L (w, α′, σ′) .
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Then it follows that

Φ(y∗) ≺ L (w, α′, σ′) .

which contradicts Theorem 4.1(i). Therefore, the proof is complete.
(ii) On contrary, we suppose that

(
y∗, α, σ

)
is not a Pareto efficient solution of DW(y∗). Then there exists

(w, α′, σ′) ∈ FW(y∗) such that

L
(
y∗, α, σ

)
⪯ L (w, α′, σ′) .

Then it follows that

Φ(y∗) ⪯ L (w, α′, σ′) .

which contradicts Theorem 4.1(ii). Therefore, the proof is complete.

Remark 4.4. (a) If M = Rn and each of the objective and constraint functions of (NSIMPEC) is differentiable,
then, Theorem 4.1 reduces to Proposition 16 derived by Tung [34].

(b) Theorem 4.1 is an extension of Theorem 5 from Singh and Mishra [31] for more general category of optimization
problems, and further generalizes it from Rn to Hadamard manifolds.

In the following theorem we provide strict converse duality theorem relating (NSIMPEC) and (WD(y∗)).

Theorem 4.5. Let us assume that y∗ ∈ F be a weak Pareto efficient solution of (NSIMPEC). Let (w, α, σ) ∈ FW(y∗)
be a weak Pareto efficient solution of (WD(y∗)), such that, Φ(y∗) ⪯ L (w, α, σ). If every assumption of the weak
duality theorem (Theorem 4.1 (ii)) are satisfied, then y∗ = w.

Proof. On contrary, we suppose that y∗ , w. From the given hypothesis, we have y∗ ∈ F . Then it follows
that

Ψt(y∗) ≤ 0, ∀t ∈ T , ϑ j(y∗) = 0, ∀ j ∈ Iϑ,
M j(y∗),N j(y∗) ≥ 0, ∀ j ∈ S, N j(y∗)M j(y∗) = 0, ∀ j ∈ S.

Again, we have (w, α, σ) ∈ FW(y∗). Therefore, there exist ξΦj ∈ ∂cΦ j(w) ( j ∈ I), ξΨt ∈ ∂cΨt(w) (t ∈ T ),

ξϑj ∈ ∂cϑ j(w) ( j ∈ Iϑ), ξMj ∈ ∂cM j(w) ( j ∈ S), ξNj ∈ ∂cN j(w) ( j ∈ S), such that∑
j∈I

α jξ
Φ
j +

∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j = 0, (9)

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.

Then there exists some k ∈ I, such that

Φi(y∗) ≤ Φi(w) +
∑
j∈L

σΨj Ψ j(w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
,

for all i ∈ I, and the above inequality holds strictly for i = k. Since y∗ ∈ F , (w, α, σ) ∈ FW(y∗), α ∈ Rm
+ , it

follows that∑
i∈I

αiΦi(y∗) +
∑
j∈L

σΨj (y∗) +
∑
j∈Iϑ

σϑj ϑ j(y∗) −
∑
j∈S

[
σMj M j(y∗) + σNj N j(y∗)

]
≤

∑
i∈I

αiΦi(w) +
∑
j∈L

σΨj (w) +
∑
j∈Iϑ

σϑj ϑ j(w) −
∑
j∈S

[
σMj M j(w) + σNj N j(w)

]
.

(10)
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From the definition ofH , it follows from (10) thatH(y∗) < H(w). By invoking the geodesic pseudoconvexity
restriction onH at w, we get

⟨ξH , exp−1
w (y∗)⟩w < 0, ∀ξH ∈ ∂cH(w),

which is a contradiction to (9). Therefore, the proof is complete.

In the following numerical example, we illustrate the significance of Wolfe type dual model related to
(NSIMPEC).

Example 4.6. Consider the set M ⊂ R defined by M := {z ∈ R : z > 0}. Then the set M is a Riemannian manifold
(see, [26, 30]). At any ẑ ∈M , the tangent space is given by TẑM = R. The corresponding metric on M is given by:

⟨w1,w2⟩ẑ = ⟨G (ẑ)w1,w2⟩, ∀w1,w2 ∈ TẑM = R,

where,

G (ẑ) =
1
ẑ2 .

It is well-known that M is also a Hadamard manifold. The inverse of the exponential function expẑ : TẑM →M for
any v ∈ TẑM is given by

expẑ(v) = (ẑ1e
v1
ẑ1 , ẑ2e

v2
ẑ2 ), ∀v = (v1, v2) ∈M .

Consider the following problem (P1), which is a (NSIMPEC).

(P1) Minimize Φ(y) = (Φ1(y),Φ2(y)) := (|y|, y2 + 7),
subject to Ψt(y) := t(y − e) ≤ 0, t ∈N,

M(y) := y − e ≥ 0,
N(y) := ln y − 1 ≥ 0,

N(y)M(y) := (ln y − 1)(y − e) = 0,

where Φi : M → R, (i = 1, 2), Ψt : M → R, (t ∈ N) andM,N : M → R are locally Lipschitz functions. The
feasible set for (P1) is denoted by F . We choose the feasible point y∗ = e ∈ F . Clearly y∗ is a Pareto efficient solution
of (P1). Then it follows that

∂cΦ1(y) = co{−y2, y2
},

∂cΦ2(y) = {G (y)−1 (
2y

)
} = {2y3

},

∂cΨt(y) = {G (y)−1 (t)} = {ty2
}, ∀t ∈N,

∂cM(y) = {G (y)−1 (1)} = {y2
},

∂cN(y) = {G (y)−1

(
1
y

)
} = {y}.

Using above equations, it can be verified that

C Lin (e) = {0}. (11)

Furthermore, for the problem (P1), we can show by simple calculations that T (F , e) = {0}. Then it follows that (ACQ)
is satisfied at the point y∗ = e ∈ F . The corresponding Wolfe dual problem related to (P1), denoted by (WD)(y∗), is
given by:

(WD)(y∗) Maximize L (w, α, σ) = Φ(w) +
[∑

t∈N

σΨt Ψt(w) − σMM(w) − σNN(w)
]
e,
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subject to 0 ∈
2∑

j=1

α j∂cΦ j(w) +
∑
t∈N

σΨt ∂cΨt(w) − σM∂cM(w) + σN∂cN(w), (12)

σM ≥ 0, σN ≥ 0, and
∑
j∈I

α j = 1.

where, σ = (σΨ, σM, σN ) ∈ R|N|+ × R × R, α j ∈ R, α j ≥ 0, j = 1, 2. Let the feasible set of (WD)(y∗) be denoted by
(FW). We can further verify the fact that y∗ = (e, e) is a weak Pareto efficient solution of (P1).
We consider a map σΨt :N→ R, such that

σΨt =

{
e, if t = 1,
0, otherwise.

Then for αi =
1
2 , (i = 1, 2), ξΦ1 = 0 ∈ ∂cΦ1(e), ξΦ2 = 2e3

∈ ∂cΦ2(e), σΨt as defined above, ξΨt = te2
∈ ∂cΨt(e), for all

t ∈N, ξM = e2
∈ ∂cM(e), ξN = e ∈ ∂cN(e), σM = e and σN = e2, we have

α1ξ
Φ
1 + α2ξ

Φ
2 +

∑
t∈N

σΨt ξ
Ψ
t − σ

MξM − σNξN = 0. (13)

This shows that (y∗, α, σ) ∈ FW(y∗). Furthermore

Φ(y∗) = L (y∗, α, σ).

One can very easily verify that every assumption of strong duality theorem (Theorem 4.3) is satisfied. Consequently,
it follows that (y∗, α, σ) is a weak Pareto efficient solution of (WD)(y∗).

4.2. Mond-Weir type duality
Let y∗ ∈ F be any arbitrary feasible element of (NSIMPEC) and let w ∈ M . Let α ∈ Rm

+ , σ =
(σΨ, σϑ, σM, σN ) ∈ R|T |+ × R

q
× Rp

× Rp. The Mond-Weir type dual problem related to (NSIMPEC) de-
pending on the feasible element y∗ ∈ F is denoted by MWD(y∗) and is formulated as

(MWD(y∗)) Maximize F (w, α, σ) := Φ(w),

subject to 0 ∈
∑
j∈I

α j∂cΦ j(w) +
∑
t∈T

σΨt ∂cΨt(w) +
∑
j∈Iϑ

σϑj ∂cϑ j(w) −
∑
j∈S

σMj ∂cM j(w) −
∑
j∈S

σNj ∂cN j(w),

Ψt(w) ≥ 0, ∀t ∈ L, ϑ j(w) = 0, ∀ j ∈ Iϑ,
M j(w) ≥ 0, ∀ j ∈ J0+(y∗) ∪ J00(y∗), N j(w) ≥ 0, ∀ j ∈ J+0(y∗) ∪ J00(y∗),

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗),

σΨt = 0, ∀t ∈ T \ L(y∗), and
∑
j∈I

α j = 1.

The set containing each feasible point of MWD(y∗) is denoted by FMW(y∗). In the following theorem, we
derive weak duality relations that relate (NSIMPEC) and (MWD).

Theorem 4.7. Let y∗ ∈ F and (w, α, σ) ∈ FMW be arbitrary feasible elements of (NSIMPEC) and (MWD) respec-
tively. Further, let us suppose that J−0+ ∪ Ĵ−+0 = ∅ and each of the functions ψt (t ∈ L), ϑ j

(
j ∈ J+

Iϑ

)
, −ϑ j

(
j ∈ J−

Iϑ

)
, −M j

( j ∈ J+0+ ∪ J+00 ∪ J++00 ), −N j ( j ∈ Ĵ+00 ∪ Ĵ++0 ∪ J++00 ) are all geodesic quasiconvex at w.Then the following assertions hold
true.
(i) If for every j ∈ I, Φ j is a geodesic pseudoconvex function at w, then Φ(y∗) ⊀ F (w, α, σ).
(ii) If for every j ∈ I, Φ j is a strictly geodesic pseudoconvex function at w, then Φ(y∗) ⪯̸ F (w, α, σ).
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Proof. From the given hypothesis, we have y∗ ∈ F . Then it follows that

Ψt(y∗) ≤ 0, ∀t ∈ T , ϑ j(y∗) = 0, ∀ j ∈ Iϑ,
M j(y∗),N j(y∗) ≥ 0, ∀ j ∈ S, N j(y∗)M j(y∗) = 0, ∀ j ∈ S.

Again, we have (w, α, σ) ∈ FMW(y∗). Therefore, there exist ξΦj ∈ ∂cΦ j(w) ( j ∈ I), ξΨt ∈ ∂cΨt(w) (t ∈ T ),

ξϑj ∈ ∂cϑ j(w) ( j ∈ Iϑ), ξMj ∈ ∂cM j(w) ( j ∈ S), ξNj ∈ ∂cN j(w) ( j ∈ S), such that∑
j∈I

α jξ
Φ
j +

∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j = 0, (14)

Ψt(w) ≥ 0, ∀t ∈ T , ϑ j(w) = 0, ∀ j ∈ Iϑ,
M j(w) ≥ 0, ∀ j ∈ J0+(y∗) ∪ J00(y∗), N j(w) ≥ 0, ∀ j ∈ J+0(y∗) ∪ J00(y∗),

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.

Using the feasibility conditions we have

Ψt(y∗) = 0 ≤ Ψt(w), ∀t ∈ L(y∗).

From the geodesic quasiconvexity assumption onΨt for every t ∈ L(y∗) at w, we yield the following〈
ξΨt , exp−1

w (y∗)
〉
≤ 0, ∀t ∈ L(y∗). (15)

Combining (15) with the fact that σΨ ∈ A (y∗), we obtain the following〈∑
t∈T

σΨt ξ
Ψ
t , exp−1

w (y∗)
〉
≤ 0. (16)

Using the feasibility conditions we have

ϑ j(y∗) ≤ ϑ j(w), ∀ j ∈ J+
Iϑ
, −ϑ j(y∗) ≤ −ϑ j(w), ∀ j ∈ J−

Iϑ
.

In view of the geodesic quasiconvexity hypothesis on ϑ j for every j ∈ J+
Iϑ

and on −ϑ j for every j ∈ J−
Iϑ

at w,
we have the following〈

ξϑj , exp−1
w (y∗)

〉
≤ 0, ∀ j ∈ J+

Iϑ
,

〈
−ξϑj , exp−1

w (y∗)
〉
≤ 0, ∀ j ∈ J−

Iϑ
. (17)

From the definitions of J+
Iϑ
, J−
Iϑ

and above inequalities, we obtain the following〈∑
j∈Iϑ

σϑj ξ
ϑ
j , exp−1

w (y∗)
〉
≤ 0. (18)

Similarly as before, from the definitions of index sets we have the following

−M j(y∗) ≤ −M j(w), ∀ j ∈ J+0+ ∪ J+00 ∪ J++00 .

From the geodesic quasiconvexity assumptions on −M j, we have the following

−

〈∑
j∈S

σMj ξ
M

j , exp−1
w (y∗)

〉
≤ 0. (19)
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Similarly, from the definitions of index sets and geodesic quasiconvexity assumptions on N j for every
j ∈ Ĵ+00 ∪ Ĵ++0 ∪ J++00 , we have the following〈∑

j∈S

σNj ξ
N

j , exp−1
w (y∗)

〉
≤ 0. (20)

From the inequalities (16), (18), (19) and (20), we yield the following〈∑
j∈I

α jξ
Φ
j , exp−1

w (y∗)
〉

= −

〈∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j , exp−1
w (y∗)

〉
≥ 0.

(21)

(i) On contrary, we suppose that Φ(y∗) ≺ F (w, α, σ). Then, it follows that Φ j(y∗) < Φ j(w), ∀ j ∈ I. From the
geodesic pseudoconvexity assumption on Φ j for every j ∈ I at w, we have the following〈

ξΦj , exp−1
w (y∗)

〉
< 0, ∀ j ∈ I. (22)

Since α ∈ Rm
+ and

∑
j∈I α j = 1, we obtain〈 m∑

j=1

α jξ
Φ
j , exp−1

w (y∗)
〉
< 0, (23)

which contradicts (21). Therefore, the proof is complete.

(ii) On contrary, we suppose that

Φ(y∗) ⪯ F (w, α, σ) .

From the above inequality, it is clear that y∗ , w. From the strict geodesic pseudoconvexity assumption on
Φ j for every j ∈ I at w, we have the following〈

ξΦj , exp−1
w (y∗)

〉
< 0, ∀ j ∈ I. (24)

Since α ∈ Rm
+ and

∑
j∈I α j = 1 we obtain〈 m∑

j=1

α jξ
Φ
j , exp−1

w (y∗)
〉
< 0, (25)

which contradicts (21). Therefore, the proof is complete.

Remark 4.8. (a) If M = Rn and each of the objective and constraint functions of (NSIMPEC) is differentiable,
then, Theorem 4.1 reduces to Proposition 20 derived by Tung [34].

(b) Theorem 4.1 extends Theorem 6 of Singh and Mishra [31] for more general category of optimization problems
and generalizes it from Rn to Hadamard manifolds.

In the following theorem, we provide strong duality result relating (NSIMPEC) and (MWD(y∗)) by employ-
ing geodesic convexity assumptions.
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Theorem 4.9. Let us assume that y∗ ∈ F such that (ACQ) holds at y∗ the set ∆1 := pos
(
Gψ ∪ GM2 ∪ GN2

)
+

span
(
Gϑ ∪ GM1 ∪ GN1

)
is closed. Further, let us suppose that J−0+ ∪ Ĵ−+0 = ∅. Then there exist α ∈ Rm

+ , σΨ ∈ R|T |+ ,

σϑ ∈ Rq, σM ∈ Rp, σN ∈ Rp such that (y∗, α, σ) ∈ FMW(y∗) and

F (y∗, α, σ) = Φ(y∗).

Further, the following assertions hold true.
(i) If every assumption of weak duality theorem (Theorem 4.7 (i)) are satisfied, then

(
y∗, α, σ

)
is a weak Pareto efficient

solution of MWD(y∗).
(ii) If every assumption of weak duality theorem (Theorem 4.7 (ii)) are satisfied„ then

(
y∗, α, σ

)
is a Pareto efficient

solution of MWD(y∗).

Proof. According to the given hypothesis, y∗ ∈ F be a weak Pareto efficient solution of (NSIMPEC) at which
(NSIMPEC-ACQ) is satisfied. Then from Theorem 3.8 it follows that there exist α ∈ Rm

+ , σΨ ∈ A (y∗), σϑ ∈ Rq,
σM ∈ Rp, σN ∈ Rp, ξΦj ∈ ∂cΦ j(y∗) ( j ∈ I), ξΨt ∈ ∂cΨt(y∗) (t ∈ T ), ξϑj ∈ ∂cϑ j(y∗) ( j ∈ Iϑ), ξMj ∈ ∂cM j(y∗) ( j ∈ S),

ξNj ∈ ∂cN j(y∗) ( j ∈ S), such that the following conditions are satisfied∑
j∈I

α jξ
Φ
j +

∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j = 0,

σMj = 0, ∀ j ∈ J+0(y∗), σMj ≥ 0, ∀ j ∈ J00(y∗),

σNj = 0, ∀ j ∈ J0+(y∗), σNj ≥ 0, ∀ j ∈ J00(y∗), and
∑
j∈I

α j = 1.

Since σΨ ∈ A (y∗), we have σΨt Ψt(y∗) = 0, ∀t ∈ T . Then, it follows that∑
t∈T

σΨt Ψt(y∗) = 0. (26)

Again, since y∗ ∈ F , we obtain the following∑
j∈Iϑ

σϑj ϑ j(y∗) = 0. (27)

Since σMj = 0, for every j ∈ J+0(y∗) and σMj ≥ 0, for every j ∈ J00(y∗), it follows that∑
j∈S

σMj M j(y∗) = 0. (28)

Similarly, as σNj = 0 for every j ∈ J0+(y∗), and σNj ≥ 0, for every j ∈ J00(y∗), it follows that∑
j∈S

σNj N j(y∗) = 0. (29)

Thus, we infer that
(
y∗, α, σ

)
∈ FW(y∗).

(i) On contrary, we suppose that
(
y∗, α, σ

)
is not a weak Pareto efficient solution of MWD(y∗). Conse-

quently, some (w, α, σ) ∈ FMW(y∗) exists, satisfying:

F
(
y∗, α, σ

)
≺ F (w, α, σ) .
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Then it follows that

Φ(y∗) ≺ F (w, α, σ) ,

which contradicts Theorem 4.7(i). Therefore, the proof is complete.
(ii) On contrary, we suppose that

(
y∗, α, σ

)
is not a Pareto efficient solution of MWD(y∗). Consequently,

some (w, α, σ) ∈ FMW(y∗) exists, satisfying:

F
(
y∗, α, σ

)
⪯ F (w, α, σ) .

Then it follows that

Φ(y∗) ⪯ F (w, α, σ) .

which contradicts Theorem 4.7(ii). Therefore, the proof is complete.

Remark 4.10. (a) If M = Rn and each of the objective and constraint functions of (NSIMPEC) is differentiable,
then, Theorem 4.1 reduces to Proposition 21 derived by Tung [34].

(b) Theorem 4.1 is an extension of Theorem 7 from Singh and Mishra [31] for more general category of optimization
problems, and also generalizes it from Rn to Hadamard manifolds.

In the following theorem we provide strict converse duality theorem relating (NSIMPEC) and (MWD(y∗)).

Theorem 4.11. Let us assume that y∗ ∈ F be any weak Pareto efficient solution of (NSIMPEC). Let (w, α, σ) ∈
FMW(y∗) be a weak Pareto efficient solution of (MWD(y∗)), such that Φ(y∗) ⪯ F (w, α, σ) . If each of the assumptions
of the weak duality theorem (Theorem 4.7 (ii)) are satisfied, then y∗ = w.

Proof. On contrary, we suppose that y∗ , w. In similar lines of the proof of Theorem 4.7, we yield
ξΦj ∈ ∂cΦ j(w) ( j ∈ I), ξΨt ∈ ∂cΨt(w) (t ∈ T ), ξϑj ∈ ∂cϑ j(w) ( j ∈ Iϑ), ξMj ∈ ∂cM j(w) ( j ∈ S), ξNj ∈ ∂cN j(w) ( j ∈ S),
satisfying:〈∑

j∈I

α jξ
Φ
j , exp−1

w (y∗)
〉

= −

〈∑
t∈T

σΨt ξ
Ψ
t +

∑
j∈Iϑ

σϑj ξ
ϑ
j −

∑
j∈S

σMj ξ
M

j −
∑
j∈S

σNj ξ
N

j , exp−1
w (y∗)

〉
≥ 0.

(30)

In view of the strict geodesic pseudoconvexity hypothesis on Φ j for every j ∈ I at w, we have the following〈
ξΦj , exp−1

w (y∗)
〉
< 0, ∀ j ∈ I, ξΦj ∈ ∂cΦ j(w). (31)

Since α ∈ Rm
+ and

∑
j∈I α j = 1, we obtain〈 m∑

j=1

α jξ
Φ
j , exp−1

w (y∗)
〉
< 0, (32)

which contradicts (30). Therefore, the proof is complete.

In the following numerical example, we illustrate the significance of Mond-Weir type dual model related
to (NSIMPEC).
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Example 4.12. Consider the problem (P1) as defined in Example 4.6. Let y∗ = e ∈ F . The corresponding Mond-Weir
dual problem for (P1), denoted by (MWD)(y∗), may be formulated as:

(MWD)(y∗) Maximize F (w) := Φ(w),

subject to

0 ∈
2∑

j=1

α j∂cΦ j(w) +
∑
t∈N

σΨt ∂cΨt(w) − σM∂cM(w) − σN∂cN(w),

Ψt(w) ≥ 0, ∀t ∈N, M(w) ≥ 0, N(w) ≥ 0.

where σ = (σΨ, σM, σN ) ∈ R|N|+ ×R ×R, α j ∈ R, α j ≥ 0, j = 1, 2, and
∑2

j=1 α j = 1. The feasible set of (MWD)(y∗)
is denoted by FMW(y∗). One can very easily verify that (ACQ) holds at y∗. Moreover, we can further verify the fact
that y∗ = (e, e) is a weak Pareto efficient solution of the problem (P1).
We consider a map σΨt :N→ R, such that

σΨt =

{
e, if t = 1,
0, otherwise.

Then for αi =
1
2 , (i = 1, 2), ξΦ1 = 0 ∈ ∂cΦ1(e), ξΦ2 = 2e3

∈ ∂cΦ2(e), σΨt as defined above, ξΨt = te2
∈ ∂cΨt(e), for all

t ∈N, ξM = e2
∈ ∂cM(e), ξN = e ∈ ∂cN(e), σM = e and σN = e2, we have

α1ξ
Φ
1 + α2ξ

Φ
2 +

∑
t∈N

σΨt ξ
Ψ
t − σ

MξM − σNξN = 0. (33)

This shows that (y∗, α, σ) ∈ FMW(y∗). Furthermore

Φ(y∗) = F (y∗, α, σ).

One can very easily verify that all the assumptions of the strong duality theorem (Theorem 4.9) is verified. Conse-
quently, (y∗, α, σ) is a weak Pareto efficient solution of (MWD)(y∗).

5. Conclusions and future directions

In this article, we have explored a class of (NSIMPEC) in the setting of Hadamard manifolds. We have
formulated two kinds of dual models related to (NSIMPEC), namely, the Wolfe type and Mond-Weir type
dual models. We have derived weak, strong and strict converse duality results that relate (NSIMPEC) and
the corresponding dual models. We have also provided non-trivial numerical examples to demonstrate the
importance of our derived results.

The results that are established in this article generalize as well as extend several notable results pre-
viously existing in literature. For instance, the results that are derived in this article generalize the cor-
responding results of [34] on a more general and wider space, which is, Hadamard manifolds, as well as
for further general category of optimization problems, that is, (NSIMPEC). On the other hand, the results
derived in [12, 22, 31] are extended to the setting of semi-infinite optimization problems on Hadamard
manifolds by the results derived in this article. To the best of our knowledge, this is for the first time that
duality models for (NSIMPEC) have been investigated in the setting of Hadamard manifolds.

The results presented in this article leave several avenues for future research. For instance, it would
be an exciting research problem to derive duality results for (NSIMPEC) by using the notion of Mor-
dukhovich limiting subdifferential, which comparatively has a better Lagrange multiplier rule than Clarke
subdifferential. We intend to pursue this in our future work.
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