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Abstract. In this article, we present and investigate new type of sequence spaces called by almost
convergent Motzkin sequence spaces. We demonstrate that the newly introduced spaces are linearly
isomorphic to the spaces of all almost convergent sequences and compute the β−dual. Additionally, we
characterize (M,Z) and (Z,M) for any given sequence space Z, and also determine the necessary and
sufficient condition on a matrix P such that for every bounded sequence u, BM-core(Pu) ⊆ K-core(u) and
BM-core(Pu) ⊆ st-core(u).

1. Introduction

Sequence spaces have played a vital role across various branches of mathematics, such as functional
analysis, operator theory, and approximation theory. The importance of sequence spaces has sparked
considerable interest among researchers in summability theory. Many researchers have introduced and
investigated different types of sequence spaces to uncover their unique properties. The primary objective
of classical theory revolves around the generalization of convergence concepts for both series and sequences.
Its main goal is to provide a framework through which limits can be assigned to series and sequences that do
not exhibit convergence. This is achieved through the use of transformations defined by infinite matrices.
The preference for utilizing matrices, rather than general linear mappings, is based on the fact that a linear
mapping between two sequence spaces can be represented by an infinite matrix. This approach offers a
powerful framework to analyze and understand the behavior of sequences, enabling researchers to explore
and extend the theory of convergence in diverse and meaningful ways.

Throughout the paper, we denoteω, l∞, lp, c, c0, cs as the space of all sequences, the spaces of all bounded,
p−summable, convergent, null sequences, and convergent series, respectively. We denote N, R and C as
the sets of non-negative integers, real, and complex numbers, respectively.
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The work of the third author is partially supported by the Council of Scientific and Industrial Research (CSIR), India for partial

support under Grant No. 09/1046(13736)/2022-EMR-I, dated 08/04/2022.
* Corresponding author: S. A. Mohiuddine
Email addresses: kuldipraj68@gmail.com (Kuldip Raj), jaljedani@kau.edu.sa (Jabr Aljedani), devia.narrania@gmail.com

(Devia Narrania), mohiuddine@gmail.com (S. A. Mohiuddine)
ORCID iDs: https://orcid.org/0000-0002-2611-3391 (Kuldip Raj), https://orcid.org/0000-0002-8761-5870 (Jabr

Aljedani), https://orcid.org/0000-0002-9462-5911 (Devia Narrania), https://orcid.org/0000-0002-9050-9104 (S. A.
Mohiuddine)



K. Raj et al. / Filomat 39:17 (2025), 5751–5764 5752

The natural density of G ⊆N is defined by

δ(G) := lim
i→∞

|{1 ∈ G : 1 ≤ i}|
i

,

where |{1 ∈ G : 1 ≤ i}| denotes the cardinality of the set {1 ∈ G : 1 ≤ i}.
A sequence u = (uk) is statistically convergent to L, indicated by st − lim uk = L, if for every ϵ > 0,

lim
i→∞

1
i

∣∣∣{k ≤ i : |uk − L| ≥ ϵ}
∣∣∣ = 0.

We denote st and st0 as the set of all statistically convergent sequences and statistically null sequences,
respectively.

Let Z1,Z2 be any two sequence spaces and P = (ank) be an infinite matrix with ank ∈ R. Then we define
a matrix mapping P : Z1 → Z2 , if Pu = ((Pu)n) ∈ Z2, for every sequence u = (uk) ∈ Z1, where

(Pu)n =

∞∑
k=0

ankuk, where n ∈N. (1)

The set of all these matrices mappings from Z1 to Z2 is represented by the notation (Z1,Z2). A sequence (uk) is
P−summable to L ifPu converges to the limit L. We say thatPmaps Z1 regularly into Z2 if limk uk = limPu,
∀ (uk) ∈ Z1 and we denote this by (Z1,Z2)re1.

The concept of almost convergence, which extends the notion of convergence for sequences, was initially
introduced by Lorentz [32]. Since then, numerous researchers have developed and examined different forms
of generalizations for almost convergence (refer to [5], [7], [19], [29], [30], [31], [34], [41]). The reader can refer
to the recent textbooks [38] and [3] for fundamental theorems on functional analysis, summability theory,
and the papers [1], [2], [4], [5], [6], [12], [14], [15], [16], [24], [35], [36], [44] and [45] on some developments
on the almost convergence and the relevant topics.

A sequence x = (xq) is almost convergent to L if

lim
t→∞

1
t + 1

t∑
j=0

xn+ j = L

uniformly in n. The space containing all almost convergent sequences is denoted as A, while the space
containing almost null sequences is denoted asA0, i.e.,

A =

x = (xn) ∈ ω : ∃ L ∈ C such that lim
t→∞

1
t + 1

t∑
j=0

xn+ j = L uniformly in n


and

A0 =

x = (xn) ∈ ω : lim
t→∞

1
t + 1

t∑
j=0

xn+ j = 0 uniformly in n

 .
Motzkin numbers, named after Theodore Motzkin, are a remarkable sequence of integers. In mathe-

matics, the rth Motzkin number represents the count of distinct chords that can be drawn between r points
on a circle without intersecting. It is important to note that the chords do not necessarily have to touch all
the points on the circle.

Motzkin numbers, denoted as Mr(r ∈N), have diverse applications in various mathematical fields such
as geometry, combinatorics, and number theory. They possess a recursive nature and hold significant
combinatorial properties, which make them valuable tools in multiple areas of mathematics, algorithmic
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analysis, and even practical applications like coding theory. The Motzkin numbers have proven to be a rich
source of mathematical exploration and have contributed to the understanding of fundamental concepts in
different disciplines. They are represented by the following sequence:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, . . .

The Motzkin numbers satisfy the recurrence relations

Mr =Mr−1 +

r−2∑
s=0

MsMr−s−2 =
2r + 1
r + 2

Mr−1 +
3r − 3
r + 2

Mr−2.

Another relation provided by the Motzkin numbers is given below:

Mr+2 −Mr+1 =

r∑
s=0

MsMr−s, for r ≥ 0.

Furthermore, there are two another relations between Motzkin and Catalan numbers Cs can be given as

Mr =

⌊
r
2 ⌋∑

s=0

(
r
2s

)
Cs and Cr+1 =

r∑
s=0

(
r
s

)
Ms,

where ⌊.⌋ is the floor function.
The generating function m(u) =

∑
∞

r=0 Mrur of the Motzkin numbers satisfies

u2 + [m(u)]2 + (u − 1)m(u) + 1 = 0

and is described by

m(u) =
1 − u −

√

1 − 2u − 3u2

2u2 .

Expression on Motzkin numbers with the help of integral function is as follows:

Mr =
2
π

∫ π

0
sin2 u(2 cos u + 1)rdu.

They have the asymptotic behaviour

Mr ∼
1

2
√
π

(3
r

) 3
2

3r, r→∞.

For more detail on Motzkin numbers one can refer to [18].
Using the Motzkin numbers and the form of Schröder matrix [10], the Motzkin matrix M = (mrs) as

follows:

mrs :=
{ MsMr−s

Mr+2−Mr+1
, if 0 ≤ s ≤ r

0 if s > r
,

for all r, s ∈N. Note thatM is conservative (see [26]).
The inverseM−1 =

(
m−1

rs

)
of the Motzkin matrixM as

m−1
rs :=

(−1)r−s Ms+2−Ms+1
Mr

Pr−s, , if 0 ≤ s ≤ r
0, , if s > r

,
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where P0 = 1 and

Pr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 M0 0 0 · · · 0
M2 M1 M0 0 · · · 0
M3 M2 M1 M0 · · · 0
M4 M3 M2 M1 · · · 0
...

...
...

...
. . .

...
Mr Mr−1 Mr−2 Mr−3 · · · M1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for all r ∈ N\{0}. Erdem et al. [26] introduced Motzkin sequence spaces and explored various core
theorems associated with them. Building on this work, Erdem further examined compact operators on
Motzkin sequence spaces, specifically focusing on ℓp(M) in [22] and c0(M) in [23]. More recently, Erdem
et al. [25] extended this line of research by defining Paranormed Motzkin sequence spaces and analyzing
their properties.

Lemma 1.1. [43] An infinite matrix H = (hpq) ∈ (c, c) iff

sup
p∈N

∑
q

|hpq| < ∞ (2)

and there are aq, a ∈ C such that

lim
p→∞

hpq = aq, for each q ∈N (3)

lim
p→∞

∑
q

|hpq| = a. (4)

Additionally, H = (hpq) ∈ (c0, c0) iff the condition (2) and limp→∞ hpq = 0 hold.

In a recent study conducted by Jasrotia et al. [28], they examined sequence spaces derived from
the Catalan matrix that are associated with almost convergence. They also introduced the concept of
the Catalan core for sequences with complex values. Building upon this research and considering the
widespread applications of Motzkin numbers and almost convergence in diverse fields of mathematics and
computer science, the aim of our research is to extend the notion of almost convergence by employing a
matrix transformation characterized by Motzkin numbers. In this paper, we introduce the concept of the
almost convergent Motzkin sequence spaces (SSs). Moreover, we establish the β-dual of these sequence
spaces and study core theorems for the newly defined sequence spaces.

Motivated by [26], we are exploring almost convergent Motzkin SSs and aim to extend the existing
knowledge on convergence and related properties in the context of Motzkin numbers. Through the study
of almost convergent Motzkin SSs, we can gain insights into the combinatorial and structural aspects of the
underlying Motzkin numbers.

2. Almost convergent Motzkin sequence spaces (M)

In this section, we define and study the almost convergent Motzkin SSsM as a collection of sequences
whose M-transforms belong to the space A. We also establish an isomorphism between these spaces.
Subsequently, we determine the β−dual ofM.

Let v = (vq) be theM−transform of a sequence u = (uq), which is given by the expression:

vq = (Mu)q =
1

Mq+2 −Mq+1

q∑
s=0

MsMq−sus (5)



K. Raj et al. / Filomat 39:17 (2025), 5751–5764 5755

for all q ∈N. Based on this definition, we define the almost convergent Motzkin SSs as follows:

M =

u = (us) ∈ ω : ∃L ∈ C such that lim
t→∞

1
t + 1

t∑
j=0

vn+ j = L uniformly in n


and

M0 =

u = (us) ∈ ω : lim
t→∞

1
t + 1

t∑
j=0

vn+ j = 0 uniformly in n

 .
Theorem 2.1. The almost convergent Motzkin SSsM andM0 are linearly isomorphic toA andA0, respectively.

Proof. Let us define
S :M→A

u 7−→ Su =M(u)
. Clearly, S is linear. Also, S(u) = 0 implies u = 0, which shows

that S is injective.
To prove that S is surjective, let y = (yq) ∈ A and define x = (xq) by

xq =

q∑
i=0

(
(−1)q−i Mi+2 −Mi+1

Mq
Pq−i

)
yi

for all q ∈N.
Then, we have

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sxs

=
1

Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−s

s∑
i=0

(
(−1)s−i Mi+2 −Mi+1

Ms
Ps−i

)
yi

=
1

Mn+ j+2 −Mn+ j+1

n+ j∑
i=0

n+ j−i∑
s=0

(−1)sMn+ j−s−iPs

 (Mi+2 −Mi+1)yi. (6)

Since
∑n+ j−i

s=0 (−1)sMn+ j−s−iPs = 0 for n + j , i, so the right hand side of equation (6) reduces to

1
Mn+ j+2 −Mn+ j+1

(−1)0M0P0(Mn+ j+2 −Mn+ j+1)yn+ j.

Thus, we conclude that

lim
t→∞

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sxs = lim
t→∞

1
t + 1

t∑
j=0

yn+ j

exists uniformly in n. This shows that x = (xq) ∈ M and so S is surjective. Hence,M is linearly isomorphic
toA. The spaceM0 is linearly isomorphic toA0 can be proved in a similar way.

For any sequence spaces Z1 and Z2, the set S(Z1,Z2) is defined by

S(Z1,Z2) =
{
z = (zq) ∈ ω : yz = (yqzq) ∈ Z2 for all y = (yq) ∈ Z1

}
.

If we take Z2 = cs, the the set S(Z1, cs) is called the β−dual of Z1 and is denoted as Zβ1.
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Lemma 2.2. [42] H = (hpq) ∈ (A, c) iff

sup
p∈N

∑
q

|hpq| < ∞, (7)

and there are aq, a ∈ C such that

lim
p→∞

hpq = aq, for each q ∈N (8)

lim
p→∞

∑
q

|hpq| = a, (9)

lim
p→∞

∑
q

|∆(hpq − aq)| = 0. (10)

Theorem 2.3. The β−dual ofM is defined as

Mβ =M1 ∩M2 ∩M3 ∩M4 ∩M5,

where

M1 =

z = (zq) ∈ ω : sup
t→∞

t∑
p=0

∣∣∣∣∣∣∣
t∑

q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq

∣∣∣∣∣∣∣ < ∞
 ,

M2 =

z = (zq) ∈ ω : lim
t→∞

t∑
q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq exists

 ,
M3 =

z = (zq) ∈ ω : lim
t→∞

t∑
p=0

 t∑
q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq

 exists

 ,
M4 =

z = (zq) ∈ ω : lim
t→∞

t∑
p=0

∣∣∣∣∣∣∣
t∑

q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq

∣∣∣∣∣∣∣ = 0

 ,
M5 =

z = (zq) ∈ ω : lim
t→∞

∑
p

∣∣∣∣∣∣∣∆
 t∑

q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq − zp


∣∣∣∣∣∣∣ = 0

 .
In this case

zp = lim
t→∞

t∑
q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq.

Proof. Let z = (zq) ∈ ω and the equality

t∑
p=0

zpyp =

t∑
p=0

zp

 p∑
q=0

(−1)p−q Mq+2 −Mq+1

Mp
Pq−pxq


=

t∑
p=0

 t∑
q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq

 xp = (Dx)t
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for all t ∈N, and the matrix D = (dtp) is defined by

dtp =


t∑

q=p

(−1)q−p Mp+2 −Mp+1

Mq
Pq−pzq if 0 ≤ p ≤ t

0 otherwise.

(11)

Thus, from (11) we get zy = (zpyp) ∈ cs whenever y = (yp) ∈M iffDx ∈ c for x = (xp) ∈ A,where D is defined
by (11). Thus, z = (zq) ∈Mβ iff D ∈ (A, c). Hence, from Lemma 2.2, we get the result.

3. Matrix transformations on the spacesM andM0

Consider the infinite matrices C = (cnk) and E = (enk), which map the sequences u = (uk) and v = (vk) to
the sequences z = (zn) and t = (tn), respectively, as defined by the following relations:

zn = (Cu)n =
∑

k

cnkuk, n ∈N (12)

and

tn = (Ev)n =
∑

k

enkvk, n ∈N. (13)

Here, the method E is applied to theM-transform of the sequence v = (vk), while the method C is applied
directly to the sequence u = (uk). Therefore, the methods C and E are fundamentally different.

Now, suppose the matrix product EM exists, which is a weaker assumption compared to the conditions
typically required for the matrix E to belong to any specific matrix class. The methods C and E are called
dual summability methods of a new type if tn reduces to zn or zn reduces to tn through formal summation
by parts. This implies that EM exists and equals C, and the formal relation (EM)u = E(Mu) holds if one
side exists. Hence, the entries of C = (cnk) and E = (enk) are related by the following expressions:

cnk =

∞∑
j=k

MkM j−k

M j+2 −M j+1
enj or enk =

Mk+2 −Mk+1

Mk
(cn,k − cn,k+1) (14)

for all n, k ∈N.

Lemma 3.1. H ∈ (A, l∞) if and only if

sup
p∈N

∑
q

|hpq| < ∞. (15)

Theorem 3.2. Suppose that the infinite matrices C = (cnk) and E = (enk) are connected with the relation (14). Then
C ∈ (M,Z) if and only if E ∈ (A,Z) and(Mn+2 −Mn+1

Mn

)
cnk ∈ c0, (16)

for every fixed k ∈N, where Z is any given sequence space.

Proof. Let C ∈ (M,Z) and take u ∈ M and keep in mind v = Mu. Then (cnk)k∈N ∈ d1 ∩ cs, where d1 ={
u = (uk) :

{(
Mk+2−Mk+1

Mk

)
uk

}
∈ l∞

}
and EM exists which implies that (enk)k∈N ∈ l1 = Aβ for each n ∈ N. Thus,

Ev exists for each v = (vk) ∈ A.
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Now,

m∑
k=0

enkvk =

m∑
k=0

enk

 k∑
s=0

MsMk−s

Mk+2 −Mk+1
us


=

m∑
k=0

k∑
s=0

enk
MsMk−s

Mk+2 −Mk+1
us

=

m∑
s=0

us

m∑
k=s

enk
MsMk−s

Mk+2 −Mk+1

=

m∑
k=0

m∑
j=k

MkM j−k

M j+2 −M j+1
enjuk, (17)

for all m,n ∈N. Taking m→∞ and using the relation (14), we have Ev = Cu. This implies E ∈ (A,Z).
Conversely, suppose that (16) holds and E ∈ (A,Z). Then, (enk) ∈ ℓ1 = Aβ for all n ∈ N which gives

together with (16) that Cu exists.
Now,

(Ev)n =
∑

k

enkvk

=
∑

k

enk

 k∑
s=0

MsMk−s

Mk+2 −Mk+1
us


=

∑
k

∞∑
j=k

MkM j−k

M j+2 −M j+1
enjuk

=
∑

k

cnkuk

= (Cu)n, (n ∈N). (18)

This implies Cu = Ev. Hence Cu ∈ Z for all u ∈M, that is, C ∈ (M,Z).

Theorem 3.3. Suppose that the matrices L = (lnk) and V = (vnk) are connected with the relation

vnk =

n∑
j=0

M jMn− j

Mn+2 −Mn+1
l jk, n, k ∈N.

Then L ∈ (Z,M) if and only if V ∈ (Z,A).

Proof. Let u = (uk) ∈ Z and consider the following equality

n∑
j=0

M jMn− j

Mn+2 −Mn+1

m∑
k=0

l jkuk =

m∑
k=0

vnkuk, (m,n, k ∈N).

Taking m→∞ implies that Lu ∈Mwhenever u ∈ Z if and only if Vu ∈ Awhenever u ∈ Z .

Now, we present the following propositions derived from Lemmas 2.2−3.1 and Theorems 3.2−3.3.

Proposition 3.4. P = (ank) ∈ (M, l∞) if and only if

lim
n→∞

∑
k

∣∣∣∣∣∣∣∣∆
 ∞∑

j=k

MkM j−k

M j+2 −M j+1
anj − ak


∣∣∣∣∣∣∣∣ = 0, (19)
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{ank}k∈N ∈M
β,∀n ∈N. (20)

Proposition 3.5. P = (ank) ∈ (M, c) if and only if (19), (20) hold and

lim
n→∞

∑
k

∞∑
j=k

MkM j−k

M j+2 −M j+1
anj = a, (21)

lim
n→∞

∞∑
j=k

MkM j−k

M j+2 −M j+1
anj = ak for each k ∈N, (22)

also hold.

Proposition 3.6. P = (ank) ∈ (l∞,M) if and only if

sup
n∈N

∑
k

∣∣∣∣ ∞∑
j=k

MkM j−k

M j+2 −M j+1
anj

∣∣∣∣ < ∞, (23)

A− lim
n→∞

∞∑
j=k

MkM j−k

M j+2 −M j+1
anj = αk exists for each fixed k ∈N, (24)

lim
m→∞

∑
k

∣∣∣∣ m∑
i=0

1
m + 1

∞∑
j=k

MkM j−k

M j+2 −M j+1
an+i, j − αk

∣∣∣∣ = 0 uniformly in n, (25)

also holds.

Proposition 3.7. P = (ank) ∈ (c,M) if and only if (23),(24) hold, and

A− lim
n→∞

∑
k

∞∑
j=k

MkM j−k

M j+2 −M j+1
anj = α (26)

hold.

4. Core theorems

Following Knoop, a core theorem is characterized as a class of matrices for which the core of the
transformed sequence is included by the core of the original sequence. For instance, Knoop’s Core Theorem
[8] establishes that K-core(Pu) ⊆ K-core(u) for any real-valued sequence u, provided that P is a positive
matrix belonging to the class (c, c)re1. In this section, we introduce a new type of core, referred to as the
BM-core of a bounded sequence and also determine the necessary and sufficient conditions on a matrix P
for which BM-core(Pu) ⊆ K−core(u) and BM-core(Pu) ⊆ st−core(u) for all u ∈ ℓ∞.

Let us define the following functionals on l∞:

I(u) = lim inf
k→∞

uk,

S(u) = lim sup
k→∞

uk,
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sσ(u) = lim sup
t→∞

sup
n∈N

1
t + 1

t∑
i=0

uσi(n),

S∗(u) = lim sup
t→∞

sup
n∈N

1
t + 1

t∑
i=0

un+i.

Let u ∈ l∞. Then the σ-core of u is defined as [−sσ(−u), sσ(u)] and sσ(Pu) ≤ S(u) (σ-core of Pu ⊆ K-
core of u) and sσ(Pu) ≤ sσ(u) (σ-core of Pu ⊆ σ-core of u), have been studied in [33]. Here, the K-core
(or Knoop-core) of u is [I(u),S(u)] [8]. When σ(n) = n + 1, sσ(u) = S∗(u), that is, σ-core of u reduces to
B-core of u. Here, B-core (or Banach-core) of u is [−S∗(−u),S∗(u)] (see [40]). Many authors studied B-core
and σ-core (see [9],[17],[33],[37],[40]). Fridy and Orhan [27] introduced the concept of statistical core of a
statistically bounded sequence as [st− lim inf u, st− lim sup u], where st− lim inf u and st− lim sup u denote
the statistical limit inferior and statistical limit superior of u ∈ l∞, respectively and determine the necessary
and sufficient conditions onP such that for every bounded sequence u, K-core(Pu) ⊂ st-core(u). For a more
comprehensive understanding of statistical core theorems, (see [13], [20], [21], [39]).

Definition 4.1. Let u = (uk) ∈ l∞. Then BM-core of u is defined by [−U∗(−u),U∗(u)], where

U∗(u) = lim sup
t→∞

sup
n

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sus

−U∗(−u) = lim inf
t→∞

sup
n

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sus.

Lemma 4.2. [11] Let ∥B∥ < ∞ and lim
t→∞

sup
n∈N
|btk(n)| = 0. Then there is a bounded sequence v = (vk) with ∥v∥ ≤ 1

and

lim sup
t→∞

sup
n∈N

∑
k

btk(n)vk = lim sup
t→∞

sup
n∈N

∑
k

|btk(n)|. (27)

Theorem 4.3. For every bounded sequence u, BM-core(Pu) ⊆ K-core(u) if and only if P ∈ (c,M)re1 and

lim
t→∞

sup
n

∑
k

1
t + 1

∣∣∣∣∣∣∣∣
t∑

j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k

∣∣∣∣∣∣∣∣ = 1. (28)

Proof. Suppose BM-core(Pu) ⊂ K-core(u), for all u ∈ l∞. Let u ∈ M, then U∗(Pu) = −U∗(−Pu). By the
hypothesis, we get

−S(−u) ≤ −U∗(−Pu) ≤ U∗(Pu) ≤ S(u).

Let u ∈ c, then S(u) = −S(−u) = lim u. So, we have

A− limPu = U∗(Pu) = −U∗(−Pu) = lim u.

This yields that P ∈ (c,M)re1.
Now, define the sequence of infinite matrices B = (btk(n)) by

btk(n) =
1

t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k for all t, k,n ∈N.
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Then, the sequence B = (btk(n)) satisfies the conditions of Lemma 4.2, we have

1 ≤ lim inf
t→∞

sup
n∈N

∑
k

|btk(n)| ≤ lim sup
t→∞

sup
n∈N

∑
k

|btk(n)|

= lim sup
t→∞

sup
n∈N

∑
k

btk(n)vk

= U∗(Pv) ≤ S(v) ≤ ∥v∥ ≤ 1.

Conversely, suppose that P ∈ (c,M)re1 and (28) hold for all u ∈ l∞. For any real number r, we write
r+ = max{r, 0} and r− = max{−r, 0} then |r| = r+ + r−, r = r+ − r− and |r| − r = 2r−. Therefore, for given ϵ > 0,
there k0 ∈N such that uk < S(u) + ϵ for all k > k0.

Now,∑
k

btk(n)uk =
∑
k<k0

btk(n)uk +
∑
k≥k0

(btk(n))+uk −
∑
k≥k0

(btk(n))−uk

≤ ∥u∥
∑
k<k0

|btk(n)| + [S(u) + ϵ]
∑

k

|btk(n)| + ∥u∥
∑

k

[|btk(n)| − btk(n)].

Apply lim sup
t→∞

sup
n

and using hypothesis in the above inequality, we have U∗(Pu) ≤ S(u) + ϵ. Since, ϵ is

arbitrary, we have BM-core(Pu) ⊆ K-core(u) for all u ∈ l∞.

Theorem 4.4. The necessary and sufficient conditions for a matrix P ∈ (st ∩ l∞,M)re1 is P ∈ (c,M)re1 and

lim
t→∞

∑
k∈F,δ(F)=0

1
t + 1

∣∣∣∣∣∣∣∣
t∑

j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k

∣∣∣∣∣∣∣∣ = 0 uniformly in n. (29)

Proof. Let P ∈ (st ∩ l∞,M)re1. Then P ∈ (c,M)re1, since c ⊂ st ∩ l∞. For a given sequence u ∈ l∞, we construct
a new sequence û = (ûk) such that

ûk =

{
uk ; for k ∈ F
0 ; for k < F,

where F ⊆ N with zero natural density. Then, st − lim ûk = 0 and û ∈ st0, we have Pû ∈ M0. Define the
matrix T = (tnk) as

tnk =

{
ank ; for k ∈ F
0 ; for k < F,

for all n. Since (Pû)n =
∑

k∈F ankûk, we have T = (tnk) ∈ (l∞,M0).Hence, by Proposition 3.6, the condition (29)
holds.

Conversely, suppose that P ∈ (c,M)re1 and (29) holds. Let u ∈ st ∩ l∞ and st − lim u = L. For any given
ϵ > 0,write F = {k : |uk − L| ≥ ϵ} so that δ(F) = 0. Since, P ∈ (c,M)re1 andM − lim

∑
k ank = 1, we have

M − lim(Pu) =M − lim

∑
k

ank(uk − L) + L
∑

k

ank


=M − lim

∑
k

ank(uk − L) + L


= lim

t→∞
sup

n

∑
k

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k(uk − L) + L. (30)
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Since ∣∣∣∣∣∣∑
k

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k(uk − L)

∣∣∣∣∣∣
≤ ∥u∥

∑
k∈F

1
t + 1

∣∣∣∣∣∣ t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k

∣∣∣∣∣∣ + ϵ∥P∥. (31)

Taking limit t→∞ in (31) and using (29), we have

lim
t→∞

∑
k

1
t + 1

t∑
j=0

1
Mn+ j+2 −Mn+ j+1

n+ j∑
s=0

MsMn+ j−sas,k(uk − L) = 0 uniformly in n.

Hence,M − lim(Pu) = st − lim u, that is, P ∈ (st ∩ l∞,M)re1.

Theorem 4.5. For every bounded sequence u, BM-core(Pu) ⊆ st-core(u) if and only if P ∈ (st ∩ l∞,M)re1 and (28)
holds.

Proof. Suppose BM-core(Pu) ⊆ st-core(u), for a bounded sequence u. Then U∗(Pu) ≤ a(u) for all u ∈ l∞, where
a(u) is the statistical limit superior of u. Since, a(u) ≤ S(u) for all u ∈ l∞ (see [27]), we have (28) from Theorem
4.3. Also, −a(−u) ≤ −U∗(−Pu) ≤ U∗(Pu) ≤ a(u), that is, st − lim inf u ≤ −U∗(−Pu) ≤ U∗(Pu) ≤ st − lim sup u.
If u ∈ st∩l∞, then st−lim inf u = st−lim sup u = st−lim u. Thus, st−lim u = −U∗(−Pu) = U∗(Pu) =M−limPu,
that is, P ∈ (st ∩ l∞,M)re1.

Conversely, suppose that P ∈ (st ∩ l∞,M)re1 and (28) holds. If u ∈ l∞, then a(u) < ∞. Let F ⊂N defined
by F = {k : uk > a(u) + ϵ} for given ϵ > 0. Then δ(F) = 0 and uk ≤ a(u) + ϵ if k < F. For any real number r, we
write r+ = max{r, 0} and r− = max{−r, 0} then |r| = r+ + r−, r = r+ − r− and |r| − r = 2r−.

Now,∑
k

btk(n)uk =
∑
k<k0

btk(n)uk +
∑
k≥k0

(btk(n))uk

=
∑
k<k0

btk(n)uk +
∑
k≥k0

(btk(n))+uk −
∑
k≥k0

(btk(n))−uk

≤ ∥u∥
∑
k<k0

|btk(n)| +
∑

k≥k0,k<F

(btk(n))+uk +
∑

k≥k0,k∈F

(btk(n))+uk

+ ∥u∥
∑
k≥k0

[|btk(n)| − btk(n)]

≤ ∥u∥
∑
k<k0

|btk(n)| + [a(u) + ϵ]
∑

k≥k0,k<F

|btk(n)|

+ ∥u∥
∑

k≥k0,k∈F

|btk(n)| + ∥u∥
∑
k≥k0

[|btk(n)| − btk(n)].

Thus, by applying lim sup
t→∞

sup
n

and using hypothesis, we have U∗(Pu) ≤ a(u) + ε. Hence, we have BM-

core(Pu) ⊆ st-core(u) for all u ∈ l∞.

5. Conclusion

In this article, we focus on modifying the research on Motzkin numbers to introduce a new space
termed as the almost convergent Motzkin SS. We demonstrate that this space is linearly isomorphic to the
space of all almost convergent sequences. Additionally, we calculate the β-dual of this newly established
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space. We characterize (M,Z) and (Z,M) and also determine the necessary and sufficient condition on
P such that for every bounded sequence u, BM-core(Pu) ⊆ K-core(u) and BM-core(Pu) ⊆ st-core(u). In
future investigations, it will be possible to obtain results corresponding to those presented in this paper by
utilizing the Riesz transform of the Motzkin numbers.
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