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Abstract. In this paper, we discover some properties of partial isometries by some related idempotent
elements, projections, PE elements, mainly via constructing some equations to study new characterizations
of PI elements in a rings with involution. The paper explores the representations of the general solution
of univariate and bivariate equations, and then combining PI elements, it further optimizes the form of
solutions to characterize PI elements. This work obtains some necessary and sufficient conditions of PI
elements, and its new characterizations enrich the understanding of partial isometries.

1. Introduction

In this paper, R is a ring with identity. If a map ∗ : R→ R satisfies for a, b ∈ R,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗,

then R is said to be an involution ring or a ∗−ring.
Let R be a ∗-ring and a ∈ R. If there exists a+ ∈ R such that

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a,

then a is called a Moore Penrose invertible element, and a+ is called the Moore Penrose inverse of a [3, 6].
Let R+ denote the set of all Moore Penrose invertible elements of R.

If there exists a#
∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a,

then a is called a group invertible element and a# is called the group inverse of a [4, 7, 8], and if a# exists,
then it is uniquely determined by these equations. We write R# to denote the set of all group invertible
elements of R.

If a = aa∗a, then a is called a partial isometry of R [3, 6]. Let RPI denote the set of all partial isometries of
R. Obviously, if a ∈ R+, then a ∈ RPI if and only if a∗ = a+.

If a = a2, then a is called an idempotent element. Let E(R) denote the set of all idempotent elements of R.
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Let R be a ∗-ring and a ∈ R. If a = a2 = a∗, then a is called a projection. Let PE(R) denote the set of all
projections of R.

If a ∈ R#
∩ R+ and a# = a+, then a is called an EP element. On the studies of EP, the readers can refer to

[2, 3, 5, 9, 10, 12, 15–17]. We denote the set of all EP elements of R by REP.
Recent researches in partial isometries have produced some findings. In [12], many characterizations

of PI elements are given. In [14], D. Mosić, D. S. Djordjević presented some equivalent conditions for the
element a in a ring with involution to be a partial isometry. In [18, 22], some people study the solutions of
some related equations in a given set χa = {a, a#, a+, a∗, (a#)∗, (a+)∗} to characterize partial isometries. In [1],
the paper provided some sufficient and necessary conditions for an element in a ring to be an EP element, a
partial isometry element, a normal EP element and a strongly EP element by using solutions of equations.
In [20], it characterized partial isometries by using some invertible elements.

Motivated by these results, this paper intends to characterize partial isometries through the close
relationships among idempotents, projections, EP elements and PE elements. By constructing, adjusting
and revising series of univariate and bivariate equations: x = ya∗a and also giving the solutions of some
equations, this paper is intended to provide some new equivalent conditions for an element to be partial
isometry in a ring with involution .

2. The idempotency of partial isometries

We begin with the following lemma to characterize partial isometry element by linking it with some
projections and idempotent elements of R.

Lemma 2.1. [12, Theorem 1.5.1] Let a ∈ R+. Then the followings are equivalent:
(1) a ∈ RPI; (2) a+a = a∗a; (3) aa+ = aa∗; (4) a+ = a∗; (5) a = (a+)∗.

Theorem 2.2. Let a ∈ R+. Then the followings are equivalent:
(1) a ∈ RPI; (2) a∗a ∈ E(R); (3) a∗a ∈ PE(R); (4) aa∗ ∈ E(R); (5) aa∗ ∈ PE(R).

Proof. (1)⇒(2) Assume a ∈ RPI. Then a∗a = a+a ∈ E(R) by Lemma 2.1.
(2)⇒(3) Noting that (a∗a)∗ = a∗a. Then a∗a ∈ E(R) implies a∗a ∈ PE(R).
(3)⇒(4) Since a∗a ∈ PE(R), a∗a = (a∗a)2 = a∗aa∗a. Multiplying the equality on the right by a+, we get

a∗ = a∗aa∗.

So, aa∗ = aa∗aa∗ = (aa∗)2 and aa∗ ∈ E(R).
(4)⇒(5) Since (aa∗)∗ = aa∗, aa∗ ∈ E(R) implies aa∗ ∈ PE(R).
(5)⇒(1) Suppose that aa∗ ∈ PE(R). Then aa∗ = (aa∗)2 = aa∗aa∗. Multiplying the equality on the right by

(a+)∗, we get
a = aa∗(a+)∗ = aa∗aa∗(a+)∗ = aa∗a.

Hence, a ∈ RPI.

We generalize Lemma 2.1 as follows.

Theorem 2.3. Let a ∈ R+. Then the followings are equivalent:
(1) a ∈ RPI; (2) a+a − a∗a ∈ E(R); (3) aa+ − aa∗ ∈ E(R).

Proof. (1)⇒(2) Assume that a ∈ RPI. Then, by Lemma 2.1 a+a − a∗a = 0 ∈ E(R).
(2)⇒(3) Since a+a − a∗a ∈ E(R), a+a − a∗a = (a+a − a∗a)2 = a+a − a∗a − a∗a + (a∗a)2. So, we get

a∗a = (a∗a)2.

By Theorem 2.2, a ∈ RPI. Again, by Lemma 2.1, aa+ − aa∗ = 0 ∈ E(R).
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(3)⇒(1) The condition aa+ − aa∗ ∈ E(R) implies

aa+ − aa∗ = (aa+ − aa∗)2 = aa+ − aa∗ − aa∗ + (aa∗)2.

It follows that
aa∗ = (aa∗)2.

By Theorem 2.2, a ∈ RPI.

Theorem 2.4. Let a ∈ R+. Then the followings are equivalent:
(1) a ∈ RPI; (2) aa∗ + (1 − aa∗)xaa∗ ∈ E(R) for any x ∈ R; (3) a∗a + (1 − a∗a)xa∗a ∈ E(R) for any x ∈ R.

Proof. (1)⇒(2) Assume that a ∈ RPI. Then aa∗ ∈ E(R) by Theorem 2.2. Hence,

(aa∗ + (1 − aa∗)xaa∗)2 = (aa∗)2 + aa∗(1 − aa∗)xaa∗ + (1 − aa∗)x(aa∗)2 + (1 − aa∗)xaa∗(1 − aa∗)xaa∗

= aa∗ + 0 + (1 − aa∗)xaa∗ + 0 = aa∗ + (1 − aa∗)xaa∗.

One gets aa∗ + (1 − aa∗)xaa∗ ∈ E(R).
(2)⇒(1) Suppose that aa∗+ (1−aa∗)xaa∗ ∈ E(R) for each x ∈ R. Especially, choose x = 0, one has aa∗ ∈ E(R).

By Theorem 2.2, we get a ∈ RPI.
The proof of (1)⇐⇒(3) is similar.

Let u ∈ R. If u2 = 1, then u is called a square element.
Let u ∈ R. If u2 = u + 2, then u is called a quasi-idempotent element.

Theorem 2.5. Let R be a ring and e ∈ R. Then e is an idempotent element if and only if 2e − 1 is a square element
and 3e − 1 is a quasi-idempotent element.

Proof. “ =⇒ ” Assume that e is idempotent. Then

(2e − 1)2 = 4e2
− 4e + 1 = 4e − 4e + 1 = 1,

(3e − 1)2 = 9e2
− 6e + 1 = 9e − 6e + 1 = 3e + 1 = (3e − 1) + 2.

“⇐= ” From the assumption, we have

1 = (2e − 1)2 = 4e2
− 4e + 1,

and
3e + 1 = (3e − 1) + 2 = (3e − 1)2 = 9e2

− 6e + 1.

This gives 4e2 = 4e, and 9e2 = 9e. Hence,

e2 + 4e2 + 4e2 = 9e2 = 9e = e + 4e + 4e.

It follows e2 = e. Thus, e is idempotent.

3. Characterize partial isometries by the solution of certain equation in a fixed set

Let a ∈ R#
∩R+. We record {a, a+, a∗, (a+)∗, a#, (a#)∗, (a#)+, (a+)#

} as ρa. Among ρa, some equalities have been
given in [11].

In [18], it is shown that a ∈ R#
∩ R+ is partial isometry if and only if the equation x = xa∗a has at least

one solution in χa = {a, a#, a+, a∗, (a+)∗, (a#)∗}. Inspired by this, we consider the following equation:

x + xa+a = xa∗a + aa+x. (3.1)
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Lemma 3.1. [21, Lemma 2.11] Let a ∈ R#
∩ R+ and x, y ∈ R.

(1) If a+a+x = 0, then a+x = 0.
(2) If ya+a+ = 0, then ya+ = 0.

Lemma 3.2. [11] Let a ∈ R#
∩ R+. Then (a#)+ = a+a3a+ and (a+)# = (aa#)∗a(aa#)∗.

Theorem 3.3. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if Eq.(3.1) has at least one solution in ρa.

Proof. “ =⇒ ” Assume that a ∈ RPI. Then a = aa∗a. It follows

a# = a#a#a = a#a#aa∗a = a#a∗a, a = (a+)∗a∗a.

Noting a#a+a = a# = aa+a# and (a+)∗a+a = (a+)∗ = aa+(a+)∗. Hence, a, a#, (a+)∗ are all the solutions to Eq.(3.1).
“⇐= ” From the assumption, we have x + xa+a = xa∗a + aa+x for some x ∈ ρa.
(1) If x = a, then a + aa+a = aa∗a + aa+a, that is a = aa∗a. Thus, a ∈ RPI.
(2) If x = a#, then a# + a#a+a = a#a∗a + aa+a#, that is, a# = a#a∗a. This gives a ∈ RPI by [12, Theorem 1.5.2].
(3) If x = a+, then a+ + a+a+a = a+a∗a + aa+a+. Multipying the equality on the left by a+a, one gets

a+a2a+a+ = aa+a+.

By Lemma 3.1, we get
a+a2a+ = aa+.

Hence, a ∈ REP, it follows that x = a#. By (2), a ∈ RPI.
(4) If x = a∗, then a∗ + a∗a+a = a∗a∗a + aa+a∗. Multiplying the equality on the left by (a#)∗, one yields

a+a = a∗a. Hence, a ∈ RPI by Lemma 2.1.
(5) If x = (a+)∗, then (a+)∗ + (a+)∗a+a = (a+)∗a∗a + aa+(a+)∗, that is, (a+)∗ = a. Hence, a ∈ RPI by Lemma 2.1.
(6) If x = (a#)∗, then

(a#)∗ + (a#)∗a+a = (a#)∗a∗a + aa+(a#)∗.

Multiplying the equality on the left by a∗, one obtains a+a = a∗a. Hence, a ∈ RPI by Lemma 2.1.
(7) If x = (a#)+ = a+a3a+, then

a+a3a+ + a+a3a+a+a = a+a3a+a∗a + aa+a+a3a+.

Multiplying the equality on the left by a+a, one gets

a+a2a+a+a3a+ = aa+a+a3a+.

Noting that a3a+a# = a. Then

aa+a+ = aa+a+aa+ = aa+a+a3a+a#a+ = a+a2a+a+a3a+a#a+ = a+a2a+a+.

By Lemma 3.1, aa+ = a+a2a+. Hence, a ∈ REP, it follows that

x = (a#)+ = (a+)+ = a.

By (1), a ∈ RPI.
(8) If x = (a+)# = (aa#)∗a(aa#)∗, then

(aa#)∗a(aa#)∗ + (aa#)∗a(aa#)∗a+a = (aa#)∗a(aa#)∗a∗a + aa+(aa#)∗a(aa#)∗.

That is,
(aa#)∗a(aa#)∗ + (aa#)∗a = (aa#)∗aa∗a + a(aa#)∗.

Multiplying the equality on the left by a+, one gets a+a = a∗a. Hence, a ∈ RPI by Lemma 2.1.

To further study the characterizations of partial isometries, then we transform univariate equations into
bivariate equations. Now we consider the following equation:

x = ya∗a. (3.2)
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Theorem 3.4. Let a ∈ R+. Then the general solution to Eq.(3.2) is given by{
x = pa∗a
y = p + v − va+a

, p, u, v ∈ R. (3.3)

Proof. First,
ya∗a = (p + v − va+a)a∗a = pa∗a + va∗a − va+aa∗a = pa∗a = x.

So, the formula (3.3) is a solution to Eq.(3.2).
Next, let{

x = x0

y = y0
(3.4)

be any solution to Eq.(3.2). Then
x0 = y0a∗a.

Take p = x0a+(a+)∗ and v = y0, then

p = x0a+(a+)∗ = y0a∗aa+(a+)∗ = y0(a+aa+a)∗ = y0a+a = va+a.

Hence,
y0 = p + y0 − p = p + v − va+a,

x0 = y0a∗a = y0a+aa∗a = pa∗a.

Hence, every solution to Eq.(3.2) has the form of the formula (3.3). Therefore, the general solution to Eq.(3.2)
is given by (3.3).

Theorem 3.5. Let a ∈ R+. Then a ∈ RPI if and only if the general solution to Eq.(3.2) is given by{
x = pa+a
y = p + v − va+a

, p, u, v ∈ R. (3.5)

Proof. “ =⇒ ” Assume that a ∈ RPI. Then a+ = a∗ by Lemma 2.1.
So, the formula (3.5) is the same as the formula (3.3). By Theorem 3.4, we are done.
“⇐= ” From the assumption, for all p ∈ R, we obtain

pa+a = x = ya∗a = (p + v − va+a)a∗a = pa∗a.

Especially, choose p = a. Then
a = aa+a = aa∗a.

Hence, a ∈ RPI.

Now we consider the following equation:

x = ya+a. (3.6)

It is easy to show the following lemma.

Lemma 3.6. Let a ∈ R+. Then the general solution to Eq.(3.6) is given by Formula (3.5).

From Theorem 3.5 and Lemma 3.6, we have the following theorem.

Theorem 3.7. Let a ∈ R+. Then a ∈ RPI if and only if Eq.(3.6) has the same solution as Eq.(3.2).
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We adjust Eq.(3.2) as the following equation:

ayx = xy(a+)∗. (3.7)

Theorem 3.8. Let a ∈ R#
∩R+. Then a ∈ RPI if and only if Eq.(3.7) has at least one solution in ρ2

a = {(x, y)|x, y ∈ ρa},
where ρa = {a, (a+)∗, (a#)∗, (a+)#, (a#)+}.

Proof. “ =⇒ ” Suppose that a ∈ RPI. Then (a+)∗ = a by Lemma 2.1.
Hence,

(x, y) = ((a+)∗, a) (3.8)

is a solution.
“⇐= ” (1) If y = a, then Eq.(3.7) is converted into

a2x = xa(a+)∗.

1O If x = a, then a3 = a2(a+)∗. Thus,

a = a#a#a3 = a#a#a2(a+)∗ = a#a(a+)∗ = (a+)∗.

From Lemma 2.1, we get a ∈ RPI.
2O If x = (a+)∗, then a2(a+)∗ = (a+)∗a(a+)∗.
Multiplying the equality on the right by a∗a#, one gets

a = (a+)∗.

By Lemma 2.1, a ∈ RPI.
3O If x = (a#)∗, then a2(a#)∗ = (a#)∗a(a+)∗ = (a#)∗a(a+)∗aa# = a2(a#)∗aa#.
Multiplying the equality on the left by a+a#, one gets

(a#)∗ = (a#)∗aa#.

By [12, Theorem 1.1.3], a ∈ REP. Thus, x = (a#)∗ = (a+)∗. It follows from 2O that a ∈ RPI.
4O If x = (a#)+ = a+a3a+, then a4a+ = a2a+a3a+ = a+a3a+a(a+)∗ = a+a3(a+)∗.
Multiplying the equality on the left by a#a#, one yields

a2a+ = (a+)∗ = (a+)∗aa# = a2a+aa# = a.

Hence, a ∈ REP. It follows that x = (a#)+ = a. Thus, a ∈ RPI by 1O.
5O If x = (a+)# = (aa#)∗a(aa#)∗, then

a2(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗a(a+)∗ = a+a(aa#)∗a(aa#)∗a(a+)∗ = a+a3(aa#)∗a(aa#)∗. (3.9)

Noticing that (aa#)∗a(aa#)∗a+a+ = (aa#)∗aa+a+ = (aa#)∗a+ = a+.
Then we multiply the equality(3.9) on the right by a+a+a#, one yields

aa# = a2a+a# = a+a3a+a# = a+a.

Hence, a ∈ REP. This infers x = (a+)# = a. Therefore, a ∈ RPI by 1O.
(2) If y = (a+)∗, then Eq.(3.7) is converted into

a(a+)∗x = x(a+)∗(a+)∗.

1O If x = a, then a(a+)∗a = a(a+)∗(a+)∗.
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Multiplying the equality on the left by a#, one gets

(a+)∗a = (a+)∗(a+)∗.

We take the involution ∗ to bothe sides, one yields a+a+ = a∗a+.Hence, a ∈ RPI by [21, Corollary 2.10].
2O If x = (a+)∗, then a(a+)∗(a+)∗ = (a+)∗(a+)∗(a+)∗. Taking ∗ to both sides, one gets

a+a+a+ = a+a+a∗.

By Lemma 3.1, one has a+a+ = a+a∗. Hence, a ∈ RPI by [21, Corollary 2.10].
3O If x = (a#)∗, then a(a+)∗(a#)∗ = (a#)∗(a+)∗(a+)∗. Taking ∗ to both sides, one obtains

a+a+a# = a#a+a∗.

Multiplying the equality on the right by a+a, one gets a#a+a∗ = a#a+a∗a+a.
Next, multiplying the last equality on the left by a2, one yields

aa+a∗ = aa+a∗a+a.

Again taking ∗, then we get a2a+ = a+a3a+. This gives

aa# = a2a+a# = a+a3a+a# = a+a.

Hence, a ∈ REP, which induces x = (a#)∗ = (a+)∗. Therefore, a ∈ RPI by 2O.
4O If x = (a#)+ = a+a3a+, then a(a+)∗a+a3a+ = a+a3a+(a+)∗(a+)∗, that is,

a(a+)∗a2a+ = a+a2(a+)∗(a+)∗.

Multiplying the equality on the right by a#a, one yields

a(a+)∗a2a+ = a(a+)∗a2a+a#a = a(a+)∗a.

This leads to
(a+)∗a2a+ = a#a(a+)∗a2a+ = a#a(a+)∗a = (a+)∗a.

Taking ∗ to both sides, one gets

aa+a∗aa+a+ = aa+a∗a+ = a∗a+ = a∗aa+a+.

By Lemma 3.1, aa+a∗ = a∗. Hence, by [12, Theorem 1.2.1], a ∈ REP, which infers x = (a#)+ = a. Thus, a ∈ RPI

by 1O.
5O If x = (a+)# = (aa#)∗a(aa#)∗, then

a(a+)∗(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗(a+)∗(a+)∗.

Multiplying the equality on the left by a+a, one yields

a(a+)∗(aa#)∗a(aa#)∗ = a+a2(a+)∗(aa#)∗a(aa#)∗.

Multiplying the last equality on the right by a+a+a, one yields

a(a+)∗ = a+a2(a+)∗.

Taking ∗ to both sides, one gets a+a∗ = a+a∗a+a. It follows from Lemma 3.1 that a∗ = a∗a+a. Hence, a ∈ REP.
Now x = (a+)# = a. Thus, a ∈ RPI by 1O.
(3) If y = (a#)∗, then Eq.(3.7) is converted into

a(a#)∗x = x(a#)∗(a+)∗.
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1O If x = a, then a(a#)∗a = a(a#)∗(a+)∗.We take ∗ to both sides,

a+a#a∗ = a∗a#a∗.

This gives a#a∗ = aa+a#a∗ = aa∗a#a∗.
Multiplying the last equality on the right by (a+)∗a2, we get

a = aa∗a.

Thus, a ∈ RPI.
2O If x = (a+)∗, then a(a#)∗(a+)∗ = (a+)∗(a#)∗(a+)∗. This gives a+a#a∗ = a+a#a+ and

aa∗ = a3a+a#a∗ = a3a+a#a+ = aa+.

Hence, a ∈ RPI.
3O If x = (a#)∗, then a(a#)∗(a#)∗ = (a#)∗(a#)∗(a+)∗, so a#a#a∗ = a+a#a#.
Multiplying the equality on the left by a3, one gets

aa∗ = aa#.

By [12, Theorem 1.5.3], a ∈ RPI.
4O If x = (a#)+ = a+a3a+, then a(a#)∗a+a3a+ = a+a3a+(a#)∗(a+)∗.
Multiplying the equality on the right by a#a, one yields

a(a#)∗a+a2 = a(a#)∗a+a3a+.

Multiplying the last equality on the left by a#a∗a+, one gets a#a = aa+.
Hence, a ∈ REP. It follows that x = (a#)+ = a. Thus, a ∈ RPI by 1O.
5O If x = (a+)# = (aa#)∗a(aa#)∗, then a(a#)∗(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗(a#)∗(a+)∗, that is,

a(a#)∗a(aa#)∗ = (aa#)∗a(a#)∗(a+)∗.

Multiplying the equality on the left by a+, and on the right by a∗, one yields

(a#)∗aa∗ = (a#)∗.

This gives a# = aa∗a#. Hence, a ∈ RPI by [12, Theorem 1.5.2].
(4) If y = (a#)+ = a+a3a+, then Eq.(3.7) is converted into

a3a+x = xa+a2(a+)∗.

1O If x = a, then a3a+a = aa+a2(a+)∗, that is, a3 = a2(a+)∗. Thus, a ∈ RPI.
2O If x = (a+)∗, then a3a+(a+)∗ = (a+)∗a+a2(a+)∗, that is,

a2(a+)∗ = (a+)∗a(a+)∗.

Taking ∗ to both sides, one has
a+a∗a∗ = a+a∗a+.

By Lemma 3.1, a∗a∗ = a∗a+. Hence, a ∈ RPI by [21, Corollary 2.10].
3O If x = (a#)∗, then a3a+(a#)∗ = (a#)∗a+a2(a+)∗. Taking ∗ to both sides, one gets

a#aa+a∗a∗ = a+a∗a+aa#.

Multiplying the equality on the left by (a#)∗a, one gets

a∗ = a+aa#.
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This induces
a∗a = a+aa#a = a+a.

Hence, a ∈ RPI by [12, Theorem 1.5.2].
4O If x = (a#)+ = a+a3a+, then a3a+a+a3a+ = a+a3a+a+a2(a+)∗.
Multiplying the equality on the right by a#a, one yields

a3a+a+a3a+ = a3a+a+a2.

Multiplying the last equality on the left by a+a#a#, we get

a+a+a3a+ = a+a+a2.

By Lemma 3.1, a+a3a+ = a+a2.
Hence, a ∈ REP. It follows that x = (a#)+ = a, and so a ∈ RPI by 1O.
5O If x = (a+)# = (aa#)∗a(aa#)∗, then a3a+(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗a+a2(a+)∗, that is,

a3(aa#)∗ = (aa#)∗a2(a+)∗.

Multiplying the equality on the right by a+a2, and on the left by a#a+, one yields

a2 = (a+)∗a.

This gives a∗a∗ = a∗a+. Hence, a ∈ RPI by [21, Corollary 2.10].
(5) If y = (a+)# = (aa#)∗a(aa#)∗, then Eq.(3.7) is converted into

a(aa#)∗a(aa#)∗x = x(aa#)∗a(aa#)∗(a+)∗.

1O If x = a, then a(aa#)∗a(aa#)∗a = a(aa#)∗a(aa#)∗(a+)∗.
Multiplying the equality on the left by aa+a+a+, one gets

a = (a+)∗.

Thus, a ∈ RPI by Lemma 2.1.
2O If x = (a+)∗, then a(aa#)∗a(aa#)∗(a+)∗ = (a+)∗(aa#)∗a(aa#)∗(a+)∗.
Multiplying the equality on the right by a∗a+a∗, we obtain

aa∗ = aa+.

Hence, a ∈ RPI by Lemma 2.1.
3O If x = (a#)∗, then a(aa#)∗a(aa#)∗(a#)∗ = (a#)∗(aa#)∗a(aa#)∗(a+)∗, that is,

a(aa#)∗a(a#)∗ = (a#)∗a(aa#)∗(a+)∗.

Multiplying the equality on the right by a∗a+a∗, one gets

aa∗ = (aa#)∗.

It follows that aa∗ = aa#. By [12, Theorem 1.5.3], a ∈ RPI.
4O If x = (a#)+ = a+a3a+, then a(aa#)∗a(aa#)∗a+a3a+ = a+a3a+(aa#)∗a(aa#)∗(a+)∗, that is,

a(aa#)∗a3a+ = a+a3(aa#)∗(a+)∗.

Multiplying the equality on the right by a#a, one yields

a(aa#)∗a3a+ = a(aa#)∗a2.
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Multiplying the last equality on the left by a#a+a+, we get

aa+ = aa#.

Hence, a ∈ REP, which implies x = (a#)+ = a. Thus, a ∈ RPI by 1O.
5O If x = (a+)# = (aa#)∗a(aa#)∗, then

a(aa#)∗a(aa#)∗(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗(aa#)∗a(aa#)∗(a+)∗,

that is,
a(aa#)∗a(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗a(aa#)∗(a+)∗.

Multiplying the equality on the right by a+a, one yields

a(aa#)∗a(aa#)∗a(aa#)∗ = a(aa#)∗a(aa#)∗a.

Multiplying the last equality on the left by aa+a+a+, we get

a = a(aa#)∗.

Hence, a ∈ REP by [12, Theorem 1.1.3]. Thus, x = (a+)# = a, a ∈ RPI by 1O.

Observing the Eq.(3.2), we construct the following equation:

a + x = aa∗a + ya∗a. (3.10)

Theorem 3.9. Let a ∈ R#
∩ R+. Then the general solution to Eq.(3.10) is given by{

x = aa∗a + pa∗a
y = (a+)∗ + p + v − va+a

, p, v ∈ R. (3.11)

Proof. First, it can be easily calculated that the formula (3.11) is a solution to Eq.(3.10), as follows

a + x = a + aa∗a + pa∗a,

aa∗a + ya∗a = aa∗a + ((a+)∗ + p + v − va+a)a∗a = aa∗a + a + pa∗a + va∗a − va∗a = aa∗a + a + pa∗a.

thus, the formula (3.11) is a solution to Eq.(3.10).
Then, let x = x0, y = y0 be any solution to Eq.(3.10). It deduces

a + x0 = aa∗a + y0a∗a.

This infers x0 = x0a+a.When choosing p = x0a+(a+)∗ − a, v = y0, it obtains

pa∗a = (x0a+(a+)∗ − a)a∗a = x0a+a − aa∗a = x0 − aa∗a.

Hence, x0 = aa∗a + pa∗a. Also

va+a = y0a+a = y0a∗(a+)∗ = (y0a∗a)a+(a+)∗ = (a + x0 − aa∗a)a+(a+)∗ = (a+)∗ + x0a+(a+)∗ − a = (a+)∗ + p.

It gives
y0 = (a+)∗ + p + y0 − ((a+)∗ + p) = (a+)∗ + p + v − va+a.

Therefore, the general solution to Eq.(3.10) is given by formula (3.11).

Theorem 3.10. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution to Eq.(3.10) is given by{

x = a + pa∗a
y = (a+)∗ + p + v − va+a

, p, v ∈ R. (3.12)
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Proof. “ =⇒ ” Suppose that a ∈ RPI, then a = aa∗a. This implies the formula (3.11) is the same as formula
(3.12). Thus, by Theorem 3.9, we can obtain the general solution to Eq.(3.10) is given by formula (3.12).

“⇐= ” From the assumption, for any p, v ∈ R, we obtain

a + (a + pa∗a) = aa∗a + ((a+)∗ + p + v − va+a)a∗a,

that is, a = aa∗a. Hence, a ∈ RPI.

Revised Eq.(3.10) as follows

a + x = ya∗a. (3.13)

Theorem 3.11. Let a ∈ R#
∩ R+. Then the general solution to Eq.(3.13) is given by{

x = pa∗a
y = (a+)∗ + p + v − va+a

, p, v ∈ R. (3.14)

Proof. First, it is obvious that

a + x = a + pa∗a = (a+)∗a∗a + pa∗a + va∗a − va+aa∗a = ((a+)∗ + p + v − va+a)a∗a = ya∗a.

So, the formula (3.14) is a solution to Eq.(3.13).
Then, let x = x0, y = y0 be any solution to Eq.(3.13). It gives

a + x0 = y0a∗a,

which infers x0 = x0a+a. Choosing p = x0a+(a+)∗, v = y0, one gets

pa∗a = (x0a+(a+)∗)a∗a = x0a+a = x0.

Therefore, x0 = pa∗a. And

va+a = y0a+a = y0a∗(a+)∗ = (y0a∗a)a+(a+)∗ = (a + x0)a+(a+)∗ = (a+)∗ + x0a+(a+)∗ = (a+)∗ + p.

It induces
y0 = (a+)∗ + p + y0 − ((a+)∗ + p) = (a+)∗ + p + v − va+a.

Hence, the general solution to Eq.(3.13) is given by formula (3.14).

Theorem 3.12. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution to the Eq.(3.13) is given by{

x = pa∗a
y = a + p + v − va+a

, p, v ∈ R. (3.15)

Corollary 3.13. Let a ∈ R#
∩R+. Then a ∈ RPI if and only if the general solution to the following equation is provided

by formula (3.14)

(a+)∗ + x = ya∗a. (3.16)

Proof. “ =⇒ ” If a ∈ RPI, then a = (a+)∗, it follows that Eq.(3.13) is the same as Eq.(3.16). By Theorem 3.11,
we get the general solution to Eq.(3.16) is provided by formula (3.15).

“⇐= ” From the assumption, one has

(a+)∗ + pa∗a = ((a+)∗ + p + v − va+a)a∗a.

That is, (a+)∗ = (a+)∗a∗a = a. Hence, a ∈ RPI.

From Theorem 3.11, Theorem 3.12 and Corollary 3.13, we have the following corollary.

Corollary 3.14. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if Eq.(3.13) has the same solution to Eq.(3.16).
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