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Rough intuitionistic fuzzy 2-absorbing primary ideals in semirings
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Abstract. This study presents the innovative concept of roughness in semirings built on intuitionistic
fuzzy frameworks. Specifically, this research introduces the concept of rough intuitionistic fuzzy ideals
within the framework of semirings and systematically investigates their properties. The aim of this study
is to extend the existing concepts of 2-absorbing, 2-absorbing primary, intuitionistic fuzzy 2-absorbing, and
intuitionistic fuzzy 2-absorbing primary ideals of semirings by incorporating the notion of roughness. This
extension provides a more comprehensive and refined framework for analyzing ideals and intuitionistic
fuzzy ideals in semirings. Furthermore, we explore the conditions that establish a connection between

the upper and lower rough 2-absorbing primary ideals and the upper and lower approximations of their
homomorphic images.

1. Introduction

Two fundamental concepts in commutative algebra are prime ideals and primary ideals. Several
researchers have examined various generalizations of prime ideals. In [7], Badawi introduced the concept
of a 2-absorbing ideal (2AI) as another kind of prime ideal, whereas in [8], the authors gave the idea of
2-absorbing primary ideals (2API), which is a generalization of primary ideals. Also, fuzzy prime ideals
and fuzzy primary ideals are studied in [37, 38]. Badawi [3] studied n-absorbing ideals of a commutative
ring.

The concept of fuzzy sets provides an effective framework for understanding the behavior of systems
that are either highly complex or insufficiently defined for precise mathematical analysis using traditional
tools and methods. This concept has found extensive applications in fields such as expert systems, pattern
recognition, and image processing. Zadeh initially proposed the concept of fuzzy sets in his seminal
work[45]. Subsequent studies, including [20, 21, 30, 34, 39, 46], have explored and analyzed concepts such
as prime, semiprime, maximal, and radical fuzzy ideals of a ring.

Unfortunately, the failure of the fuzzy set theory was caused by inadequate knowledge regarding the
function’s negative membership degree. In order to solve this issue, Atanassov [4] gave the concept of
intuitionistic fuzzy (IF) set which included the negative membership degree of the function in fuzzy set
theory in such a way that sum of the positive membership degree and negative membership degree must
not exceed by 1. Furthermore, in [5, 6], Atanassov defined some new operations on the IF set and studied
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their properties. Additionally, the work by Hur et al. [23] focused on the concept of IF subrings, and many
authors have attempted to extend/generalize this concept. Marashdeh et al. [36] explained how the notion
of IF rings is intricately connected to the concept of fuzzy space. Chao et al. [10] introduced interval-valued
IF sets to a wider context. Darani [11] investigated L-fuzzy 2-absorbing ideals, while Hashempoor et al.
[12] established the concept of L-fuzzy 2-absorbing ideals in semirings.

Pawlak [41] introduced rough set theory as an effective mathematical framework for addressing uncer-
tainty in data analysis. This theory, which extends conventional set theory, characterizes a subset of the
universe by employing two classical sets: the lower approximation and the upper approximation. The
definitions of these approximations are grounded in equivalence classes [44, 47], which provide the basis
for determining the boundaries of the sets. Rough set theory has since become an essential tool for handling
incomplete or imprecise information in various domains. Numerous researchers have investigated rough
sets in various mathematical structures. Biswas et al. [9] and Kuroki [32] examined the concepts of rough
subgroups and rough ideals within semigroups, expanding the application of rough set theory in algebraic
structures. Kuroki and Wang [33] also looked at how the lower and upper approximations of rough sets
relate to normal subgroups. These works help to understand how rough set theory can be applied to study
algebraic systems, especially when there is uncertainty or imprecision in the data. By integrating rough sets
with ring theory, Davvaz [13] constructed a new framework where rings functioned as universal sets. he
ideas of rough ideals and rough subrings, concerning an ideal in a ring, were proposed by Davvaz[14]. This
makes difficult mathematical concepts more understandable by deepening our understanding of rough sets
and demonstrating their connections to the larger field of ring theory. In 2008, Kazanci and Davvaz [27]
introduced the concepts of rough prime and rough fuzzy prime ideals in commutative rings. These ideas
expand on the traditional notion of prime ideals by incorporating roughness and fuzziness, offering a new
perspective for studying ideals within commutative rings. Jun [24] explored the concept of roughness in
I'-subsemigroups and ideals within I'-semigroups. In [25], the notion of rough ideals was introduced as a
generalization of ideals in BCK-algebras. Davvaz, in several works [15-17], applied approximation con-
cepts to the theory of algebraic hyperstructures. Additionally, Davvaz and Mahdavipour [18] investigated
rough modules.

The concepts of rough prime ideals and rough fuzzy prime ideals in semigroups were introduced
by Xiao [43], with further details provided in [19, 26, 28, 47]. Relationships between rough sets, fuzzy
sets, and algebraic systems have been explored by many mathematicians. Specifically, in [13], lower and
upper approximations were formulated in the context of ring theory. In [1], Ali and Zishan gave the
notion of rough 3-prime ideals and rough fuzzy 3-prime ideals in near rings. In 2011, Thomas and Nair
investigated the combination of rough set theory, IF set theory, and lattice theory to address uncertainty and
vagueness in mathematical structures. They expanded this approach to define Rough IF lattices and Rough
IF ideals , establishing rules and conditions for their properties and operations. Ali et al. [2] investigated
rough ideals in commutative semirings, demonstrating that the lower and upper approximations of a left
(right) ideal of a semiring S are also left (right) ideals of S. In [29], Kumar and Selvan introduced rough
fuzzy ideals and rough fuzzy prime ideals in semirings, and later, in [31], the concept of rough IF sets
within the context of rings were introduced and established the corresponding algebraic framework. They
introduced definitions for rough IF ideals and rough IF prime ideals, focusing on their upper and lower
approximations. In 2014, Mandal and Ranadive delved into the concept of rough IF ideals within the
framework of IF subrings in commutative rings. Their study integrates rough set theory with IF set theory
to define and explore these ideals, offering both theoretical insights and potential applications in algebra
and fuzzy systems. This research contributes to the field of mathematics, particularly fuzzy algebraic
structures, by extending traditional algebraic concepts through advanced methodologies in fuzzy logic. In
2023, Ozkan et al. [40] studied IF 2-absorbing ideals (IF2Als) and IF 2-absorbing primary ideals (IF2APIs)
in commutative semirings.
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2. Motivation

The motivation for this research stems from several key factors:

Table 1: Key motivating factors for rough intuitionistic fuzzy ideals of a semiring, along with corresponding authors
Year | Authors Motivating Factor
2012 | Kumar and Selvan Introduced rough fuzzy ideals and rough fuzzy prime ideals in
semirings ([29]). Later, introduced rough IF sets and their al-
gebraic framework in rings ([31]). Defined rough IF ideals and
rough IF prime ideals, focusing on their upper and lower approx-
imations.
2014 | Mandal and Ranadive | Explored rough IF ideals within the framework of IF subrings
in commutative rings. Integrated rough set theory with IF set
theory, offering insights into fuzzy algebraic structures.
2023 | Ozkan et al. Studied IF2Als and IF2APIs in commutative semirings ([40]).

Motivated by above studies, in this paper, we define rough 2APIs and rough IF2APIs in the framework
of a semiring, and obtain some of the special properties of these ideals. We also explore the relationships
that exist between the upper and lower rough 2APIs and the upper and lower approximations of their
homomorphic images. With more understanding of these mathematical entities’ features and relationships
inside the semiring framework, this research clarifies the complex interactions between them.

3. Contributions

This study contributes to the field of fuzzy algebra by:
e Introducing the novel concept of rough 2Als and rough IF2Als in semirings.
e Establishing fundamental properties and results of rough ideals and rough intuitionistic fuzzy ideals
in semirings that is in Lemma 4.2 and Lemma 4.3, we provide sufficient condition for upper and lower
approximations of a set of a semirings to become ideals.
o We also provide necessary and sufficient conditions for an upper and a lower approximations of a set
of a semiring #; to be a 2Al, 2API is an upper and a lower approximations of the homomorphic image of
B of a semiring %, is a 2Al, 2API of %, (See Theorem 5.3).
o We also provide necessary and sufficient conditions for an upper and a lower approximations of an IF
set A of a semiring % to be an IF2AI, IFAPI is an upper and a lower approximations of the homomorphic
image of A of a semiring %, is an IF2Al, IF2API of %, (See Theorem 6.3).
¢ Extending the application of intuitionistic fuzzy set theory in algebraic structures, building upon previous
work in related algebraic structures.

4. Preliminaries

This section presents the essential definitions, notations, and foundational results needed for the sub-
sequent sections. We also include short proofs of key resutls to keep the content complete and easy to
follow.

Definition 4.1 ([22]). A semiring % is a triplet (%, +, -), where ‘+" and *-" are two binary operations such that

(i) (#,+) is a commutative monoid with additive identity 0

(ii) (Z#,-) is a monoid with identity 1 # 0
(iii) (mq + mp)mg = my - mz + my - mg and my(my + mz) = my - My + my - mz for all my, my and mz in #
(i) m-0=0=0-m, forallme %.

If a semiring & satisfies mn = nm for all m,n € &%, then % is said to be a commutative semiring. Throughout
the paper, # is a semiring unless and otherwise stated.
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Definition 4.2 ([22]). A subset J of a semiring Z is said to be an ideal of Z, if 3 satisfies the following conditions:

(i) m+ne3, forallmmnes
(i) rm, mr €S, forally € # and m € 3.

Definition 4.3 ([22]). An ideal I of a semiring % is said to be subtractive if for mn € Z, m+n € Jandn € 3
implies that m € 3.

Definition 4.4 ([40]). An IF subset A = (ny, 6u) of a semiring % is said to be an IF ideal of % if for all x,y in #

(@) nu(x +y) = min{nu(x), nu(y)}
(ii) Ou(x +y) < max{6u(x), du(y)}
(iii) nu(xy) = max{nu(x), nu(y)}
(iv) Ou(xy) < min{du(x), du(y)}.

Example 4.5. Let % = {0,a,b, c} be a semiring defined by the following tables:

+|0 a b ¢ -]0 a b ¢
010 a b ¢ 0|0 0 0 O
ala a b c and al0 a a a
b|b b b c b|0 a a a
clc ¢ ¢ b c|0 a a a

Then an IF set A = (ny, 6u) defined by

2 1
nu(0) =1, nu(a) = 3 nu(b) = 3 nu(c) =0,

, Oule) =1

Q=

1
ou(0) =0, du(@) =3, oub)=
is an IF ideal of %.

Definition 4.6 ([42]). An IF ideal N = (na, 6u) of a semiring Z is said to be subtractive if

(1) nu(m) = min{ny(m + n), nu(n)}
(i1) ow(m) < max{owu(m + n), du(n)}, for all m,n € Z.

Definition 4.7. A congruence relation (C.R.) & on a semiring % is an equivalence relation that is compatible with
the semiring’s algebraic operations. Specifically, if (r1,12) € F, then it follows that (r1 + 1,12 + 1), (111, 121), and
(rr1,110) € F forallr € .

Definition 4.8 ([2]). A congruence relation (C.R.) F on a semiring X is called a full congruence relation (FC.R.)
on Z, if

(@) mlz + ]z = [m+n]z.
(i1) {ab|a € [m]z,b e ]z} =[mn]s.

Definition 4.9 ([2]). A congruencerelation (C.R.) .F onasemiring % as (a,b) € F is said to be Bourne's congruence
relation (B.C.R.) with respect to an ideal I of 7 if there exists i, j € I such thata +i="b+ j.

The following result show that if .# is an EC.R. on a semiring %, then it preserves both addition and
multiplication in a component-wise manner, ensuring algebraic consistency.

Theorem 4.10. If .7 is EC.R. on %, then (r1,12), (r3,ra) € F implies (r1 + 13, 12 + 1), (1173, ¥274).
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Proof. Consider .# is an EC.R. on Z and (r1,12),(r3,r4) € .. Then (r1 + 1,12 + 1), (12 + 1,12 + 5) € %. Hence,
(r1 + 1,12 +5) € #. Following analogous reasoning,it is evident that (1173, r274) € F.

In 2012, Ali et al. [2] generalized the concept of the lower and upper approximations of an ideal of a
ring to the lower and upper approximations of an ideal of a semiring as follows:

Definition 4.11 ([2]). Let .% be a F.C.R. on a semiring % and S C %. Then, the sets #_(S) = {n € Z | [n]# C S}
and F~(S) = (n € Z | [n]z N S # @} are referred to as F -lower and F -upper approximation of the set S.

F(B) = (#_-(6), #7(9)) is called a rough set with respect to & if #_(S) # #(€) and & is said to be an
upper rough ideal if .#~(S) is an ideal of Z.

In [35, Theorem 2.9], Mandal and Ranadive established a relationship between congruence relation
on a ring R; and congruence relation on a homomorphic image of R; which is a subset of another ring
R;. Motivated by the study of Mandal and Ranadive, we establish the following result for semirings (a
generalization of rings):

Theorem 4.12. Let f : %1 — %, be an epimorphism from a semiring %1 to a semiring %, and %, be a C.R. on %,.
Then;

(i) F1=A{(m,n2) € %1 X %> | (f(m), f(n2)) € F2}is C.R. on F1.
(if) If #,is EC.R. on %, and f is injective, then #; is FC.R. 9%,
(iii) For any subset ) of %1, f(F (D)) = F; (f(D))-
(iv) f(F1-(D)) € F2_(f(D)). Equality holds if f is injective.

Proof. Proof runs on the same parallel lines as of [35, Theorem 2.9].

The concept behind the following lemmas is that applying upper approximation %~ and lower approxi-
mation .%_ to an ideal doesn’t break its structure. In fact, under certain conditions, lower approximation
of the ideal coincide with itself. This concept helps us understand how congruence relations interact with
ideals in a semiring.

Lemma 4.13. Let # be an F.C.R. on semiring %. Then & ~(3J) is an ideal of Z, if J is an ideal of %.

Proof. Letx,y € #~(J)and r € #. Then [x]#z NI # ¢ and [y]# NI # ¢. So, there exista € [x]z NI and
belylg NJIsuchthata+beJ,rmeJ,anda+b e [x]z +[yle = [x+ylz, ie., [x+ylez NI # ¢ and we have

x+yeZ(3J). 1)
Since (a,x) € #, then we get (ra,rx) € #. Thus ra € [rx] # and ra € I, we obtain [rx]z NI # ¢ thatis

rx € (). (2)
Thus, .#~(3J) is an ideal of Z.

Lemma 4.14. Let .# be an E.C.R. on a semiring % and I be an ideal of Z. If F_(3J) # ¢, then F_(3J) is an ideal of
. Moreover, if # is a B.C.R. and J is the subtractive ideal of % containing I, then F_(3J) = 3.

Proof. Assume that .#_(3) is a nonempty set. Then for any a,b € F#_(3), [a]l#z € J, [b]l# C 3. Since .Z is
EC.R., then [a + bl = [al% + [b]l# € 3+ 3 C 3. Therefore, a + b € .F_(3J). Since J is an ideal of Z#, then for
r €%, ralz = [rlzlalsz C[r]l#3 € 3. Similarly [ar]z = [a]lz[r]# € 3[r]lz C 3.

Moreover, assume that .# is a B.C.R. and J is a subtractive ideal of % containing I. Then the definition
yields that .#_(3J) C 3. It remains to demonstrate that I C .#_(3J). Assume that j € I such thatk € [j]#. Then
there exist elements i1, i, € I € I such that k +i; = j + ;. Now, k +i; € J and i, € 3. Since J is subtractive,
then k € 3. This implies that [j]# C J thatis j € #_(3). Thus #_(3J) = 3.
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5. Rough 2-absorbing primary ideal

From here, we now assume that % is a commutative semiring.

Definition 5.1 ([7]). A proper ideal I of a semiring % is called a 2-absorbing ideal (2AI) of % if for 1,5, € X such
that rst € 3 implies that rs € Jorrt € Jorst € 3.

Definition 5.2 ([8]). A proper ideal I of a semiring % is called a 2-absorbing primary ideal (2API) of Z if rst € 3
implies rs € J or rt € V3 orste \/g,for r,s,t € A.

Remark 5.3. Every 2-absorbing ideal of a semiring Z is a 2-absorbing primary ideal of 7 but the converse need not
be true in general.

Example 5.4. Assume that % = Z* U {0} is a semiring. Then an ideal 3 = (8) of # is a 2API but it is not a 2AI of
H,0s2-2-2€(8)but2-2¢(8).

Remark 5.5. While every primary ideal of a semiring % is necessarily 2-absorbing primary, the converse fails in
general.

Example 5.6. In Example 5.4, (10) is a 2API of % but it is not a primary ideal of Z%.
Lemma 5.7. Let .% be an F.C.R. on a semiring %. Then F~(I)isa 2Al of #, if Jis a 2Al of Z.

Proof. Assume that J is a 2AI of a semiring #. Then by Lemma 4.13, .# ~(3) is an ideal of Z, we only show
that.#~(J)is a 2Al Suppose thatr, s, t € # such thatrst € .#~(3J). Then [rst] NI # ¢. Since .# is EC.R., then
xyz € [rst]lz N, forx € [r]z, y € [s]#, z € [t] #. Again since J is 2-absorbing, then xy € Jorxz € Joryz € 3.
Therefore [rs]z NI # por [rtle NI # P or [stlz NI # ¢. Thusrs € F~(J)orrt € F(J) or st € F(3J).
This shows that .#~(3J) is a 2Al of Z.

Theorem 5.8. Let .# be a F.C.R. on semiring % and P be a 2API of # such that %~ (B) # Z. Then P is the upper
rough 2API of Z%.

Proof. Let ‘P be a2API of a semiring & and rst € #~(P) forr,s,t € Z. Then [rst]#z NP # ¢. Since F is EC.R,,
then {xyz | x € [r]l#, v € [s]lz, z € [t]#} NP # ¢, so it follows that xyz € [rst]# N B. Since P is a 2API of Z,

thenxy € Porxz e V% or Yz € V. Therefore xy € [rs]z NP or (xz)" € [(r)"]z NP or (yz)" € [(st)*]# N'B.
Thus rs € #~(P) or (rt)" € .F~(PB) or (st)" € .Z(P). This shows that P is upper rough 2API of Z.

Remark 5.9. The converse implication fails in general, as shown in following example.

Example 5.10. Consider S = IN U {0} (set of all natural numbers with 0) a semiring with usual addition and
multiplication, and F a congruence relation defined as . = {(a,b) | a,b are even or a,b are odd numbers} U{(0, 0)}.
Let A = {0,4, 6,8} be a subset of S. Then #~ () = {x €S | [x]z NA £ ¢} =1{0,2,4,6,,,,,} = 2IN U {0}. We can
see that F~(N) is a 2API of S that is Wis an upper rough 2API of S but Wis not a 2API since 6 +4 = 10 ¢ A.

Theorem 5.11. Let .# be a EC.R. on a semiring % and B be a subtractive 2API of %. If # be a B.C.R. and
F_(B) # ¢, then B is a lower rough 2API of Z%.

Proof. By Lemma 4.14, #_(B) = P and we get the result.
Remark 5.12. The converse of the Theorem 5.11 does not hold in general.

Example 5.13. Let S = {0,1,2,3}. Then S is a semiring with the following addition and multiplication

+]0 1 2 3 o 1 2 3
0[0 1 2 3 00 0 0
111 1 2 3 100 1 1 1
202 2 2 3 200 1 1 1
313 3 3 2 310 1 1 1
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Consider the congruence relation .F = {(s1,52) | 51,52 € {0, 1} or 51,52 € {2,3}} on S such that .F-congruence classes
are the subsets {0,1},{2,3} of S. Let A = {0,1,3} be a subset of S. Then .#_(A) = {0,1} isa 2API of S that is Ais a
lower rough 2API ofS but A is not a 2API because 3+3 =2 ¢ A.

If a rough set J is a lower rough 2API and an upper rough 2API of the semiring &, then it is called rough
2API of the semiring Z.

Theorem 5.14. Let f be an epimorphism from a semiring %1 to a semiring %, and #, be a FC.R. on %,. Let ‘B be a
subset of #1. If 1 = {(51,52) € Z1 X %1 | (f(s1), f(52)) € F}, then
(i) F7(B)isa2Al of %, if and only if F; (f(B)) is a 2AI of %>.
(i) If F2is EC.R. on %,, then 7 () is a 2API of %, if and only if 7, (f(¥)) is a 2API of %».
Proof. (i) Suppose that .7 () is a 2Al of %1 and 7,s,t € %, such that rst € .Z, (f(B)). Then there exists
u,v,w € % such that f(u) =r, f(v) =s, f(w) =t. Thus [f(u) f(v) f(w)]# N f(B) # ¢. Since %, is EC.R., then
there exists element f(x) € [f(u)]#,, f(v) € [f(©)]z,, f(2)€ [f(w)]s, such that f(x)f(y)f(z) = f(xyz) € f(P).
Then we have x € [ul#, v € [v]l#, z € [w]lz and there exists a € B such that f(xyz) = f(a). Hence
xyz € [uvw]# and a € [xyz] #,. Therefore, [uvw]z NP # ¢. This implies that uvw € 7 (P). Since .7 (B) is
2-absorbing, then we have uv € 7 () or vw € Z(B) or uw € F (V). Then by Theorem 4.12,
rs = f(uv) € f(F (B)) = F; (f(P))
or rt= f(uw) € f(F (P)) = F, (f(P))
or st= f(vw) € f(F; (B)) = F, (f(B)).

This shows that %, (f(*B)) is a 2Al of Z%,.
Conversely, assume that .7, (f(¥)) is a 2Al of %, and let 1, s,t € % such that rst € . (B). Then

frst) = f(f(s)f () € f(F7 (B)) =75 (f(B)).

This implies that
ff(s) € 7, (f(F)) or f(Nf(t) € F, (f(B)) or f(s)f(t) € 7y (f(P))
which is

flrs) € f(F7(P)) or f(rt) € f(F7(F)) or f(st) € f(F (P)).

Thus there exists a,b,c € 7 () such that f(rs) = f(a) or f(rt) = f(b) or f(st) = f(c). Therefore, we have
[a]lz NP £ Ppor[ble NP #porlcley NP # ¢ and rs € [a]#, 1t € [bl.#,, st € [c]#. This implies that

[rsle, NP #p or [rt]le NP £ or [stle NP £ ¢.

So, we have rs € .7 () or rt € [ (B) or st € 7 (‘B).
(i1) Suppose that 7 (F) is a 2API of the semiring % and a,b, ¢ € %, such that abc € 7, (f()). Then there
existsx, y,z € % suchthat f(x) = a, f(y) = b and f(z) = c. Thus[f(x) f(y) f(2)].2,Nf(PB) # ¢.Since #,isF.C.R,,

then there exists f(r) € [f(X)].z,, f(s) € [f(¥)]=#, and f(t) € [f(z)].#, such that f(r)f(s)f(t) = f(rst) € f(B).
Using hypothesis, we have r € [x]#,, s € [y]l#, t € [z]# and there exists w € P such that f(w) = f(rst).
Hence rst € [xyz]#. Thus [xyz]# NP # ¢. This implies that xyz € F# (). Since 7 (B) is 2- absorbmg, then

xy € F (P)orxze | /ﬁ (P) or yz € |/F(P). Then we can write

flxy) = ab e f(F7 ($)) =7, (f(P))
or (f(xz))" = (ac)" € 75 (f())
or (f(yz))" = (be)" € F5 (f(P)).
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Therefore, we have

abe Z; (f(P)) or ace |Z;(f(P)) or bece \|Z;(f(P)).

Hence .7, (f(*B)) is a 2API of %,.
Conversely, suppose that .7, (f(*f)) is a 2API of the semiring %,. Assume that a,b,c € % such that
abc € Z(P). As a direct consequence of Theorem 4.12(iii),

f@fb)f(c) = flabe) € f(F1 (B)) = 75 (f(F))

Since .Z, (f(B)) is a 2API of #,, then we have

f@)f () = f(ab) € f(F (P))

or f(a)f(c) = flac) € \[f(F (¥))
or f(b)f(c) = f(be) € [f(F (F)).

If f(ab) € f(F[ (P)), then there exists x € F () such that f(ab) = f(x). Thus [x]# NP # ¢ and x € [ab] #,.
Therefore, [ab] 7, NP # ¢. So, we have ab € 7 (P).

If f(ac) € [/f(F(B)), then (f(ac))" = f((ac)") € f(F; (¥)). So, there exists y € .7 () such that f((ac)") =
f(y). Thus [y]l# NP # ¢ and y € [(ac)"]# and [(ac)"]# NP # ¢. Hence, we have (ac)" € F (P) or

ac € ,/9’1‘(‘13). Similarly if f(bc) € f(F(P)), then bc € ,/9‘1‘(‘13). This means % (‘B) is a 2API of %;.

Theorem 5.15. Suppose that f is an isomorphism from ¢, to %, and .7, is a C.R. on Z». If ‘B is a subset of ¢, and
F1=1{(a,b) € I X F%1 | (f(a), f(b)) € F}, then

(1) F1_(B)isa 2Al of % if and only if F_(f(B)) is a 2AI of Z».
(ii) If #,is EC.R., F1_(B) is a 2API of %, if and only if F,_(f(B)) is a 2API of Z».

Proof. Since f is one-one, then by Theorem 4.12(iv), f(%#1_(B)) = F_(f(B)). Now, the result follows by
arguments similar to Theorem 5.14.
6. Rough IF 2-absorbing primary ideal

Ozkan et al. [40] studied 2-absorbing ideals (2Als), 2-absorbing primary ideals (2APIs) using IF set
theory. They looked into the properties of IF2AI and also examined how these ideals behave, including
their images and inverse images, under semiring homomorphisms.

Definition 6.1 ([40]). Let U be an IF set of a semiring . An IF ideal W = (uy, Ax) of Z is said to be the IF2AI of
X, if

uu(rst) = m implies py(rs) = m or uy(st) =m or py(rt) >m
and

Au(rst) < n implies Ay(rs) <n or Ay(st) <n or Ay(rt) <n
forallr,s, t € % and m,n € [0, 1].

Example 6.2. Consider % = {0,1,2,3,4} be a semiring under addition '+’ and multiplication *- defined as
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+]0 1 2 3 4 1o 1 2 3 4
010 1 2 3 4 00 0 0 0 0
111 2 3 4 0 110 1 2 3 4
212 3 4 0 1™ 500 2 4 1 3
313 4 01 2 310 3 1 4 2
404 0 1 2 3 410 4 3 2 1

Define IF set W = (uy, Aw) as px = {(0,1),(1,0.4),(2,0.5),(3,0.2), (4,0.3)} and Ay = {(0,0),(1,0.3),(2,0.7),
(3,0.8),(4,0.5)}. Then Wis an IF 2-absorbing ideal of % .

Definition 6.3 ([40]). An IF ideal A = (uy, Ax) of a semiring Z is said to be IF 2-absorbing primary ideal of %, if
pa(rst) = m implies pa(rs) = m or p m(st) =m or p g(rt) = m

and
Au(rst) < n implies Au(rs) <n or A g(st) <n or A g(rt) <n

forallr,s, t € % and m,n € [0, 1].

In 2014, Mandal and Ranadive [35] defined lower and upper approximations of an IF ideal of a ring.
Now, we define .# -lower and .% -upper approximations of an IF ideal of a semiring Z# as follows:

Definition 6.4. Let .# be a F.C.R. on semiring % and W = (uy, Aw) be an IF set of #. Then F-lower and .% -upper
approximation of W are defined as

F_(N) = (F_(ua), Z-(A)), F-(W = (F (un), 7~ (M),
where

F_(ua)(r) = /\ pa(t), F_(A)(r) = \/ Au(t)

te[r]lz te[rl &
0 =\ m®,  F 0= )\ 0
te[r] & te[r] =

wherer,t € X.
F W) = (F_(N), F~(N)) is called a rough IF set with respect to F if Z_(N) # F~(N).

Definition 6.5. A rough fuzzy set F(u) = (F-(u), F~(w)) of a semiring X% is said to be rough fuzzy 2API of % if
F_(u) and F~(u) are fuzzy 2APIs of Z%.

Definition 6.6. A rough IF set F () = (#_(N), F~(N)) of a semiring X is said to be rough IF2API of % if F_(N)
and .~ (W) are IF2APIs of %.

Remark 6.7. Every rough fuzzy 2API of a semiring % is a rough IF2API of % . But the converse need not be true in
general which is shown by following example:

Example 6.8. Consider S = IN U {0} (set of all natural numbers with 0) a semiring with usual addition and
multiplication. Let W = (uy, Aw) be an IF ideal of S defined by

1 if xe18NU {0} _J 0 if xe18NU{0}
par(x) := { 0.1 otherwise, A () = { 0.8 otherwise.
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Here Wis an IF2API of S. Consider a congruence relation F on S defined by
F ={(s1,2) | 51,82 are even numbers or s1, s, are odd numbers} U {(0, 0)}.

Then F~(ua)(r) = 1, F~(A0)(r) = 0 and F_(ux)(r) = 0.1, F_(Ay)(r) = 0.8, where r € S. Since F~(A) =
(F (), F~(A)) = (1,0) # (0.1,0.8) = (F_(pw), F-(Aw)) = F_(N) and F_(N), F~(N) are IF2APIs of S, then
FA) = (F_(N), F7~(N)) is a rough [F2API of S. Since W is not an IF ideal of S, then . (A) = (F_(N), F~(N)) is
not a rough fuzzy 2API of S.

Lemma 6.9. Let % bea F.C.R. onasemiring Z.If W = (uw, Ax) isan IF ideal of Z, then #~ (W) = (F ~(ua), &~ (Ax))
is also an IF ideal of Z.

Proof. Forr,s € %,

F(ua)(r +s)

Vo twa®i= s

te[r+s].o te[r] z +[s]l#

{pa(t + 1)} > \/ {par(t) A pa(tz)}

telrl# telslz telrle thelsl

\ tpa)h A\ fpa®)

telrlz helsle

= Z(uw) (") A F (). 3)

Vo tpa@i=\/ (g

telrs]# te[r]z[sl#

\/ {pa(tit2)} = \/ {pa(t) A pa(t)}

ti€lrlz helsl ti€lr]z hels] &

\/ {pa(t)} A \/ {pa(t2)}

tielrlz tr€[s]

T () (r) A F~ () (s)- (4)

F~(pa)(rs)

F- A+ = N\ amy= J\ ao)

te[r+s]o te[rlz +[slz

= A i+l N\ ) Vb))

helrle helslz t€lrlz heElsl#

= /\ {/\Q[(tl)}v /\ {/\‘EI(tZ)}

telrle telslz

=7 (An)(r) V.7~ (Aa)(s)- (5)

F~(Aa)(rs)

A = A\ Ay

te[rs] & te[r] # [s] &

AN s\ Aa) v Aa()

ti€lrlz hels]l & tielrlz telsl

A a)iv /\ A

ti€[r] # tels]#

F- (A () V F(Aa)(s)- (6)

Thus .#~ (%) is an IF ideal of the semiring Z%.
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Lemma 6.10. Let .# be a FC.R. on a semiring Z. If W = (uy, Aw) is an IF 2-absorbing ideal of %, then %~ (N) =
(F(uxn), F~(Aw)) is also an IF 2-absorbing ideal of Z.

Proof. From Lemma 6.9, %~ () is an IF ideal of a semiring &#. Assume that U is an IF 2-absorbing ideal
and for r,s,t € Z, rst € (W) = (F~(ux), F ~(Ay)) such that .F ~(ux)(rst) > m and .F ~(Ay)(rst) < n where
m,n € [0,1].

Foersh= \/ m®=\/
kelrstl» kelrlz[sl#[tl=
= \/ pa(abe).

abee(r] #[s] z [t] =

Suppose that rs,st ¢ .7~ () such that .Z~(u)(rs) # m, F~(un)(st) # m, F~(Ax)(rs) £ n and .Z~ (Ay)(st) £ n

T (pa)(rs) = \/ pa(k) = V' palab) 2 m, F(ua)(st) pa(k) = V' uu(ab) # m,
kelrs] & abelr] z[s].# [st] &= beels] z [t &
F-Aa)rs) = A Aak)= A Au@b) £ n, F-(Ay)(st) = A Am( ) A Au(be) £ n. Since U is
kelrsl &= abelrl z[sl# ke[st] & beels] z [t &
an IF2AlI, then \ pa(abe) > m implies that

abeelr] z [sl# [f].gz

uu(ac) = m. 7)
ace[r] z[t].o
Also
FZ- s = N\ Aa®= N\ A
kelrst] & kelrlz[slz [t

= /\ Aw(abo).

abeelr] z [s]# [t &

Since U is an IF2AI, then A Ay (abc) < nimplies that

abce(r] z [s] # [ &

Ag(ac) < n. (t))

acelr]z [tz

From equations (7)-(8), rt € #~ (). Thus .#~(N) is an IF2AI of the semiring Z.

Proposition 6.11. Let # be a F.C.R. on a semiring Z. If © = (up, Av) is an IF set of Z and a, € [0, 1], then

(i) (F-(2)@F = F (D) and
i) (7~ @) = 7P,

Proof. (i) Suppose that x € (Z_(D))“P. Then

A pp@=a, VvV Ap(@) <P

a€[x] & a€[x] &
= Vaelxlg, us@=a, Ap@@)<p
& [x]# € DP
= x e F_(DP)
= (F_(D))P) = 7_(DP).
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(i) Let y € (Z~(D))“P. Then

T wo)y) > a, F(Ao)y) <P

= VvV us@>a, A Ap(@)<p
a€lylz a€lyl#

— daelyle, po@>a, Ap<p
= ylz D % ¢

=yeF (D)

= (Z @) = 77 @),

Lemma 6.12. Let U be an IF subset of a semiring Z. Then W is an IF2AI of % if and only if ‘2120"‘6) isa2Alof Z.

Proof. Assume that U = (us, Ay) is an IF2AI of the semiring &# and r,s,t € 91&“”3 ) such that st € nga’ﬁ ). Then
pa(rst) > a and Ay(rst) < B. Therefore,

uu(rst) > a implies uy(rs) > @ or pw(st) > a or uy(rt) > «a
and
Au(rst) < B implies Ag(rs) < p or Ay(st) <p or Ay(rt) <p.

Thus, rs € 912“'5 Vorst € ‘llia”g Vorrte Qlia’ﬁ ),
Conversely suppose that ?Ig“’ﬁ ) is a 2AI of #Z and 1,5,t € Z such that py(rst) > a and Ay(rst) < p. Then

rst € AP Since AP is 2-absorbing, then rs € AP or st € AP or rt € WP Thus, pu(rs) > a or palst) >
a or uy(rt) > a and Ay(rs) < B or Ay(st) <p or Ay(rt) <B.

Lemma 6.13. Let U be an IF subset of a semiring %. Then Wis an IF2API of % if and only if %Iﬁ“'ﬁ Vis a 2API of #.

Proof. Similar to Lemma 6.12.

Lemma 6.14. Let A = (uy, Ay) be an IF subset of a semiring S. Then, is an IF2API of S if and only if NP is a
2API of G.

Proof. Suppose that U is an IF2AI of the semiring S and for r,5,t € S and a,f € [0,1], rst € AP,
Then uy(rst) > a implies that pa(rs) > aor pu g(st) > aorp g(rf) > aand Au(rst) < B implies that
Au(rs) < por A g(st) < Bor A g(rt) < B. Therefore, rs € AWH or (st)™ € AP or (rt)" € AP, for positive
integers m, n. Hence, AP is a 2API of .

Conversely, suppose on the contrary that % is not an IF2API of S with A@P is a 2API of 3. Then pg(rst) >
doesn’t imply that pa(rs) > a or u g(st) = a or p g(rt) > a, and Ay(rst) < p doesn’t imply that Ay(rs) <
or A g(st) < por A g(rt) < B, forr,s,t,€ S and a,B € [0,1]. Since rst € AP, rs ¢ A, (sty" ¢ A@F) and
(rt)" ¢ A@P) for any positive integers m, n. This contradicts the hypothesis A@# is a 2API of . Hence, U is
an IF2API of G.

Theorem 6.15. Let .7, and %, be two F.C.R. on a semiring Z. If N = (uw, Ax) and B = (uy, Ax) are any two IF
sets of #, then the following hold:

(i) F1_(W) CAC F, ()
(i) F1(F-(W) = 71_(W)
(@) F(F1 (W) = 7~ (A)
(iv) FA(F1-(N) = F1-(Y)
(0) F1(F1~ (W) = F1~ ()
(vi) (F(U)) = F1_(N)
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(vii) (F1-(A))* = 71~ (A)
(viit) F1_(ANB) = F_(A) N .F1_(B)

(ix) 7 (UANB) .7 (WNFA (B)

(x) F~(AUB)=F (AU .7 (B)

(xi) Z#1-(AUB)2.Z7_(N)U.Z7_(B)
(xii) A C B implies that F1_(N) C F1_(B)
(xiif) W C B implies that F1~(A) C F17(B)
(xiv) F1 C Fp implies that F1_(N) 2 Fp_(N)
(xv) F1 C %, implies that F1~(N) € F,_(N).

Proof. 1t is straightforward.
Theorem 6.16. Let .# be an F.C.R. on a semiring Z. If W = (uy, Aw) and B = (uwp, Ag) are IF ideals of %, then
(@) F-U+B)=7" (W) +.7(B) and
(i) F_(U+B) 2.7 (W) +.7_(B).
Proof. Proof runs on the same parallel lines as [31, Theorem 3.5 and Theorem 3.6].
Theorem 6.17. Let A be an IF2API of a semiring % and .F be a F.C.R. Then
(1) Wis an upper rough IF2API of Z.
(i) Wis a lower rough IF2API of Z, provided F is B.C.R. and W is a subtractive ideal of % such that F_(N) # ¢.

Proof. (i) From Lemma 6.9, %~ (%) is an IF ideal of the semiring &#. Assume that r,5,t € % such that
rst € (W) = (F~ (ua), F~(Aw)) and &~ (uu)(rst) > m, and .F ~(Ay)(rst) < n, where m, n € [0,1]. Then

Foes =\ wb=\/  w@®
kelrst].& kelr]z[sl#[t].#

=\ o).

abeelr] z [s]z [t =

Suppose that rs, (st) ¢ .7~ () for some positive integer i such that %~ (uw)(rs) 2 m, F~ (ysn)((st)) z m,
F~(An)(rs) £ nand .Z~(Aw)((st)’) £ n. Then .F~ (ug)(rs) = \/] pa(k) = ” ]\/[ | pa(ab) 2 m, F-(ua)((st)’) =
ke[rs]z avelr|z1sl7
Vo opak) = Voo p'c) #om, F(A)s) = A Auk) = A Au@ab) £ n, F(An)((st)) =
kel(st)l# bicle[s'] #[F]. o kelrsl & abelrlz[sl#
A Aak) = A Aq(b'c’) £ n. Since U is an [F2API, then
kel(sty1# bide[s'lz[t]#

\ uu(abc) = m implies that

abeelr] z [s]z [t =

ygl(aici) > m. )
dcelrl# 1]
Also
Fr A= N\ B = N Al
kelrstl» kel #1117

= /\ Aq(abc).

abeelr] 7 [sl# (&

Since A is an IF2API, then A Ay (abc) < nimplies that

abcelr] z[s] # [t =

Aqlac) < n. (10)

adcelr]z [t
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From equations (9) and (10), (rt)' € %~ (). Thus, A is an upper rough IF2API of the semiring %.

(ii) Since A is an IF2API of semiring #, then by Lemma 6.13 %ﬁ“'ﬁ ) is a 2API of . Also, by Theorem 5.11,
ﬂl(?lga’ﬁ )) is a 2API of #%. By Proposition 6.11, ﬂ_(mi‘*’ﬁ)) = (Z_(Y) 2“"” is a 2API of #. Again by Lemma
6.13, #_(A) is an IF2API of Z.

Theorem 6.18. Let f be an epimorphism from a semiring % to a semiring %, and let %, be a EC.R. on %,. Let U
be a subset of %1. If 1 = {(s1,52) € %1 X %1 | (f(51), f(52)) € P2}, then

(i) F7 Q) isan IF2AI of %1 if and only if F; (f(W)) is an [F2AI of %>.
(i) If #2is EC.R., F(N) is an [F2API of %1 if and only if F, (f(W)) is 2API of Z%».
Furthermore, if W is subtractive IF ideal and f is one-one then
(iii) F1_(N) is an IF2AI of %1 if and only if F_(f(N)) is 2AI of %».
(iv) If % is EC.R., #1_(N) is an IF2API of %1 if and only if F»_(f(N)) is an [F2API of %».

Proof. (i) By Lemma 6.12, we get .7 (%) is an IF2AI of % if and only if (7 (91))2“"g )is a 2AI of Z#:. Using
Proposition 6.11 and Theorem 5.14, we have (Z (A*?)) is a 2A1 of % if and only if (Z; (f(U?))) is a 2A1

of %,. Again by Lemma 6.12, (Z; (fQUP)) = (Z; (FQ))P) = (5 (FQ0)P is a 2AT of %, if and only if
F5 (f(A)) is an IF2Al of Z%,.
Other parts’ proof are parallels to proof of (7).

7. Conclusion

Rough IF2API of a semiring is a generalization of intuitionistic prime, primary ideal of a semiring. So,
we replaced a universe set by a semiring and introduced the notion of rough 2APIs and rough IF2API of
semirings. Roughness in semirings is an exciting and mostly unexplored area of research in algebra and
fuzzy systems. Working on the suggested future directions and solving the open problems can help us
better understand rough IF ideals and find more ways to use them in mathematics. It could also lead to
discovering new connections with other fields, opening up fresh opportunities for research. In the future,
one may further take this concept to other algebraic structures such as near rings, seminear rings, and near
semirings etc. and prove the above results. There is another open problem which leads to neutrosophic
fuzzy ideals of near rings. One may try above results for neutrosophic fuzzy ideals.
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