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Nonlinear Lie n-centralizers at zero-products on unital algebras

Meilian Gao?, Xingpeng Zhao*”

?College of Mathematics, Taiyuan University of Technology, Taiyuan, 030024, China

Abstract. Let A be a unital algebra with nontrivial idempotents. In this article, it is shown that under
certain conditions if a map (not necessarily linear) 6 : A — A satisfies

6 (pn (al/aZ/ e /an)) = pn (6(1’11)/[12/ e /an)

forall ay,a,,--- ,a, € Awithaya, ---a, =0, then 6(a + b) — 6(a) — 6(b) € Z(A) for all a,b € A. Moreover, O is
of the form 6(a) = Aa + (a) for all a € A, where A € Z(A) and 7 : A — Z(A) is an almost additive map
such that 7 (p, (41,40, -+ ,a,)) = 0 for all ay, ay, - - - ,a, € A with mya, - --a, = 0. Moreover, this result can also
be applied to triangular algebras, von Neumann algebras without central summands of type I; and so on.

1. Introduction

Let A be an algebra. A linear (nonlinear) map ¢ : A — A is called a linear (nonlinear) derivation
if p(ab) = @(a)b + ap(b) for all a,b € A. A linear (nonlinear) map ¢ of A is called a linear (nonlinear)
Lie derivation if ¢([a, b]) = [¢(a), b] + [a, ()] and a linear (nonlinear) Lie triple derivation if ¢([[a, b], c]) =
[[p(a), ], c] + [[a, p()], c] + [[a, b], p(c)] for all a, b, c € A. Obviously, each derivation is a Lie derivation and
each Lie derivation is a Lie triple derivation. But the converse statement is not true in general. For this
reason, Abdullave [1] extended them in one much more general way. Fix a positive integer n > 2 and define

a sequence of polynomials as follows.
p1(x1) = x1,
p2 (x1,x2) = [Pl (Xl),xz] = [x1,x2],
pa(x1,x2,x3) = [p2 (x1,%2) , x3] = [[x1, %2], x3],

pa (x1,x2,x3,%4) = [p3 (%1, %2, x3), x4] = [[[x1, x2], x3], x4],

Pn(x1,%2, -+, X)) = [Puo1 (X1, %2, , Xp-1) , Xn] -
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The polynomial p,(x1,x2,- -, x,) is said to be an (n — 1)-th commutator (n > 2). Then a map ¢ : A — Ais
said to be a Lie n-derivation if

(P(pn(xl/ X2, 00, Xp)) =Pn(§0(x1), Xp, 00, Xp) + pn(xlz (P(XZ)/ e, Xp) et pn(xlerI Tty @(xn)) 1)

for all x1,xp,-++,x, € A. There has been a great interest in the characterization of Lie n-derivation on
various rings and algebras over the last few decades. Many authors have made essential contributions to
related topics (see [6, 16, 17] and references therein).

Recently, more and more authors have paid attention to non-global Lie derivations, non-global Lie
triple derivations and non-global Lie n-derivations. One can refer to [2, 4, 12-14, 19, 20] and references
therein. Ashraf et al. [2] studied non-global nonlinear Lie n-derivations of unital algebras with nontrivial
idempotents. They proved that under some mild assumptions every nonlinear Lie n-derivation is of the
form 6 + 7, where 6 : A — A is an additive derivation and 7 : A — Z(A) is an almost additive map
vanishing at p, (a1,42,- -+ ,a,) forall a1, a5, -+ ,a, € Awithaya, ---a, = 0.

Based on Lie n-derivations, some authors introduced the definition of generalized Lie n-derivation. A
mapping A : A — A is called a multiplicative generalized Lie n-derivation if there exists a multiplicative
Lie n-derivation ¢ : A — A such that

A(pn(x1, x2, -+, Xn)) =pu(Ax1), X2, -+, Xn) + P, @(X2), -+, X)) + -+ pu(X1, X, -, @(Xn)) ()

for all x1,x2,--- ,x, € A. Let A : A — A be a multiplicative generalized Lie n-derivation with associated
multiplicative Lie n-derivation ¢ : A — A. Set 0 = A — ¢. Then it follows from (1) and (2) that 6 satisfies

6(Pn(x1/ X2, X)) = pn(é(xl)/ X2, 0, Xn) 3)

for all x1,x,--- , x, € A. Any mapping 0 : A — A satisfying (3) is called a Lie n-centralizer. In particular,
a linear (nonlinear) map 6 : A — A is called a (nonlinear) centralizer if 5(ab) = ad(b) = 6(a)b; a (nonlinear)
Lie centralizer if 6([a, b]) = [0(a), b] and a (nonlinear) Lie triple centralizer if 6([[a, b], c]) = [[6(a), b], c] for all
a,b,c € A. It is easy to prove that 6 is a nonlinear Lie centralizer (resp. nonlinear Lie triple centralizer) on
A if and only if 6([a, b]) = [a, 6(b)] (resp. O([[a, b], c]) = [[a, 6(b)], c]) for all a, b, c € A. There have been several
results on Lie n-centralizers and one can refer to [3, 18] and references therein. Let A be unital ring with
a nontrivial idempotent. Under mild conditions, Ashraf and Ansari [3] showed that a multiplicative Lie
n-centralizer 6 : A — A has the form of 6(x) = zx + t(x) for all x € A, where z € Z(A)and 1 : A — Z(A)
is a mapping vanishes at p,(x1, xo, ..., x,) for all x1,x, ..., x,, € A. Let G be a generalized matrix algebra over
a commutative ring R. Yuan and Liu [18] showed that, under mild conditions, a R-linear Lie n-centralizer
has the similar form as in [3].

Similar to non-global Lie derivations, non-global Lie triple derivations and non-global Lie n-derivations,
non-global Lie centralizers, non-global Lie triple centralizers and non-global Lie n-centralizers have at-
tracted more attentions from many authors. One can refer to [9-11] and references therein. However, there
has been no concern with non-global Lie n-centralizers so far, including the nonlinear setting.

In this note, we shall investigate non-global nonlinear Lie n-centralizers on unital algebras with nontrivial
idempotents and its framework is as follows. In Section 2, we present the preliminaries. In Section 3, we
show the almost additivity of the nonlinear non-global Lie n-centralizer 6 under certain restrictions. In
Section 4, we give the structure of the nonlinear non-global Lie n-centralizer 6 under some mild assumptions.
It is pointed out that this result can also be applied to triangular algebras, von Neumann algebras without
central summands of type I; and so on.

Definition 1.1. A mapping 6 : A — A is called a nonlinear nonglobal Lie n-centralizer if
6 (pn (a1/a2/ e /al’l)) = pVI (6(&1), aZ/ e /al’l) = Pn (all 6(“2)/ e /ai’l)

forallay,ay, -+ ,a, € Awithayay---a, = 0.
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2. Preliminaries

Let A be an algebra with a nontrivial idempotent e, and denote the idempotent f = 1 — e. In this case,
A can be represented in the so-called Pierce decomposition form as A = Ay + A + Ay + Az, where
A1, Arz, Apn, Ay respectively denote eAe, eAf, fAe, fAf. Then each element a € A can be written as
a = ay +ap +ay + axp, where a;; € Ayj, i, j = 1,2. Moreover, eAf is an (eAe, fAf)-bimodule and f#Ae is an
(fAf, eAe)-bimodule. Let us assume that A satisfies

eAe-eAf =0= fAe-eAe  implies eAe=0, @)
eAf - fAf =0= fAf- fAe implies fAf=0.

The unital algebras with Condition (4) were proposed by Benkovi¢ and Sirovnik in [7]. In view of ([5],
Proposition 2.1), the center of A is given by

Z(A) = {an1 + ax € A + Aplaixiz = x12a2, X21411 = axnxz for all x1p € Ajp, x21 € Al

Furthermore, there exists a unique algebra isomorphism 0 : Z(A)e — Z(A)f such that aj1x12 = x120(a11)
and xy1a11 = 9(!111)9(21 for all an € Z(ﬂ)e, X1 € Ao, X201 € Ay

In the following, we conclude this section with a fundamental result, which will be frequently referenced
throughout the paper without further mention.

Lemma 2.1. For any x € A, we have
(2) pulx,—e,—¢, -+, —¢) = exf + (~1)"*1 fxe,
®) pulx,=fo=f--+ . =f) = fxe+ (=1)"exf,
(©) pux,e,e,---,e) = (=1)"lexf + fxe,
@) pulx, £, - f) = (1) fxe + exf.

3. The almost additivity

In this section, we investigate the additivity of non-global nonlinear Lie n-centralizers on unital algebras.
The main result presented in this section is as follows.

Theorem 3.1. Let A be a unital algebra containing a nontrivial idempotent e satisfying Condition (4). Suppose that
Z(eAe) = Z(A)e and Z(fAf) = Z(A)f. If amap 6 : A — A satisfies

0 (pn (a1, a2, ,an)) = pu (6(a1), a2, -+ ,an) = pu (a1,0(a2), -+ ,an) (n 2 3)

forallay,ay,- -+ ,a, € Awithaiay ---a, = 0, then 6 is almost additive, that is,
o(a+b) — 6(a) — o(b) € Z(A)

foralla,be A
To achieve Theorem 3.1, it is necessary to verify the following lemmas.
Lemma 3.2. 6(0) =0.
Proof. 6(0) =6 (p, (0,0,---,0)) = p, (6(0),0,---,0)=0. O
Lemma 3.3. Forany ay; € Ay and ay € Ay, the following statements hold:

(@) 6(a11) = ed(arr)e + fo(an1)f and fo(an)f € Z(Axn). Clearly, 6(a11) € A + Z(A);
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(b) 6(ax) = ed(axn)e + fO(ax)f and ed(ax)e € Z(A1). Clearly, 6(az) € Az + Z(A).

Proof. (a) Since ay1f--- f = 0and pu(a11, f,--- , f) = 0 for all a1 € A1, we can obtain from Lemmas 2.1 and
3.2 that

0 :6(Pn(a11/f/'“ If))
:Pn(é(ﬂll)/fr T rf)
=ed(ar1)f + (-1)""! fo(arr)e.
It follows that ed(a11) f = f6(a11)e = 0. Consequently,
O(arn) = ed(an)e + fo(an)f € A + Ax.

In the following, we will prove that f6(a11) f € Z(Ap). Sinceanananf--- f = 0and p, (a1, a2, 412, f,- - , ) =
0, by Lemmas 2.1 and 3.2, we have

0 =0 (pu(a11, 22,112, f,- -+ , f))
=pu(6(a1),az,a12, f,- -+ , f)
=pu—2([[0(a11), ax2], @121, f,--- . f)
=e[[5(a11), az], a2l f + (=1)" 7 f[[6(a11), ax], ar2]e
=[[6(a11), ax], a12]
=[[fo(an1)f, az], a12]
= —ap[féain)f, axl,

which implies that
a2[fo(an)f,ax] = 0. )

On the other hand, since ajjaxaxf--- f = 0 and p,(a11,ax,a2, f,--+, f) = 0 for all a1 € Ay, we can
obtain from Lemmas 2.1 and 3.2 that

0 =0 (pu(an, ax, a2, f,--- , f))
=pn(6(a11), a22,a21, f,-* , f)
=pn-2([[6(a11), a22],anl, f,- -+ , f)
=e[[6(an), ax), an1f + (=1)" 7 f[[6(an), az2], ax e
=(-1)"[[6(a11), a22], a21]
=(=1)"[[fo(an)f, a22], a21]
=(=1)"[fo(an) f, anlan,

which implies that

[f6(a11)f, axlaxn = 0. (6)
In view of Condition (4), Equations (5) and (6), we have

[fo(ai1)f,a22] =0,

which implies that
folan)f € Z(Aw).
Thus, by hypothesis of Theorem 3.1, there exists some z € Z(A) such that f6(a11)f = zf. Therefore,

O(ar1) =ed(an)e + folan)f
=ed(a11)e + zf = (ed(a11)e — ze) + z € Ay + Z(A).

(b) Using similar arguments as (a), we can also show (b) holds. O
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Lemma 3.4. 6(A;j) C Ajjfor1 <i#j<2
Proof. Since ajpe---e = 0 for each aj, € Ay, it follows from Definition 1.1 and Lemma 3.3 that

S((-1)"ar) =6 (pu(ara e, -+ ,€))
= pulaiz, 6(e), - ,e)
= pn-1([ar2,6(e)] e, -+ ,e)
= (-1)"Pelarz, 5(e)] f + flarz, 6(e)]e
= (=1)"?[arz, 6(e)] € Ara.
If n is odd then 6((=1)"'a1n) = 0(a12) = —[a1,6(e)] € Ap. If n is even, then we can also get 0(ann) =

[—a12,6(e)] € A1z by replacing ai, with —ay; in the equation above.
Since ay1 f - - - f = 0 for each a1 € Ay, with similar discussions as above, we can show 6(a21) € Ay. O

Lemma 3.5. For any ay; € Aq, bia € Arn, we have
0(a11 + biz) — 6 (a11) — 6 (b12) € Z(A).

Proof. Lett =0 (a1 + b12) — 6 (a11) — 0 (b12). First, we will prove t1, = tp; = 0.
Noticing that f(a11 +bip)e---e = 0 and p,(f, a11,¢,--- ,€) = 0 for all a1; € Ajq and by € Ayp, we can obtain
from Definition 1.1, Lemmas 2.1 and 3.2 that
pu(f,6(a11 + biz),e, -+ ,e) =6(pu(f,a11 + biz,e,--- ,e€))
:6(pn(f/a11/€/ e /e)) + 6(p}’l(f/ blZ/ e/ e /e))
=pn(f/ 6(”11)/ e/ e /e) + pn(f/ 6(b‘l2)/ e/ e /e)
=pu(f,6(a11) + 6(b12),¢,- -+ ,e),

which implies that
pn(f/ t/ e, /e) = (_1)n73t12 + tZl = 0/
and then
tip =t = 0. 7)

In the following, we will prove that t1; + t2; € Z(A).
Since x12(a11 + biz)e---e = 0 and pu(x12,b1z,¢,--- ,€) = 0 for all a;; € Ay and bip, x12 € Ajp, we can
conclude from Definition 1.1, Lemmas 2.1 and 3.2 that

Pu(x12,0(a11 + b12), e, - -+ ,€) =6(pn(x12,a11 + b1z, e,- -+ ,€))
=0(pu(x12,a11,€, - ,€)) + O(pu(X12, b12,€, - -, €))
=pn(x12,0(a11), €, + ,€) + pu(x12,6(b12),¢, - - ,€)
=pu(x12,6(a11) + 6(b12),¢,- - , ),

which implies that
t11x12 = X12f25. (8)

Similarly, since (a11 + bi2)xo1f -+ f = 0 and pu(b12, x21, f,- -+, f) = 0 for all xp; € A, we can obtain from
Lemmas 2.1 and 3.2 that

X21t11 = toXo1. )
According to Equations (7), (8) and (9), we get
t = 6(an + bi2) — 6(a11) — 6(b12) = ti1 + tan € Z(A).
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Lemma 3.6. (a) 6(5!12 + blZ) = 6(012) + 6(b12)f07 all ain, b12 € A,
(b) (a1 + ba1) = 6(az1) + 0(bar) for all ax, bay € A.

Proof. (a) Note that (e + a12)(f + bi2)(—e)---(—e) = 0 and py(e + a1, f + b1z, —¢,- -+ ,—€) = ap + byp for all
a12,b1p € Ayp. Then we can obtain from Lemmas 3.2 and 3.5 that

O(a2 + b12) =0(pu(e + ar, f + b1z, —e,-++ ,—€))
=p,(6(e + a12), f + bia, —e,--- ,—¢)
=pn(6(e) + 8(a12), f + b1z, —e,--- ,—e)
=pn(6(e), f,—€, -+ ,—e) + pu(0(a12), f, =€, -+ ,—e) + pu(6(e), b1z, —e,- - , —€) + pu(6(a12), b12, —€, -+ ,—e)
=0(pule, f,—€, -+ ,—€)) + 0(pu(arz, f,—e,--- ,—€)) + O(pule, bro, —e, -+ ,—€)) + 6(pn(ar2, b1, =€, -+, —€))
=0(a12) + 6(b12)-

(b) Similarly, using the fact that (f + a1 )(bo1 +e)f -+ f = 0and pu(f +a21, b1 +¢, f,--+ , f) = a21 + by, we have
from Lemmas 3.2 and 3.5 that 6 is additive on Ay;. O

Lemma 3.7. (a) 6((111 + bll) — (5([111) — 6(1’]11) € .Z(?l)for all ai, b11 € ﬂll;
(b) 6(az + ba) — 0(az) — O(ba) € Z(A) for all az, by € An.

Proof. (a)Lett = 0 (a1 + b11)—06(a11)—6 (b11). Forallayy, b1 € Arq, we can easily check that (a11+b11)f --- f =0
and 6(pn(a11, f,-++ , f)) = 6(pu(b1a, f,- - , f)) = 0. Then we have from Lemmas 2.1 and 3.2 that

pu(d(ar +bu), f,-++, f) =6(pu(ar + b1y, f,--+ , f))
=6(pu(@rr, .-+, f)) + 6(pu(bra, f,- -, f))
=pn(0(an1), f,- -+, f) + pu(&(b11), f, -+, f)
=pn(6(a11) + 6(b11), .-+, f),

which implies that
pult, frooe ) = (1) Ty + tn = 0,
and then
tip =t = 0. (10)

Since (a11 + b11)x21€---e = 0 for any xp; € Ay, by Lemmas 2.1 and 3.6, we get

pa(6(a11 + b11), x21,€, -+, €) =0(pn(a11 + b11, x21,¢,- -+ ,€))
=6(=x21a11 — x21b11)
=06(—x1a11) + 6(—x21b11)
=0(pn(a11,x21,¢,- -+ ,€)) + 6(pu(b11, x21,€,- - ,€))
=pn(0(a11), x21,€,+ -+ ,€) + pu(6(b11), X21,€,- - - , @)
=pn(6(a11) + 6(b11), x21,€,--- ,€),

which implies that
Xo1t11 = t22X01. (11)
On the other hand, since (a11 + b11)x12e - - -e = 0 for all x15 € Ayp, we have from Lemmas 2.1 and 3.6 that

t11x12 = X12f25. (12)
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According to Equations (10), (11) and (12), we can obtain
t =t +ty = 6(a11 + bi1) — 6(an) — 6(bn1) € Z(A).
(b) Similar to the proof of (a), we can obtain
0(ax + bx) — 6(az) — 6(bxn) € Z(A)

for all axy, by, € Ax. O
Lemma 3.8. Forany ay; € A1, bia € A, o1 € Ay and dyp € Ay, we have

(@) 6 (a1 + bia +dyp) — 0(a11) — 0 (b12) — 0 (d2) € Z(A);

(b) 6(a11 +ca1 +da) — 6 (a11) — 6 (c21) — 6 (da2) € Z(A).

Proof. (a) Lett = 6(a11 + b1z + daz) — 6 (a11) — 6 (b12) — 6 (d2). In the following, we show that t € Z(A). For all
a11 € An, bip € Aia, dop € Ax, since f(ai + bip +dx)e---e = 0, according to the fact that p,(f,a11,¢,--- ,e) =
pu(f,d, e, ,e) =0, we have from Definition 1.1 and Lemma 2.1 that

pu(f,0(a11 + bz +dx), e, -+, €) =6(pu(f,a11 + bio +dx, e, ,€))
=0(pu(f,a11,¢,- -+ ,€)) + 0(pu(f, b1z, e,--- ,€)) + O(pu(f,da, e, - ,€))
=pu(f,6(a11),e,--- ,€) + pu(f,6(b12), 6, -+ ,€) + pu(f, 0(d22), ¢, -+ , €)
=pu(f, 6(an) + 6(b12) + 6(dx2),e,- -+ ,e),

which implies that
pu(fit e+ €)= (=1)" 7ty + 1 =0,
and then
tip =t = 0. (13)

Since x12(a11 + b1z + dop)e - - -e = 0 for all x1, € Ajp, by Definition 1.1, Lemmas 2.1 and 3.6, we have
pu(x12,0(a11 + b1z +dx), e, ,€) =0(pn(x12,411 + b1z +dx,e,- - ,€))
=5((—1)"*(x12d22 — A11X12))
=5((=1)"*(x1262)) + 6((=1)" > (an1 x12))
=0(pu(x12,a11,€, - ,€)) + O(pn(x12, b12, 8, -+ ,€)) + (Pu(x12,d20, 8, -+ ,€))
=pu(x12,0(a11), €, -+ ,€) + pu(x12,6(b12), €, ,€) + pu(x12,6(d), €, - ,€)
=pu(x12,6(a11) + 0(b12) + O(dn),e,--- ,e),

which implies that
t11x12 = X1225. (14)

It is straight forward to verify that (a11 + b12 +dop)x21 f - -+ f = 0 for any xp1 € A . By invoking Definition
1.1, Lemmas 2.1 and 3.6, we have

Xt = X1 (15)
According to Equations (13), (14) and (15), we can obtain
t=0(a1 + bia +da) = 6(a11) — 6 (b12) — 6 (d2) = t11 + t2 € Z(A).
(b) With the similar argument as the above, we have

O (a1 + e +dxn) — 6(a11) — 0 (cx1) — 6 (d) € Z(A).
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Lemma 3.9. Forany ay; € Aia, by € Ay, we have
O(ar2 + ba1) = 0 (ar2) +6(ba1) .
Proof. Since (¢ —app)(e —by)f -+ f = 0and pule —an,e — by, f,-++, f) = an + (=1)"2by; for any a;p € Ay,

b1 € A1, we can show from Lemmas 3.2 and 3.8 that
8(a1z + (=1)"2by) =5(pule — a1z, e = bo1, f,-++ , f))
pn(6(e) + 6(—ar2),e = b, f,- -+, f)
=pn(0(e),e, f, -+, f) + pu(0(=an2),e, f, -+, f)
+ pu(0(e), =bo1, f, -+, f) + pu(0(=a12), =b21, f, -+ , f)
=0(pule,e, f,--- , f)) + 0(pu(—arz, e, f,--- , f))
+0(pule, =bar, f,- -+, ) + 6(pu(=a12, =b21, f, -+, f))
=5(a12) + 6((=1)"2by).

If nis even, then we have 6(a12+bz1) = 6(a12) +0(ba1). If nis odd, we can still obtain 6(a12 +b21) = 0(a12) +0(ba1)
by replacing by with =by;. O

Lemma 3.10. For any ay; € A1, b1z € An, 21 € Any, dop € App, we have
0 (a1 + bia + co1 +dop) — 6 (a11) — 6 (b12) — 6 (c21) — 0 (d22) € Z(A).

Proof. Let t = 6(a11 + bia + c21 +dop) — 6 (a11) — 6(b12) — O6(c21) — O(dp). In the following, we show that
t € Z(A). We can easily check that (a11 + b1 + c21 + dap)e- -+ f = 0and py(a11,e,--- , f) = pa(dx,e,---, f) = 0.
It follows from Lemmas 2.1, 3.2 and 3.9 that

pn(6(ann + biz + co1 +dn),e, f, -+, f) =0(pu(ann + biz + 1 +de, f, -+, f)

=6(=b1z + (-1)"%c21)

=5(=b12) + 0((—1)"%c21)

=0(pn(a11, e, f,+ , ) + 0(pu(brz e, f,--+ , 1))
+06(pu(car,e, f,o+, f) + 6(pu(dse, f,-+ L f))

=p.(5(an),e, f, -, f) + pa(©(bra) e, f,-- , f)
+pu(S(can) e, f,ov o )+ pu(d(da) e, £, , f)

=pu(0(a11 + b1z + co1 +dw), e, -+, f),

which implies that
Pn(t/e/f/ e /f) = (_1)n_2t21 - t12 = 0/
and then
tip =t = 0. (16)

Since (a11 + b1 + c21 + dm)x12e---e = 0 and p,(b12, X12,¢,- -+ ,e) = 0, we can obtain from Definition 1.1,
Lemmas 2.1, 3.2 and 3.8(b) that
pu(6(ar1 + b1z + co1 +dn), x12,8,+ -+ ,€) =0(pn(arr + biz + c21 +d22), 12,8, ,€)
=0(pn(a11 + co1 + dao, X12,8,- -+ ,€)) + 0(pu(br2, X12,€, - - , €))
=pu(6(a11 + ca1 +dn), x12,8,- -+ ,€) + pu(6(b12), X12,€,- - - , €)
=p,(0(a11 + bio + c21 +dm), x12,€, - , ),

which implies that

t11x12 = X12f25. (17)
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On the other side, since (a11 + b1z + 21 + dn)x21f -+ f = 0 and p,(ca1, %21, f,- -+, f) = 0, we have from
Lemmas 2.1, 3.2 and 3.8(a) that

Xo1t11 = t22X01. (18)
According to the Equations (16), (17) and (18), we have
t =06 (a11 + biz + c21 +dp2) — 6 (a11) — 6 (b12) — 6 (ca1) — 6 (d22) = t11 + tro € Z(A).
O

Now we are ready to prove Theorem 3.1 as follows.
For two arbitrary elements a = a1 + 412 + az1 + ax and b = byy + bip + by + by in A, by Lemmas 3.6, 3.7
and 3.10, there exist some z; € Z(A) (i =1,---,5) such that

0(a +b) =6((a11 + b11) + (a12 + br2) + (a21 + b21) + (a2 + bx2))
=0(a11 + b11) + 6(a12 + br2) + 6(az1 + ba1) + 6(az2 + b)) + 21
=0(ay1) + 6(b11) + z2 + O6(a12) + 0(b12) + 0(az1) + O(ba1) + O(anz) + O(b2) + z3 + 21
=0(ay1 +a1p +ax1 + ax) + 24 + 6(b11 + b1 + by + b)) + 25 + 23 + 20 + 21
=0(a) + 0(b) + z5 + z4 + 23 + 2o + 21,

which implies that ¢ is almost additive.

4. The structure

In the present section, we consider the question of characterizing non-global nonlinear Lie n-centralizers
on unital algebra with a nontrivial idempotent and obtain the following result.

Theorem 4.1. Let A be a unital algebra containing a nontrivial idempotent e satisfying Condition (4). Suppose that
(a) Z(eAe) = Z(A)eand Z(fAf) = Z(A)f;
(b) either Aqy or Ay does not contain nonzero central ideals.
Ifamap 6 : A — A satisfies
6 (pn (a1 a2, ,an)) = pu (8@1), a2, -+, ,an) = pn (a1,6a2), -~ ,a,) (n 2 3)

forall ay,az,- - ,a, € A with ayay---a, = 0. Then 6(a) = Aa + 1(a), where A € Z(A) and 1 : A — Z(A) is an
almost additive map vanishing at p, (a1,az,- -+ ,a,) forall ai,az,- -+ ,a, € Awithayay - -a, = 0.

Before the proof, we first give a remark in the following.
Remark 4.2. By conditions Z(A1) = Z(A)e, Z(Axn) = Z(A)f and Lemma 3.3, we have
S(ar1) = ed(arn)e — O~ (fo(an) f) + O~ (fo(an)f) + fo(an)f
and
O(axn) = ed(axn)e + O(ed(ax)e) + fo(ax)f — O(ed(ax)e).
Now define two mappings n1 : Ay — Z(A) and 1 : Ap — Z(A) as
m(an) = 67 (fo(ann)f) + fo(an)f
and
M2(a22) = ed(axn)e + O(ed(ax)e).
And then we define two mappings n: A — Z(A)and A : A — Aby
n(a + bz + o1 + dop) = m(an) + Ma(dz)

and
A(ain + bia + c1 +dop) = 8(a11) + 6(br2) + 6(c21) + 6(d22) — n(arr + b1z + co1 + dn).
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The proof of Theorem 4.1 can be achieved via the following series of lemmas.
First, by the definition of A, Lemmas 3.3, 3.4 and 3.6, we can easily check that A satisfies the following
properties.

Lemma43. (a) Aayy) = ed(an)e — 0-(fS(an)f) € Z(An);

(b) Alaz) = fo(ax)f — O(ed(ax)e) € Z(Az),

(©) Alarz) = 6(a12) € Az,

(d) Aaz1) = 6(a21) € Azy;

(€) Alars + bp) = Alar) + Abpo);

() Alaz +by) = Alan) + Aby);

(g) Alay + by + o + da) = Alan) + Albro) + A(ca) + Aldan).
Lemma 4.4. A is additive.

Proof. By Lemma 4.3, we only need to show that A(a;; + b;;) = A(ai;) + A(bi;) for i = 1,2. For any ay1, b1y € Ay,
by Theorem 3.1 and Remark 4.2, we get

A(ayy + b11) = A(arr) — A(br1) =0(ar + byr) — 6(ai1) — 0(b11)
= n(ay + biy) + n(an) + n(bn) € Z(A).

On the other side, we have from Lemma 4.3 that
A(ﬂll + bll) - A({Iln) - A(bll) € .ﬂn.

Since Z(A) N Ay = 0, we have
A(ay1 + bi1) = A(an) + A(br).

Similarly, we can prove that A(az; + bx) = A(az) + A(bx).
Finally, we prove that A is additive. Leta = a1 + a1z + a1 + ax, b = b1y + bia + by + by be arbitrary
elements in A. Then combining Lemma 4.3, we can obtain

Aa + b) =A((a11 + b11) + (a12 + b12) + (a21 + b21) + (a2 + b))
=A(a11 + b11) + A(arz + biz) + A(aar + bx) + A(ax + bn)
=A(a11) + A(b11) + A(a12) + A(brz) + Aaa1) + A(bar) + Aaz) + A(b2)
=A(a11 + a2 + a1 + ax) + A(byy + bz + bay + bx)
—A(a) + AD).

This completes the proof. O

Lemma4.5. (a) Aai1bi2) = A(a11)bi2 = a11A(bio);
(b) A(a12ba2) = Alar2)baz = a12A(b22);
(©) A(azbi1) = Alaz)b1r = anA(b1);

(d) Aaxnbrn) = A(a)bxn = anA(ba).
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Proof. Here we only consider case (a). The proofs of the rest are similar.
Since a11b12(—e€) - - - (—e) = 0, by Lemmas 2.1, 3.3 and 4.3(a), we have

A(a11b12) = 8(an1br2) =6(pn(air, bra, —e, - -+, —e))
=pn(6(a11), b1z, —e,--- ,—e)
=pn-1([6(a11), b12], =, , —e€)
=e[6(a1), b2l f + (=1)" f[6(a11), biz]e
=[6(a11), b12]
=[ed(a11)e — 67 (f6(ar1) f) + m(a11), biz]
=[ed(ar)e — 07 (f6(ar1) f), br2]
=[A(a11), b12]
=A(a11)b12-

On the other side, by Definition 1.1 and Lemmas 2.1, 3.3 and 4.3(c), we have

A(a11b12) = 8(a11biz) =0(pn(ar1, bro, —e,- -+, —€))
=pu(a11,0(b12), —e,- -, —e)
=pu-1([a11, 6(b12)], —e,- -+ , —€)
=e[a11, 6(bi2)]f + (=1)" flan, 6(b12)]e
=[a11,6(b12)]
=[a11, A(b12)]
=a11A(b12)-

Hence A(a11b12) = A(a11)b12 = anA(bz). O
Lemma4.6. (a) A(anibin) = A(ai1)bir = annA(bn);
(b) A(azb2) = Alax)by = anA(b2).
Proof. (a) For any x1, € Ajp, by Lemma 4.5(a), we have
A(anbiixiz) = Aarbi)xiz;

A(ay1biix12) = A(ain)biixio;
A(anibiixi) = annA(bnixi2) = anA(bi)xi.

Comparing the above Equations, we conclude
A(ay1bi)x12 = A(an)biixiz = a1 A(bi1)x12
for all x1, € Ajp. Now, for any a1 € Ay, we have from Lemma 4.5(c) that
A(x1a11b11) = x21A(@11b11);
A(xa1a11b11) = A(xain)bir = x01A(@11)ba;

A(xz1a11b11) = x21011A(b11).

Comparing the above equations, we have

x21A(@11b11) = x21A(a11)b11 = x21411A(b11)

5909

(19)

(20)



M. Gao, X. Zhao / Filomat 39:17 (2025), 5899-5914 5910

for all xp; € Ap;. Consequently, combining Equations (19) and (20), we have from Condition (4) that
A(ai1by1) = Aar1)byr = anA(by).
(b) Similarly, using parts (b) and (d) of Lemma 4.5, we can prove that
A(axnbn) = Alaxn)bx = a»A(b2n).
O
Lemma4.7. (a) A(aizba1) = A(ai2)ba1 = a1nA(bn);
(b) A(bnaiz) = A(bzr)arz = by A(ar).
Proof. It should be noted that we will simultaneously prove (a) and (b) by two cases.
Caseln =3.
Since a12by1x21 = 0, by Lemmas 2.1 and 4.3(c), we have
A([[a12, ba1], x21]) =6([[a12, ba1], x21])
=[[6(a12), b21], x21]
=[[A(a12), b1], x21]
=[A(a12)ba1 — b1 Aar2), x21];
on the other side, we have from Lemmas 4.3, 4.4 and 4.5 that
A([[a12, b, x21]) =A(=b2na12x21 — x21412b21)
= — A(bna12x21) — A(x21412b21)
= — A(ba1a12)x21 — x21A(a12b21)
=[A(a12b21), x21] — [A(b21612), X21]
=[A(a12b21) — A(b21412), X21]-
Combining the above two equations, we have
[A(a12b21) — A(b21a12) — A(a12)bar + b A(ar2), x21] = 0. (21)

Since by1a12x12 = 0, by Definition 1.1, Lemmas 2.1 and 4.3(c), we have

A([[b21, a12], x12]) =6([[b12, a12], X12])
=[[b21, 6(a12)], x12]
=[[b21, A(a12)], x12]
=[b21A(a12) = A(a12)b21), x12];
on the other side, we have from Lemmas 4.3, 4.4 and 4.5 that
A([[b21,a12], x12]) =A(=a12b21x12 — X12b21012)
= — A(a12bn1x12) — A(x12b21412)
= — A(a2ba)x12 — x12A(b21612)
= — [A(a12b21), x12] + [A(b21a12), X12]
=[A(ba1a12) = A(a12ba1), x12].
Combining the above two equations, we have
[A(a12b21) — A(bz1a12) — A(a12)ba1 + ba1A(a12), x12] = 0. (22)
According to the Equations (21) and (22), we can get
(A(ar2ba1) — A(ar2)ba1) + (b1 A(arz) — A(b21ar2)) € Z(A). (23)

Combining with condition (1) of Theorem 4.1, we have
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A(ai2ba1) — Aarz)bar € Z(Anr) and by1Aarz) — A(bniarz) € Z(Axn)

for all a;p € Ayp and by € Ay Without loss of generality, we assume that A;; does not contain nonzero
central ideals. It is easy to see that A1 (A(a12b21) — A(a12)b21) is a central ideal of Ajp. Therefore A(apba1) —
A(ﬂlz)bﬂ = 0 and then

A(arab1) = Aar2)bar.

Combining Equation (23) and Lemma 4.3, we have by A(a12) — A(bn1a12) € Z(A)NA,. Since Z(A)NAx» =0,
it follows that

A(bnarz) = by Aar2).

Similarly, we can also show that
A(arzba1) = a12A(b21) and A(b21812) = A(b21)arz.

Case 21 > 3.
Since apbz1x21€ - - - = 0, by Lemmas 2.1 and 4.3(c), we have

A(pu(ar2, ba1, x21,¢, -+, €)) =0(pu(aiz, b, x21,¢,- -+ ,€))
=pu(6(a12), b1, x21, €, ,€))
=pu-2([[6(a12), bn], x21l,e,- -+, €))
=(=1)""e[[8(a12), b1 ], x211f + fl[6(a12), b2, x21]e
=[[6(a12), ba1], x21]
=[[A(a12), b21], x21]
=[A(a12)b21 — bnAa12), x21];

on the other side, we have from Lemmas 2.1, 3.6 and 4.4 that

A(pn(arz, bo1, x21,€,- -+, €)) =A([lar2, ba1], x21])
=A([a12bx1 — by1aiz, x21])
=A([a2bn, x21] = [b21a12, x21])
=A([a12021, x21]) — A([b21a12, x21])
=A(pn(a12ba, x21,€,- -+, €)) = A(pn(bnaiz, x21,¢€,- -+ ,€))
=0(pu(ar2bn, x21,¢,- -+ ,€)) = O(pu(bnaiz, x21,€,- -+ ,€))
=pn(0(a12b21), x21,€,- -+, €) = pu(O(ba1a12), X21,€,- -+ , €)
=pn-1([6(a12b21), x21], €, - -, €) = pu-1([6(b21412), X21], €, - - , €)
=[6(a12b21), x21] — [6(b21412), X21]
=[A(a12b21), x21] = [A(b21412), x21]
=[A(a12b21) — A(bna12), x]-

Combining the above two equations, we have

[A(a12b21) — A(bp1a12) — A(@12)ba + ba1Aar2), x21] = 0. (24)
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Since ajpbyix1ze- - -e = 0, by Lemmas 2.1 and 4.3(c), we have
A(pn(aiz, b1, x12,€,- -+, €)) =0(pu(ar12,ba1, x12,€,- -, €))
=pn(6(a12), b1, x12,€,- -+ ,€))
=pn-2([[6(a12), bx1], x12],€,- -+, €))
=(=1)""e[[6(a12), b1 ], x121f + fl[6(a12), ba1], x12]e
=(=1)"[[6(a12), bz1], x12]
=(-1)"[[A(a12), b1 ], x12]
=(-1)"[A(a12)ba1 — by Aarp), x12];
on the other side, we have from Lemmas 2.1, 3.6 and 4.4 that
A(pn(a12, b, x12,e,+ - ,€)) =A((=1)"[[a12, bx], x12])
=A((=1)"[a12b21 — boara, x12])
=A((-1)"[a12b21, x12) = (=1)"[b21012, x12))
=A((=1)"[a12b21, x12]) = A((=1)" > [ba112, x12])
=A(pu(a12bar, x12,¢,- -+, €)) — A(pu(bararz, x12,¢,- -, €))
=0(pn(a12b21, x12,¢,- -, €)) — O(pu(baidrz, x12,, -, €))
:Pﬂ(é(alzbzl)l X12,€,+ ,€) — Pn(é(bzﬂlu)/ X12,€,°+ ,€)
=pu-1([6(a12b21), x12], €, - -, €) = pu-1([6(b21412), X12], €, - - , €)
=(=1)"2[8(ar2ba1), x12] = (=1)"2[(b2112), X12]
=(=1)"*[A(a12b21), X12] = (=1)"?[A(bzna12), x12]
=(—1)""*[A(a12b21) — A(boiarz), x12].
Combining the above two equations, we have
(—1)"?[A(a12b21) = A(bzar2) — A@12)ba1 + by Aar), x12] = 0. (25)
According to the Equations (24) and (25), we can conclude
(A(a12b21) — A(a12)ba1) + (b1 Ala12) — A(b21412)) € Z(A).
Up to now, using the same argument as the case of n = 3, we can also obtain the required assertions. [J
Lemma 4.8. A(ab) = A(a)b = aA(b) and A(a) = Aa for some A € Z(A).

Proof. By Lemmas 4.4-4.7, we can easily check that A(ab) = A(a)b = aA(b) for all a,b € A. Then, for any
a € A, we have
Aa) = A(l)a = aA(1),

which implies that A(1) € Z(A). Denote A = A(1) and then A(a) = Aa. OO
Proof of Theorem 4.1.

Proof. Define an additive mapping 7 : A — Z(A) by t(a) = 6(a) — A(a) for all 2 € A. Then, by the
definition of A and Theorem 3.1, it follows that T(A) € Z(A). By Lemma 4.8, we only need to show that
t(pu(as, - - -, a,)) = 0 with may ---a, = 0. In fact, for all ;y,a5,--- ,a, € A with aya, ---a, = 0, we have from
Lemma 4.8 that
T(Pn (a1/a2/ e /al’l)) zé(pn (allaZI e /an)) - A(Pn (a1/a2/ e /al’l))

=pu (0(a1),a2, -+ ,an) — pn (A1), a2, -+, ay)

=pn (A(@1) + T(@1), a2, -+, an) = pu (A@1), a2, -, an)

=pu (A1), a2, ,a,) — pn (A1), 42, ,a,) = 0.
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O

Finally, we give two applications of Theorems 3.1 and 4.1 in the following.

Let 7~ be a unital algebra with a nontrivial idempotent e and denote f = 1 — ¢, where 1 is the unit of
7. Suppose that e7 f is a faithful (e7 e, f7 f)-bimodule, which is faithful as a left e/ e-module and also as
aright f7 f-module, and f7e = {0}. Then T =eTe+eT f + f7 f is a triangular algebra. Since f7e = {0},
Lemma 4.7 holds trivially in case of triangular algebra. Thus we can omit the assumption (b) of Theorem
4.1. As a consequence of Theorems 3.1 and 4.1, we can obtain the following result:

Corollary 4.9. LetT = eT e+eT f+fT f beatriangular algebra as mentioned above. Assume that Z(eTe) = Z(T )e
and Z(fT f) = Z(T)f. Ifamap &6 : T — T satisfies

6 (pn (x1/x2/ e /xn)) = pl’l (6(x1)/ x2/ e //xn)

forall x1,x2,+++ ,x, € T with x1x2---x, = 0. Then 6(x) = Ax + t(x) forall x € T, where A € Z(T)and t : T —
Z(T) is an almost additive map vanishing at p, (x1,%2, -+ ,Xy) for all x1,x2,++ ,x, € T with x1x2 -+ - x,, = 0.

Assume that M is a von Neumann algebra without central summands of type I;. Then by [15] there
exists a nonzero core-free projection P € Mwith P = I. Fix such P and note that P = I — P = I. It follows from
the definition of the central carrier that both span{TP(x) : T € M,x € H} and span{T(I-P)(x) : T € M,x € H}
are dense in H. So AMP = {0} = A = 0 and AM(I - P) = {0} = A = 0. Bresar and Miers [8] proved
that if Z € Z(M) such that ZM € Z(M), then Z = 0. This implies that M has nononzero central ideals.
Note that PMP and (I — P)M(I — P) are also von Neumann algebras without central summands of type
I;. So both PMP and (I — P)M(I — P) have no nonzero central ideals. Moreover, Z(PMP) = PZ(M) and
Z(I-P)M(I - P)) = (I — P)Z(M). Therefore, as a consequence of Theorems 3.1 and 4.1, we can obtain the
following result:

Corollary 4.10. Let M be a von Neumann algebra without central summands of type I,. If a map 6 : M — M
satisfies
6 (pn (xl/x2/ e /xn)) = pn (6(x1)/ x2/ e //xn)

for all x1,%x3,-++ ,%, € M with x1x2---x, = 0. Then 6(x) = Ax + ©(x) for all x € M, where A € Z(M)
and © : M — Z(M) is an almost additive map vanishing at p, (x1,x2,- -+ ,x,) for all x1,x3,-++ ,x, € M with
X1Xp -+ x, = 0.
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