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Abstract. In this paper, many interesting properties of normal matrices are given by means of such concepts
as the power equivalities, projections, the regularity of vectors, one sided A-equality, A-commutativity and
so on.

1. Introduction

Throughout this paper, Cn×n stands for the set of all n × n complex matrices. AH denotes the conjugate
transpose matrix of A ∈ Cn×n. Let A ∈ Cn×n. Then B ∈ Cn×n is said to be the Moore-Penrose inverse matrix
of A if

A = ABA, B = BAB, (AB)H = AB, (BA)H = BA.

The matrix B always exists by [8, 10] and is uniquely determined by the above equations. We always denote
it by A†.

A ∈ Cn×n is said to be group invertible if there exists B ∈ Cn×n such that

A = ABA, B = BAB, AB = BA.

The matrix B is called the group inverse matrix of A, which is uniquely by above equations [11], and we
denote it by A#.

Let A ∈ Cn×n be a group invertible matrix. Then A is called an EP matrix if A# = A†. It is known that A
is EP if and only if AA† = A†A. For the study of EP matrices, we can also refer to [1, 5, 7, 10]. A is called a
SEP matrix [4, 5] if A# = A† = AH. And A is called a normal matrix if AHA = AAH. In [5], some properties of
normal matrices and the conditions for the establishment of SEP matrices are introduced. The rest study of
normal matrix can be found in [10]. The rest study of normal elements over a ring can be found in [6, 9, 12].

In this paper, we continue to study normal matrices. In Section 2, we use power equivalities to
characterize normal matrix. In Section 3, with the help of projections, we discuss some new characterizations
of normal matrices. In Section 4, we use the regularity of vector to describe normal matrices. In Section 5, we
use one sided A−equality to characterize the normal matrix. In Section 6, by researching A−commutativity
matrices, we obtain some interesting results about normal matrix.
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2. Using power equivalities to characterize normal matrices

In [3, Theorem 2.1], it is shown that for a group invertible matrix A, A is normal if and only if AAH(A#)H =
AHA(A†)H. This inspires us to give the following theorems.

Theorem 2.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if (AAH(A#)H)k =
(AHA(A†)H)k for k = 2, 3.

Proof. ” =⇒ ” If A is a normal matrix. Then, by [3, Theorem 2.1], we have AAH(A#)H = AHA(A†)H. It follows that
(AAH(A#)H)k = (AHA(A†)H)k for k = 2, 3.

”⇐= ” From the hypothesis, one has

(AAH(A#)H)2 = (AHA(A†)H)2.

Multiplying the equality on the left by A†A, one gets

A†A2AH(A#)HAAH(A#)H = AAH(A#)HAAH(A#)H.

Multiplying the last equality on the right by A†A†A, one obtains

A†A2 = A.

Hence, A is EP. Now, for k = 2, 3, one yields

Ak = (AAH(A#)H)k = (AHA(A†)H)k = AHAk(A†)H.

This gives
AHA3(A+)H = A3 = A2A = AHA2(A+)HA.

Multiplying the equality on the left by A#A†(A#)H, we have

A(A†)H = (A†)HA.

It follows that
A#AH = A†AH = (A(A†)H)H = ((A†)HA)H = AHA† = AHA#.

Hence, A is a normal matrix by [5, Theorem 1.3.2].

Let A, B ∈ Cn×n. Then A is called (3, B)−regular, if A3 = ABA. It is evident that for any A ∈ Cn×n, A is
(3, A)−regular. Also, for any A ∈ Cn×n, we have

(1) A2 = En if and only if A is invertible and (3, A−1)−regular;
(2) A2 = A if and only if A is group invertible and (3, En)−regular;
(3) AH = A if and only if A is EP and (3, AH)−regular.
Where En is the n-order identity matrix.

Theorem 2.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if A is EP and
AAH(A#)H is (3, AHA(A†)H)−regular.

Proof. ” =⇒ ” It is an immediate result of [3, Theorem 2.1].
”⇐= ” From the assumption, we have

(AAH(A#)H)3 = (AAH(A#)H)(AHA(A†)H)(AAH(A#)H).

Since A is EP, one gets
A3 = AAHA(A†)HA,

This gives
A = A#A3A# = A#AAHA(A†)HAA# = AHA(A†)H.

Hence, AAH(A#)H = A = AHA(A†)H. By [3, Theorem 2.1], A is normal.
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Let A, B ∈ Cn×n. Then A is called left (right) B−idempotent, if A2 = BA (A2 = AB). Clearly, for any
A ∈ Cn×n, A is left and right A−idempotents. Also, we have

(1) A is an idempotent matrix if and only if A is right or left En−idempotent;
(2) if A is left or right B−idempotent, then A is (3, B)−regular;
(3) If A is group invertible, then A is partial isometry if and only if A is left or right (A+)H

−idempotent;
(4) A2 = En if and only if A is invertible and A is left or right A−1

−idempotent;
(5) A is right A + En − A+A +U − A+AU−idempotent for all U ∈ Cn×n

(6) A = AH if and only if A is right AH + En − A+A +U − A+AU−idempotent for all U ∈ Cn×n.

Theorem 2.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AAH(A#)H is left
AHA(A†)H

−idempotent.

Proof. ” =⇒ ” It is clear by [3, Theorem 2.1].
”⇐= ”If AAH(A#)H is left AHA(A†)H

−idempotent, then

(AAH(A#)H)2 = (AHA(A†)H)(AAH(A#)H).

Multiplying the equality on the right by A†A, one gets

AAH(A#)HA = AHA(A†)HA.

Multiplying the last equality on the left by A†A, one has

A†A2AH(A#)HA = AAH(A#)HA.

Noting that
AA† = AAH(A#)HA† = A†A2AH(A#)HA† = A†A2A†.

Then A is EP. Since

(AAH(A#)H)3 = AAH(A#)H(AAH(A#)H)2 = AAH(A#)H(AHA(A†)H)AAH(A#)H,

AAH(A#)H is (3, AHA(A†)H))-regular. Hence, A is a normal matrix by Theorem 2.2.

Theorem 2.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AAH(A#)H is
right AHA(A†)H

−idempotent.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ” The condition ”AAH(A#)H is right AHA(A†)H

−idempotent” gives

AAH(A#)HAAH(A#)H = AAH(A#)HAHA(A†)H = AAHA(A†)H,

and
AHA(A†)H = A†AAHA(A†)H = A†AAH(A#)HAAH(A#)H = AH(A#)HAAH(A#)H.

Noting thta (A#)H = (A#)HAA†. Then

AHA(A†)H = AHA(A†)HAA†.

It follows that
(A†)H = A#(A†)HAHA(A†)H = A#(A†)HAHA(A†)HAA† = (A†)HAA†.

Hence, A is EP and

(AAH(A#)H)3 = (AAH(A#)H)2(AAH(A#)H) = (AAH(A#)H)(AHA(A†)H)(AAH(A#)H).

By Theorem 2.2, A is normal.
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Theorem 2.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)H
−

AAH(A#)H is right AHA(A†)H
−idempotent.

Proof. ” =⇒ ” It is an immediate result of [3, Theorem 2.1].
”⇐= ” If AHA(A†)H

− AAH(A#)H is right AHA(A†)H
−idempotent. Then

(AHA(A†)H
− AAH(A#)H)2 = (AHA(A†)H

− AAH(A#)H)(AHA(A†)H).

This gives
(AAH(A#)H)2 = AHA(A†)HAAH(A#)H.

Hence, AAH(A#)H is left AHA(A†)H-idempotent. By Theorem 2.3, A is normal.

Theorem 2.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)H
−

AAH(A#)H is left AHA(A†)H
− idempotent.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ” The condition ”AHA(A†)H

− AAH(A#)H is left AHA(A†)H
− idempotent” gives

(AHA(A†)H
− AAH(A#)H)2 = (AHA(A†)H)(AHA(A†)H

− AAH(A#)H).

This gives
(AAH(A#)H)2 = AAH(A#)HAHA(A†)H.

Hence, AAH(A#)H is right AHA(A†)H
−idempotent. By Theorem 2.4, A is normal.

Let A,B ∈ Cn×n. If A is right B−idempotent, then

A3 = A(A2) = A(AB) = A2B = AB2,

and
A6 = A3A3 = A3AB2 = A2A2B2 = A3B3.

Hence, A2 is right B2
−idempotent and A3 is right B3

−idempotent.

Theorem 2.7. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if (AAH(A#)H)k is
right (AHA(A†)H)k idempotent for k = 2, 3.

Proof. ” =⇒ ” It is clear by [3, Theorem 2.1] and Theorem 2.4.
”⇐= ” From the hypothesis, one has

(AAH(A#)H)4 = (AAH(A#)H)2(AHA(A†)H)2.

Multiplying the equality on the right by AA† , one gets

(AAH(A#)H)2(AHA(A†)H)2 = (AAH(A#)H)2(AHA(A†)H)2AA†.

Multiplying the last equality on the left by AAH(A#)2(A†)H(A†)2, we have

A = A2A†.

Hence, A is EP. Now, for k = 2, 3, one yields

Ak = (AAH(A#)H)k ; (AHA(A†)H)k = AHAk(A†)H.

From the hypothesis, one has
(AAH(A#)H)6 = (AAH(A#)H)3(AHA(A†)H)3.

This gives
A6 = A3AHA3(A†)H = A4A2 = A4AHA2(A†)H.

Multiplying the equality on the left by (A#)3 and on the right by AH(A#)2, we have

AHA = AAH.

Hence, A is a normal matrix.
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3. Using projections to characterize normal matrices

Let A ∈ Cn×n. Then A is called projection if A2 = A = AH. Clearly, A is projection if and only if A = AAH

if and only if A = AHA if and only if En − A is projection. The results of characterizing generalized inverse
with projections can be found in [2, 13]

Theorem 3.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)HA† is
projection.

Proof. ” =⇒ ” If A is a normal matrix, then, we have AHA(A†)HA† = AA†. Clearly, (AA†)2 = AA† = (AA†)H.
Hence, AHA(A†)HA† is projection.

”⇐= ” If AHA(A†)HA† is projection, then we have

AHA(A†)HA†(AHA(A†)HA†)H = AHA(A†)HA†.

Multiplying the equality on the left by AHAAHA#(A†)H, one gets

A†AHA = AH.

Hence, A is a normal matrix by [5, Theorem 1.3.2].

Let A ∈ Cn×n. Then A is called Op-projection if −A2 = A = AH. Clearly, A is Op-projection if and only if
−A is projection.

Corollary 3.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)HA† −
AA† is Op-projection.

Proof. ” =⇒ ” It is evident by Theorem 3.1.
”⇐= ” If AHA(A†)HA† − AA† is Op-projection. Then, AA† − AHA(A†)HA† is projection. We have

(AA† − AHA(A†)HA†)(AA† − AHA(A†)HA†)H = AA† − AHA(A†)HA†.

This gives
(AHA(A†)HA†)H = AHA(A†)HA†(AHA(A†)HA†)H.

Hence, AHA(A†)HA† is projection. By Theorem 3.1, A is a normal matrix.

Theorem 3.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)HA†

and AHA(A†)HA† − AHA(A†)HA†(AHA(A†)HA†)H are idempotents.

Proof. ” =⇒ ” It is clear by Theorem 3.1.
” ⇐= ” Since AHA(A†)HA† and AHA(A†)HA† − AHA(A†)HA†(AHA(A†)HA†)H are idempotents, by a simple

computation, we have

AHA(A†)HA†(AHA(A†)HA†)HAHA(A†)HA† = (AHA(A†)HA†(AHA(A†)HA†)H)2.

Multiplying the equality on the left by AAHA#(A†)H and then applying the involution, one gets

(AHA(A†)HA†)HAHA(A†)HA† = AHA(A†)HA†(AHA(A†)HA†)HAHA(A†)HA†.

Multiplying the last equality on the right by AAHAA#A†(A†)H, we have

(AHA(A†)HA†)H = AHA(A†)HA†(AHA(A†)HA†)H.

Hence, AHA(A†)HA† is projection. By Theorem 3.1, A is a normal matrix.
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Theorem 3.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)HA†, AHA(A†)HA†(AHA(A†)HA†)H

and
AHA(A†)HA† − AHA(A†)HA†(AHA(A†)HA†)H + (AHA(A†)HA†)H(AHA(A†)HA†) are idempotents.

Proof. ” =⇒ ” It is an immediate result of Theorem 3.1.
”⇐= ” From the assumption, we have

AHA(A†)HA†(AHA(A†)HA†)H = AHA(A†)HA†(AHA(A†)HA†)HAHA(A†)HA†(AHA(A†)HA†)H.

Multiplying the equality on the left by AAHA#(A†)H, one gets

(AHA(A†)HA†)H = (AHA(A†)HA†)HAHA(A†)HA†(AHA(A†)HA†)H,

and
AHA(A†)HA† = AHA(A†)HA†(AHA(A†)HA†)HAHA(A†)HA†.

Since AHA(A†)HA† − AHA(A†)HA†(AHA(A†)HA†)H + (AHA(A†)HA†)H(AHA(A†)HA†) is idempotent, we have

AHA(A†)HA† + (AHA(A†)HA†)H = AHA(A†)HA†(AHA(A†)HA†)H + (AHA(A†)HA†)HAHA(A†)HA†.

This gives
(AHA(A†)HA† − (AHA(A†)HA†)H)2 = 0.

Noting that
(AHA(A†)HA† − (AHA(A†)HA†)H)H = −(AHA(A†)HA† − (AHA(A†)HA†)H).

So
(AHA(A†)HA† − (AHA(A†)HA†)H)(AHA(A†)HA† − (AHA(A†)HA†)H)H = 0.

Now we have AHA(A†)HA† = (AHA(A†)HA†)H. Noting that AHA(A†)HA† is idempotent. Then AHA(A†)HA† is
projection. Thus A is a normal matrix by Theorem 3.1.

Lemma 3.5. Let A,B ∈ Cn×n be Hermitians. If AB is projection, then BA is projection.

Proof. From the assumption, we have
AB = (AB)H = BHAH = BA.

Hence, BA is projection.

It follows from Theorem 3.1 and Lemma 3.5, we have the following corollary.

Corollary 3.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if (A+)HA+AHA
is projection.

Proof. ” =⇒ ” It follows from Theorem 3.1 because (A+)HA+AHA = (AHA(A+)HA+)H.
” ⇐= ” Noting that (A†)HA† and AHA are Hermitian. Then, by the assumption and Lemma 3.5, we have

AHA(A†)HA† is projection. Hence, A is a normal matrix by Theorem 3.1.

Theorem 3.7. Let A ∈ Cn×n. Then A is a projection if and only if A is right AAH
− and AHA−idempotents.

Proof. ” =⇒ ” Suppose that A is projection. Then A = AAH and A = AHA, this deduces

A2 = A2AH = A(AAH),

and
A2 = A(AHA).

Hence, A is both right AAH
− and AHA−idempotents.
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”⇐= ” From the hypothesis, one obtains
A2 = A(AAH),

and
A2 = A(AHA).

Noting that
rank(A) = rank(AAH) = rank((AAH)(AAH)H) = rank((AAHA)AH)

≤ rank(AAHA) = rank(A2) ≤ rank(A).

Then rank(A) = rank(A2), this induces A is group invertible and

A = A#A2 = A#(A2AH) = AAH.

Hence, A is projection.

Theorem 3.7 inspires us to give the following result.

Theorem 3.8. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)HA† is
right AHA(A†)HA†(AHA(A†)HA†)H

−idempotent.

Proof. ” =⇒ ” It is an immediate result of Theorem 3.1.
”⇐= ” From the assumption, we have

(AHA(A†)HA†)2 = (AHA(A†)HA†)2(AHA(A†)HA†)H.

Multiplying the equality on the left by (A#)HAHAAHA#(A†)H, one gets

AHA(A†)HA† = AHA(A†)HA†(AHA(A†)HA†)H.

Now AHA(A†)HA† is projection. Hence, A is a normal matrix by Theorem 3.1.

4. Using vectors to characterize normal matrices

Theorem 2.1 implies us to give the following result on normal matrix. Let A ∈ Cn×n, A is said to be
regular if there exists B ∈ Cn×n such that A = ABA. The matrix B is called an inner inverse of A. The inner
inverse matrix of A is not unique , and A{1} is used to denote the set of all inner inverses of A.

Theorem 4.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if
(
AH, A − En

)
∈(

A#(A†)H

A†

)
{1}.

Proof. ” =⇒ ” Assume that A is a normal matrix. Then, A is EP by [5, Lemma 1.3.3], and A#(A†)H = (A†)HA#. It
follows that (

A#(A†)H

A†

) (
AH, A − En

) (A#(A†)H

A†

)
=

(
A#(A†)H(AHA#(A†)H + AA† − A†)
A†AHA#(A†)H + A†AA† − A†A†

)
.

Noting that

A#(A†)H(AHA#(A†)H + AA† − A†) = A#(A†)H + A#A#(A†)H
− A#(A†)HA† = A#(A†)H,

and
A†AHA#(A†)H + A†AA† − A†A† = A†AH(A†)HA# + A† − A†A† = A†.
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Hence, (
A#(A†)H

A†

) (
AH, A − En

) (A#(A†)H

A†

)
=

(
A#(A†)H

A†

)
.

One gets
(
AH, A − En

)
∈

(
A#(A†)H

A†

)
{1}.

”⇐= ” From the assumption, we have(
A#(A†)H

A†

) (
AH, A − En

) (A#(A†)H

A†

)
=

(
A#(A†)H

A†

)
.

This gives

A#(A†)H(AHA#(A†)H + AA† − A†) = A#(A†)H, (1)

A†AHA#(A†)H = A†A†. (2)

Multiplying (4.2) on the left by (A#)HAHA, we have

AHA#(A†)H = A†.

Multiplying the last equality on the right by A†A, one yields A† = A†A†A. Hence, A is EP. It follows from (4.1) that

A#(A†)H = A#A#(A†)H + A#(A†)H
− A#(A†)HA†,

this gives
A#A#(A†)H = A#(A†)HA†.

Multiplying the above equality on the left by A, one gets

A#(A†)H = (A†)HA† = (A†)HA#.

Hence, A is normal.

It is well known that A is a normal matrix if and only if AH = AAHA† and A#(A†)H = (A†)HA#[5, Theorem
1.3.2]. Hence, Theorem 4.1 leads to the following corollary.

Corollary 4.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if
(
AAHA†, A − En

)
∈(

(A†)HA#

A†

)
{1}.

Proof. ” =⇒ ” If A is a normal matrix. Then, we have AH = AAHA† and A#(A†)H = (A†)HA#. Hence,(
AAHA†, A − En

)
∈

(
(A†)HA#

A†

)
{1} by Theorem 4.1.

”⇐= ” From the assumption, we have(
(A†)HA#

A†

) (
AAHA†, A − En

) ((A†)HA#

A†

)
=

(
(A†)HA#

A†

)
.

This gives

AA†A†(A†)HA# + (A†)HA† − (A†)HA#A† = (A†)HA#, (3)

AHA†(A†)HA# = A†A†. (4)

Multiplying (4.4) on the right by A†A, we have

A†A†A†A = A†A†.
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By [4, Lemma 2.11], A† = A†A†A. Then A is EP. It follows from (4.3) that

A†(A†)HA# = (A†)HA#A†.

This gives
A#(A†)H = A†(A†)H = A†(A†)HA#A = (A†)HA#A†A = (A†)HA#.

Hence, A is normal.

Noting that SEP matrix is always normal. Hence, Corollary 4.2 implies the following corollary which
characterizes SEP matrix.

Corollary 4.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if
(
AAHAH, A − En

)
∈(

(A†)HA#

A†

)
{1}.

Proof. ” =⇒ ” It is an immediate result of Corollary 4.2.
”⇐= ” From the assumption, we have (

(A†)HA#

A†

) (
AAHAH, A − En

) ((A†)HA#

A†

)
=

(
(A†)HA#AAHAH(A†)HA# + (A†)HA† − (A†)HA#A+

AHAH(A†)HA# + A† − A†A†

).
Noting that (A†)HA#AAHAH(A†)HA# = AA†A†AA#. Then one gets

AA†A†AA# + (A†)HA† − (A†)HA#A† = (A†)HA#, (5)

AHAH(A†)HA# = A†A†. (6)

Multiplying (4.6) on the right by A†A, we have

A†A†A†A = A†A†.

A is EP by Corollary 4.2. Hence, the equality (4.5) changes into

A† = (A†)HA#A†.

So,
A = A†A2 = (A†)HA#A†A2 = (A†)HA#A = (A†)H.

Thus, A is a SEP matrix.

Since Hermite matrices are normal. Hence, Corollary 4.2 implies the following corollary which charac-
terizes Hermite matrix.

Corollary 4.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a Hermite matrix if and only if
(
A2A†, A − En

)
∈(

(A†)HA#

A†

)
{1}.

Proof. ” =⇒ ” It is an immediate result of Corollary 4.2.
”⇐= ” From the assumption, we have(

(A†)HA#

A†

) (
A2A†, A − En

) ((A†)HA#

A†

)
=

(
(A†)H(A†)HA# + (A†)HA† − (A†)HA#A†

A†A(A†)HA# + A† − A†A†

)
.
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This gives

(A†)H(A†)HA# + (A†)HA† − (A†)HA#A† = (A†)HA#, (7)

A†A(A†)HA# = A†A†. (8)

Multiplying (4.8) on the right by A†A, we have

A†A†A†A = A†A†.

A is EP by Corollary 4.2. Multiplying (4.7) on the right by A, we have

(A†)H(A†)H = (A†)HA#.

Multiplying the last equality on the left by AHAH, it gets

A†A = AHA#.

Hence, A is a Hermite matrix.

5. Using one sided A−equality to characterize normal matrices

Let A,B,C ∈ Cn×n. Then B and C are called left (right) A−equal if AB = AC (BA = CA). Clearly, we have
(1) A is right C−idempotent if and only if A and C are left A−equal;
(2) A2 = A if and only if A and En are left A−equal;
(3) A is (3, B)−regular if and only if A2 and BA are left A−equal;
(4) A is projection if and only if AH and En are left A−equal.

Theorem 5.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A#)H and
A are left AAH(A#)H

−equal.

Proof. ” =⇒ ” If A is a normal matrix, then A is EP. We have

AHA(A#)H = AAH(A#)H = A.

Hence, AHA(A#)H and A are left AAH(A#)H
−equal.

”⇐= ” The condition ”AHA(A#)H and A are left AAH(A#)H
−equal” gives

AAH(A#)HAHA(A#)H = AAH(A#)HA. (9)

Multiplying the equality on the right by AA†, we have

AAH(A#)HA = AAH(A#)HA2A†.

Multiplying the last equality on the left by (A†)HAHA†, it gets

A = A2A†.

So A is EP. Multiplying (5.1) on the left by A† and on the right by AH, it gets AHA = AAH. Hence, A is a normal
matrix.

Theorem 5.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A+)H and
AAH(A#)H are left A−equal.
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Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ” From the assumption, we have

AAHA(A†)H = A2AH(A#)H. (10)

Multiplying (5.2) on the right by A†A, we have

A2AH(A#)H = A2AH(A#)HA†A.

Multiplying the last equality on the left by A†A†A#, it gets

A†A†A = A†.

So A is EP. Multiplying (5.2) on the left by A† and on the right by AH, it gets AHA = AAH. Hence, A is a normal
matrix.

Theorem 5.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A+)H and
AAH(A#)H are left AH

−equal.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ”From the assumption, we have

AHAHA(A†)H = AHAAH(A#)H. (11)

Multiplying (5.3) on the right by A†A, we have

AHAAH(A#)H = AHAAH(A#)HA†A.

Multiplying the last equality on the left by A†A†(A†)H, it gets

A† = (A†)2A.

So A is EP. Multiplying (5.3) on the left by (A†)H and on the right by AH, it gets AHA = AAH.Hence, A is a normal
matrix.

Theorem 5.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if A and (A#)HAAH

are left AHA(A#)H
−equal.

Proof. ” =⇒ ”If A is a normal matrix, then A is EP. We have

AHA(A#)H = A = (A#)HAAH.

Hence, A and (A#)HAAH are left AHA(A#)H
−equal.

”⇐= ” From the assumption, we have

AHA(A#)HA = AHA(A#)H(A#)HAAH. (12)

Multiplying (5.4) on the right by AA† and on the left by AA†AHA†(A†)H, we have

A = A2A†.

So A is EP. Multiplying (5.4) on the left by AHAHA†(A†)H, it gets

AHA = AAH.

Hence, A is a normal matrix.
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Theorem 5.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if Ak and
((A#)HAAH)k are left AHA(A#)H

−equal for k = 2, 3.

Proof. ” =⇒ ”It is evident by Theorem 5.4.
”⇐= ” From the hypothesis, one has

AHA(A#)HA2 = AHA(A#)H((A#)HAAH)2.

Multiplying the equality on the right by AA† and on the left by A#AA†AHA†(A†)H, we have

A = A2A†.

So A is EP. Now, for k = 2, 3, one yields

((A#)HAAH)k = (A#)HAkAH.

This gives
AHA(A#)H(A#)HA3AH = AHA(A#)HA2A = AHA(A#)H(A#)HA2AHA.

Multiplying on the left by A†A#AHAHA†(A†)H, it gets

AAH = AHA.

Hence, A is a normal matrix.

6. Constructing A−commutativity matrices to characterize normality

Let A, B, C ∈ Cn×n. Then B and C are called A−commuatativity if AB = CA. Clearly, we have
(1) A is left C-idempotent if and only if A and C are A−commutativity;
(2) A is right B−idempotent if and only if B and A are A−commutativity;
(3) A2 = A if and only if A and En are A−commutativity;
(4) A is normal if and only if A and A are AH

−commutativity;
(5) A is normal if and only if AH and AH are A−commutativity.

Theorem 6.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AAH(A#)H and
AHA(A+)H are A−commutativity.

Proof. ” =⇒ ”It is evident by [3, Theorem 2.1].
”⇐= ” From the hypothesis, one has

A2AH(A#)H = AHA(A+)HA. (13)

Multiplying (6.1) on the right by AA†, we have

AHA(A+)HA = AHA(A+)HA2A†.

Multiplying the equality on the left by A#AAHA#(A†)H, it gets

A = A2A†.

So A is EP. Multiplying (6.1) on the right by A#AH, it gets

AAH = AHA.

Hence, A is a normal matrix.
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Corollary 6.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AAH(A#)H and
AHA(A+)H are A#

−commutativity.

Proof. It is an immediate result of Theorem 6.1.

Theorem 6.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AAH(A#)H and
AHA(A†)H are ((A†)H)k

−commutativity for k = 2, 3.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ”From the assumption, we have

((A†)H)2AAH(A#)H = AHA((A†)H)3.

Multiplying the equality on the right by AA†, we have

AHA((A†)H)3 = AHA((A†)H)3AA†.

Multiplying the last equality on the left by (A#AAH)2A#(A†)H, it gets

(A†)H = (A†)HAA†.

So A is EP. Now, for k = 2, 3, one yields

((A†)H)3AAH(A#)H = AHA((A†)H)3(A†)H = ((A†)H)2AAH(A#)H(A†)H.

Multiplying the above equality on the right by AH and on the left by (AH)3, it gets

AAH = AHA.

Hence, A is a normal matrix.

Theorem 6.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)H and
AAH(A#)H are A†−commutativity.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ” From the hypothesis, one has

A†AHA(A†)H = AAH(A#)HA† = AA†. (14)

Multiplying (6.2) on the right by A†A, we have

AA† = AA†A†A.

Hence, A is EP. Multiplying (6.3) on the right by AH and on the left by A, it gets

AAH = AHA.

Hence, A is a normal matrix.

Theorem 6.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AHA(A†)H and
AAH(A#)H are (AH)k

−commutativity for k = 2, 3.

Proof. ” =⇒ ” It is evident by [3, Theorem 2.1].
”⇐= ”From the assumption, we have

(AH)3A(A†)H = AAH(A#)H(AH)2 = A(AH)2.
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Multiplying the equality on the right by A†A and on the left by (A#)HA†, we have

AH = AHA†A.

So A is EP. Now, for k = 2, 3, one yields

AAH(A#)H(AH)3 = AH(AH)3A(A†)H = AHAAH(A#)H(AH)2,

that is,
A(AH)3 = AHA(AH)2.

Multiplying on the right by ((A#)H)2, it gets

AAH = A(AH)3((A#)H)2 = AHA(AH)H((A#)H)2 = AHA.

Hence, A is a normal matrix.
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