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Optimal control of second order delay-differential inclusions

Dilara I. Mastaliyevaa

aKhazar University, Baku, Azerbaijan

Abstract. The present paper studies a new class of problems of optimal control theory with second order
delay-differential inclusions (DFIs). In the forms of Euler-Lagrange and Hamiltonian type inclusions the
sufficient conditions of optimality for delay-DFIs, including the peculiar transversality ones, are proved.
In particular, applications of these results to the second order semilinear optimal control problem are
illustrated as well as the optimality conditions for nondelayed problems are derived.

1. Introduction

Discrete and continuous time processes with first order ordinary discrete-differential and differential
inclusions found wide application in the field of mathematical economics and in problems of control
dynamic system optimization and differential games (see [3, 6–10, 13–20, 22, 28] and their references). The
paper [7] deals with the variational convergence of a sequence of optimal control problems for functional
differential state equations with deviating argument. Variational limit problems are found under various
conditions of convergence of the input data. It is shown that, upon sufficiently weak assumptions on
convergence of the argument deviations, the limit problem can assume a form different from that of the
whole sequence. In particular, it can be either an optimal control problem for an integro-differential
equation or a purely variational problem. Conditions are found under which the limit problem preserves
the form of the original sequence. In the paper [24] are considered evolution inclusions driven by a time
dependent subdifferential plus a multivalued perturbation. Are proved existence results for the convex
and nonconvex valued perturbations, for extremal trajectories (solutions passing from the extreme points
of the multivalued perturbation). Are also proved a strong relaxation theorem showing that each solution
of the convex problem can be approximated in the supremum norm by extremal solutions. Finally, are
presented some examples illustrating these results. The book [3] is concerned with the optimal convex
control problem of Bolza in a Banach space. A distinctive feature is a strong emphasis on the connection
between theory and application. The main emphasis is put on the characterization of optimal arcs as well
as on the synthesis of optimal controllers. Necessary and sufficient conditions of optimality, generalizing
the classical Euler-Lagrange equations, are obtained in Sect. 4.1 in terms of the subdifferential of the
convex cost integrand. The abstract cases of distributed and boundary controls are treated separately.
The paper [23] concerns constrained dynamic optimization problems governed by delay control systems
whose dynamic constraints are described by both DFIs and linear algebraic equations. The authors are
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not familiar with any results in these directions for such systems even in the delay-free case. In the first
part of the paper are established the value convergence of discrete approximations as well as the strong
convergence of optimal arcs in the classical Sobolev space W1,2. Then using discrete approximations as a
vehicle, are derived necessary optimality conditions for the initial continuoustime systems in both Euler-
Lagrange and Hamiltonian forms via basic generalized differential constructions of variational analysis.
In the paper [27] are examined functional differential inclusions with memory and state constraints. For
the case of time-independent state constraints, are shown that the solution set is Rδ under Carathéodory
conditions on the orientor field. For the case of time-dependent state constraints are proved two existence
theorems. For this second case, the question of whether the solution set is Rδ remains open. In the work [10]
dynamic optimization problems for differential inclusions on manifolds are considered. A mathematical
framework for derivation of optimality conditions for generalized dynamical systems is proposed. By using
metric regularity of terminal and dynamic constraints in form of generalized Euler-Lagrange relations and
in form of partially convexified Hamiltonian inclusions are obtained optimality conditions. In [8] are
provided intrinsic sufficient conditions on a multifunction F and endpoint data φ so that the value function
associated to the Mayer problem is semiconcave. The paper [6] introduces a new class of variational
problems for differential inclusions, motivated by the control of forest fires. The area burned by the fire at
time t > 0 is modelled as the reachable set for a differential inclusion x′ ∈ F(x), starting from an initial set R0.
To block the fire, a wall can be constructed progressively in time, at a given speed. In this paper, is studied
the possibility of constructing a wall which completely encircles the fire. Moreover, is derived necessary
conditions for an optimal strategy, which minimizes the total area burned by the fire.

ecently, a number of authors have started investigating boundary value problems and controllability
problems for second order DFIs. The problems accompanied with the second order discrete and differential
inclusions are more complicated due to the second order derivatives and their discrete analogous. Thus,
optimal control problems with ordinary DSIs and DFIs are one of the area in mathematical theory of
optimal processes being intensively developed. More specifically, we deal with similar problems with
delay-differential and state constraints of Bolza type. Observe that such problems arise frequently not
only in mechanics, aerospace engineering, management sciences, and economics, but also in problems of
automatic control, aviovibration, burning in rocket motors, and biophysics (see [14, 22, 23] and references
therein).

For second order differential inclusions, the existence of solutions and other qualitative properties has
been intensively analyzed in the recent literature (see [2, 11, 29] and their references). In the paper [2]
in a separable Banach space a three point boundary value problem for a second order DFI of the form
x′′(t) ∈ F (t, x(t), x′(t)), a.e. t ∈ [0, 1], x(0) = 0; x(θ) = x(1) are considered. The existence of solutions, when
the set-valued mapping F is unbounded-valued and satisfies a pseudo-Lipschitz property are investigated.
Then, a Lipschitz case is derived and the associated relaxed problem is studied.

The paper [29] is concerned with the nonlinear boundary value problems for a class of semilinear second
order DFIs. Using the tools involving topological transformation and fixed points of the set-valued map,
some existence theorems of solutions in the convex case are given.

in the paper [11], second order DFIs with a maximal monotone term and generalized boundary condi-
tions are studied. The nonlinear differential operator need not be necessary homogeneous and incorporates
as a special case the one-dimensional p-Laplacian. The generalized boundary conditions incorporate as
special cases well-known problems such as the Dirichlet (Picard), Neumann and periodic problems. As
application to the proven results existence theorems for both ”convex” and ”nonconvex” problems are
obtained. In the second half of the 20th century, many mathematicians in Russia made great contributions
to the field of optimal control theory (see [1, 4, 5, 12] and references therein) In the paper [1] using Linear
Lyapunov-Krotov functions are obtained sufficient conditions for strong and global minima for the classical
smooth problem of optimal control. In the paper [5] sufficient optimality conditions are proved in the form
of a maximum principle for the time-optimal problem of transfer from a set M0 into a set M1, where an
object’s behavior is described by the first order differential inclusion x′ ∈ F(t, x). It is shown that state
constraints may be active. This means that the adjoint function may have points of discontinuity or jumps.
The paper [12] studies optimization problem described by first order evolution impulsive differential in-
clusions (DFIs); in terms of locally adjoint mappings in framework of convex and nonsmooth analysis are
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formulated sufficient conditions of optimality. Then are constructed the dual problems for impulsive DFIs
and proved duality results. The article [13] investigates an optimal control problem described by higher
order retarded differential inclusions with endpoint constraints. In terms of the Euler-Lagrange type adjoint
inclusions and the Hamiltonian, a sufficient optimality condition is derived for higher-order differential
inclusions. The problems considered in the paper [9] are described in polyhedral set-valued mappings
for higher order discrete and differential inclusions. The paper focuses on the necessary and sufficient
conditions of optimality for optimization of these problems.

As is pointed out in [25, 26, 30], boundary value problems (BVPs) for higher order differential equations
play a very important role in both theory and applications. In recent years, BVPs for second order differential
equations have been extensively studied. In particular, fourth order linear differential equations [26] subject
to some boundary conditions arise in the mathematical description of some physical systems. For example,
mathematical models of deflection of beams [25, 26].

Optimization of higher order differential inclusions was first developed by Mahmudov in [19, 21]. The
paper [19] is mainly concerned with the sufficient conditions of optimality for Cauchy problem (with fixed
initial and free endpoint constraints) of third-order DFIs. Some special transversality conditions, which are
peculiar to problems including third order derivatives are formulated. It is worthwhile to highlight that
optimization problem with higher order (say m thorder) DFIs sometimes has its own importance for every
m in the theoretical and practical point of view.

The paper [20] is devoted to a second order polyhedral optimization described by ordinary DSIs and
DFIs. The stated second order discrete problem is reduced to the polyhedral minimization problem with
polyhedral geometric constraints and in terms of the polyhedral Euler-Lagrange inclusions, necessary and
sufficient conditions of optimality are derived. Derivation of the sufficient conditions for the second order
polyhedral DFIs is based on the discrete-approximation method.

The paper [21] deals with a Bolza problem of optimal control theory given by second order convex
differential inclusions with second order state variable inequality constraints. Necessary and sufficient
conditions of optimality including distinctive ”transversality” condition are proved in the form of Euler-
Lagrange inclusions. Construction of Euler-Lagrange type adjoint inclusions is based on the presence of
equivalence relations of locally adjoint mappings.

In our present paper, we discuss a special kind of optimization problem with second order delayDFIs and
delay DFIs in which the constraints are defined by set-valed mappings. To the best of our best knowledge,
there is no paper which considers an optimality conditions for these problems. We try to fill this gap in the
literature in this paper. In fact, the difficulty in the problems with higher order DFIs is rather to construct
the Euler-Lagrange type higher order adjoint inclusions and the suitable transversality conditions.

The stated problems and obtained optimality conditions in our paper are new. We pursue a twofold goal:
to study optimality conditions for delay-DSIs of control systems with respect to discrete approximations
and to derive sufficient optimality conditions for second order delay-DFIs. We are not familiar with any
results in these directions for such systems even in the nondelay case. The paper is structured as follows;

In Section 2 for the reader’s convenience from the monograph of Mahmudov [14] and papers [16–19] the
necessary notions and results such as LAM properties in finite dimensional Euclidean spaces, Hamiltonian
functions, argmaximum sets, locally tents, and set-valued mappings are given, etc. Then the problems for
second order delay -DFIs are formulated.

In the first part of the paper, an optimal control problem in which the system dynamics are described by a
so-called second order delay-DFIs are investigated, optimization of second order delay- DFIs is considered
and sufficient conditions of optimality for delay- DFIs are proved.

By using separation theorems of convex analysis it is shown that in terms of Hamiltonian functions
these optimality conditions can be rewritten in a more symmetrical form.

In the conclusion of section, is considered an example on the problem of so-called ”linear” optimal
control problem for the second order delay-differential equations.
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2. Preliminary studies and problem statement

In this section we recall the key notions of set-valued mappings from the book [14]; let Rn be a n-
dimensional Euclidean space, ⟨x, v⟩ be an inner product of elements x, v ∈ Rn, (x, v) be a pair of x, v. Let’s
suppose that F : R3n ⇒ Rn is a set-valued mapping from R3n into the set of subsets of Rn. Therefore
F : R3n ⇒ Rn is a convex set-valued mapping, if its graph gph F = {(x,u1,u2, v) : v ∈ F (x,u1,u2)} is a convex
subset of R4n. A set-valued mapping F is called closed if its 1phF is a closed subset in R4n. The domain
of a set-valued mapping F is denoted by dom F and is defined as dom F = {(x,u1,u2) : F (x,u1,u2) , ∅}. A
set-valued mapping F is convex-valued if F (x,u1,u2) is a convex set for each (x,u1,u2) ∈ dom F.

A set-valued mapping F : R3n ⇒ Rn is said to be upper semicontinuous at ( x0,u0
1,u

0
2 ) if for any

neighbourhood U of zero in Rn there exists a neighborhood V of zero in R3n such that

F (x,u1,u2) ⊆ F
(
x0,u0

1,u
0
2

)
+U,∀ (x,u1,u2) ∈

(
x0,u0

1,u
0
2

)
+ V.

The Hamiltonian function and argmaximum set corresponding to a set-valued mapping F are defined
by the following relations

HF (x,u1,u2, v∗) = supv {⟨v, v
∗
⟩ : v ∈ F (x,u1,u2)} , v∗ ∈ Rn,

FAr1 (x,u1,u2; v∗) = FA (x,u1,u2; v∗) = {v ∈ F (x,u1,u2) : ⟨v, v∗⟩ = HF (x,u1,u2, v∗)}

respectively. For a convex F we put HF (x,u1,u2, v∗) = −∞ if F (x,u1,u2) = ∅. In other terms, HF (x,u1,u2, v∗)
is the support function to the set F (x,u1,u2), evaluated at v∗.

s usual, int Q denotes the interior of the set Q ⊂ R4n and ri Q denotes the relative interior of a set Q, i.e.
the set of interior points of Q with respect to its affine hull AffQ. The closure of Q is denoted by clQ.

A convex cone KQ (z0) , z0 =
(
x0,u0

1,u
0
2, ν

0
)

is called a cone of tangent directions at a point z0 ∈ Q to the
set Q if from z̄ = (x̄, ū1, ū2, v̄) ∈ KQ (z0) it follows that z̄ is a tangent vector to the set Q at a point z0 ∈ Q, i.e.,
there exists such function q(α) ∈ R4n that z0 + αz̄ + q(α) ∈ Q for sufficiently small α > 0 and α−1q(α)→ 0, as
α ↓ 0.

We have already seen that the cone of tangent directions involve directions for each of which there exists
a function q(α). But in order to predetermine properties of the set, Q, this is not sufficient. Nevertheless,
the following notion of a local tent allow us to predetermine mapping in Q for nearest tangent directions
among themselves.

Definition 2.1. A cone of tangent directions KQ (z0) is called local tent if for any z̄0 ∈ riKQ (z0) there exists a
convex cone K ⊆ KQ (z0) and a continuous function γ(·) defined in the neighborhood of the origin, such that
(1) z̄0 ∈ riK, Lin K = Lin KQ (z0), where Lin K is the linear span of K,
(2) γ(z̄) = z̄ + r(z̄), r(z̄)∥z̄∥−1

→ 0 as z̄→ 0,
(3) z0 + γ(z̄) ∈ A, z̄ ∈ K ∩ Sε(0) for some ε > 0, where Sε(0) is the ball of radius ε.

Definition 2.2. With respect to [11] h(x̄, x) is called a convex upper approximation (CUA) of the function
1 : Rn

→ R1
{±∞} at a point x ∈ dom 1 = {x : |1(x)| < +∞} if h(x̄, x) ≥ V(x̄, x) for all x̄ , 0 and h(·, x) is a convex

closed positive homogeneous function, where

V(x̄, x) = sup
r(·)

lim sup
α↓0

1
α

[1(x + αx̄ + r(α)) − 1(x)], α−1r(α)→ 0.

Here the exterior supremum is taken on all r(α) such that α−1r(α)→ 0 as α ↓ 0.

For a convex set-valued mapping F : R3n ⇒ Rn a set-valued mapping defined by F∗ : Rn ⇒ R3n

F∗ (v∗; (x,u1,u2, v)) :=
{(

x∗,u∗1,u
∗

2

)
:
(
x∗,u∗1,u

∗

2,−v∗
)
∈ K∗

1phF (x,u1,u2, v)
}

K1phF (x,u1,u2, v) = cone
[
gph F − (x,u1,u2, v)

]
,∀

(
x1,u1

1,u
1
2, v

1
)
∈ gph F
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is called the LAM to F at a point (x,u1,u2, v) ∈ 1phF, where K∗ = {z∗ : ⟨z̄, z∗⟩ ≥ 0,∀z̄ ∈ K} denotes the dual
cone to the cone K, as usual.
Below we will define the LAM to a set-valued mapping F by using the Hamiltonian function, associated to
F. Thus, the LAM to nonconvex mapping F is defined as follows

F∗ (v∗; (x,u1,u2, v)) :=
{(

x∗,u∗1,u
∗

2

)
: HF

(
x1,u1

1,u
1
2, v
∗
)
−HF (x,u1,u2, v∗) ≤

〈
x∗, x1

− x
〉

+
〈
u∗1,u

1
1 − u1

〉
+

〈
u∗2,u

1
2 − u2

〉
,∀

(
x1,u1

1,u
1
2

)
∈ R3n

}
, (x,u1,u2, v) ∈ gph F, v ∈ FA (x,u1,u2; v∗) .

Clearly, for the convex mapping F the Hamiltonian function HF (·, ·, ν∗) is concave and the latter definition
of LAM coincide with the previous definition of LAM Theorem 2.1 [14].

Note that prior to the LAM the notion of coderivative has been introduced for set-valued mappings in
terms of the basic normal cone to their graphs by Mordukhovich [22] (however, for the smooth and convex
maps the two notions are equivalent). In the most interesting settings for the theory and applications,
coderivatives are nonconvex-valued and hence are not tangentially /derivatively generated. This is the case
of the first coderivative for general finite dimensional setvalued mappings for the purpose of applications
to optimal control.

For most of this paper we consider optimization problems with second order delay-DFIs and state
constraints of the form, labelled as (PCH):

infimum J(x(·)) =
∫ T

0 1(x(t), t)dt, (1)
(PCH) subject to x′′(t) ∈ F (x(t), x′(t), x(t − h), t) , a.e t ∈ [0,T], (2)

x(t) = ξ(t), t ∈ [−h, 0), x(0) = θ, x(T) ∈ P (3)

where F(·, t) : R3n ⇒ Rn and 1(·, t) is time dependent set-valued mapping and continuous proper functions,
respectively, P ⊆ Rn, ξ(t), t ∈ [−h, 0) is an absolutely continuous initial function, θ is a fixed vector. It is
required to find a feasible trajectory (arc) x(t), t ∈ [−h,T] minimizing the Lagrange type functional J[x(·)]
over a set of feasible trajectories. Here, a feasible trajectory x(t), t ∈ [−h,T] satisfies endpoint constraint
x(T) ∈ P, almost everywhere (a.e.) the second order delay-DFI (with a possible jump discontinuity at t = 0 ),
whose second order derivative in [0,T] belongs to the standard Lebesgue space Ln

1([0,T]). In more detail, a
feasible solution x(·) of (PCH) is a mapping x(·) : [−h,T]→ Rn satisfying x′′(t) ∈ F (x(t), x′(t), x(t − h), t),
a.e. t ∈ [0,T], x(t) = ξ(t) for all t ∈ [−h, 0), x(T) ∈ P and x(0) = θ with x(·) ∈ AC([−h,T]) ∩Wn

1,2([0,T]), where
AC([−h,T]) is a space of absolutely continuous functions from [−h,T] into Rn and Wn

1,2([0,T]) is a Banach
space of absolutely continuous functions from [0,T] into Rn together with the first order derivatives for
which x′′(·) ∈ Ln

1([0,T]). Notice that a Banach space Wn
1,2([0,T]) can be equipped with the different equivalent

norms.
Below we prove that an upper semi-continuous set-valued mapping F(·, t) (not necessarily convex) with

closed values is closed ( gph F(·, t) is closed).

Lemma 2.3. Let F(·, t) : R3n ⇒ Rn be an upper semi-continuous set-valued mapping and F(x,u, t) be closed set for
each (x,u) ∈ dom F(·, t). Then F(·, t) is closed.

Proof. We proceed by a contradiction argument; suppose that (xk,uk, vk) ∈ 1phF(·, t) is a convergent sequence
and (xk,uk, vk)→ (x0,u0, v0), but v0 < F (x0,u0, t). Then there exists an open set Λ containing F (x0,u0, t) such
that v0 < clΛ. Recalling that the set-valued mapping F(·, t) is upper semi-continuous it follows that there
exists a positive integer k0 such that vk ∈ Λ for ∀k > k0. Therefore, v0 ∈ clΛ, a contradiction.

3. Transversality conditions and optimization of second order delay- DFIs

The construction of sufficient optimality conditions for the problem (1)-(3) with secondorder delay DFI
is largely based on the discrete approximation problem; due to the cumbersome nature of the calculations,
it is omitted.
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At first, let us formulate an adjoint delay-DFIs for convex problem (PCH):

(i)
(

d2x∗(t)
dt2 +

dψ∗(t)
dt − η

∗(t + h), ψ∗(t), η∗(t)
)
∈ F∗ (x∗(t); (x̃(t), x̃′(t), x̃(t − h), x̃′′(t)) , t)

−{∂1(x̃(t), t)} × {0} × {0}, a.e. t ∈ [0,T − h), x∗(0) = 0

(ii)
(

d2x∗(t)
dt2 +

dψ∗(t)
dt , ψ∗(t), η∗(t)

)
∈ F∗ (x∗(t); (x̃(t), x̃′(t), x̃(t − h), x̃′′(t)) , t)

−{∂1(x̃(t), t)} × {0} × {0}, a.e. t ∈ [T − h,T]

and the transversality conditions at point t = T :

(iii) −
dx∗(T)

dt
− ψ∗(T) ∈ K∗P(x̃(T)); x∗(T) = 0

where KP(x̃(T)) is a cone of tangent directions at a point x̃(T) ∈ P.
Here we assume that x∗(t), t ∈ [0,T] is an absolutely continuous function together with the first order
derivatives for which x∗′′(·) ∈ Ln

1[0,T]. Moreover, ψ∗(t), η∗(t), t ∈ [0,T] are absolutely continuous and
ψ∗′(·) ∈ Ln

1[0,T].
The condition guaranteeing nonemptiness of the LAM F∗ at a given point is the following

(iv)
d2x̃(t)

dt2 ∈ FA (x̃(t), x̃′(t), x̃(t − h); x∗(t), t) , a.e. t ∈ [0,T].

It appears that the following assertion is true.

Theorem 3.1. Let1 : Rn
×[0,T]→ R1 be continuous and convex with respect to x function, and F(·, t) : R3n ⇒ Πn be

a convex set-valued mapping. Then for optimality of the arc x̃(t) to the convex problem (PCH) with second order delay-
DFIs it is sufficient that there exist a triple

{
x∗(t), ψ∗(t), η∗(t)

}
of absolutely continuous functions, x∗(t), ψ∗(t), η∗(t), t ∈

[0,T] satisfying a.e. the second order Euler-Lagrange delay-DFIs (i), (ii), inclusion (iv) and transversality condition
(iii).

Proof. By Theorem 2. [14] F∗ (v∗, (x,u1,u2, v) , t) = ∂(x,u1,u2)HF (x,u1,u2, v∗) , v ∈ FA (x,u1,u2; v∗, t). Then by
using the Moreau-Rockafellar Theorem [8, 11, 22] and the convention that −∂x1(·, t) = ∂x(−1(·, t)) from
conditions (i), (ii) we obtain the second order adjoint DFIs rewritten in term of Hamiltonian function(

d2x∗(t)
dt2 +

dψ∗(t)
dt − η

∗(t + h), ψ∗(t), η∗(t)
)
∈ ∂(x,u1,u2) [HF (x̃(t), x̃′(t), x̃(t − h), x∗(t))] (4)

−{∂1(x̃(t), t)} × {0} × {0}, a.e. t ∈ [0,T − h)(
d2x∗(t)

dt2 +
dψ∗(t)

dt , ψ∗(t), η∗(t)
)
∈ ∂(x,u1,u2) [HF (x̃(t), x̃′(t), x̃(t − h), x∗(t))] (5)

−{∂1(x̃(t), t)} × {0} × {0}, a.e. t ∈ [T − h,T]

Next, by definition of subdifferential of the Hamiltonian function HF we rewrite relation (4) in the form:

HF (x(t), x′(t), x(t − h), x∗(t)) −HF (x̃(t), x̃′(t), x̃(t − h), x∗(t)) − 1(x(t), t) + 1(x̃(t), t)

≤

〈
d2x∗(t)

dt2 +
dψ∗(t)

dt − η
∗(t + h), x(t) − x̃(t)

〉
+

〈
ψ∗(t), x′(t) − x̃′(t)

〉
(6)

+
〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [0,T − h)

By definition of the Hamiltonian function the inequality (6) can be converted to the relation〈
d2x(t)

dt2 , x∗(t)
〉
−

〈
d2x̃(t)

dt2 , x∗(t)
〉
− 1(x(t), t) + 1(x̃(t), t) ≤

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

+ d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
−

〈
η∗(t + h), x(t) − x̃(t)

〉
+

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [0,T − h)

In turn, the latter inequality can be rewritten as follows

1(x(t), t) − 1(x̃(t), t) ≥
〈

d2(x(t)−x̃(t))
dt2 , x∗(t)

〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

−
d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
+

〈
η∗(t + h), x(t) − x̃(t)

〉
−

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [0,T − h)
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Integrating this inequality over the interval [0,T− h) and taking into account that x(0) = x̃(0) = θwe can
write ∫ T−h

0 [1(x(t), t) − 1(x̃(t), t)]dt ≥
∫ T−h

0

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt

+
〈
ψ∗(0), x(0) − x̃(0)

〉
−

〈
ψ∗(T − h), x(T − h) − x̃(T − h)

〉
+

∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt

−

∫ T−h

0

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt =

∫ T−h

0

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt (7)

−
〈
ψ∗(T − h), x(T − h) − x̃(T − h)

〉
+

∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt −

∫ T−h

0

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt

By similar way, it follows from second order Euler-Lagrange inclusion (5) that

1(x(t), t) − 1(x̃(t), t) ≥
〈

d2(x(t)−x̃(t))
dt2 , x∗(t)

〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

−
d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
−

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [T − h,T]

Then an integration of this inequality over the interval [T − h,T] give us∫ T

T−h[1(x(t), t) − 1(x̃(t), t)]dt ≥
∫ T

T−h

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt (8)

+
〈
ψ∗(T − h), x(T − h) − x̃(T − h)

〉
−

〈
ψ∗(T), x(T) − x̃(T)

〉
−

∫ T

T−h

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt

Hence, summing the inequalities (7) and (8) we have∫ T

0 [1(x(t), t) − 1(x̃(t), t)]dt ≥
∫ T

0

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt

−
〈
ψ∗(T), x(T) − x̃(T)

〉
−

∫ T

T−h

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt +

∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt (9)

−

∫ T−h

0

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt

On the other hand, because of the initial condition x(t) = x̃(t) = ξ(t), t ∈ [−h, 0) we get
∫ 0

−h

〈
η∗(t + h), x(t) − x̃(t)

〉
dt =

0. Then it is easy to compute the sum of the last three integrals on the right hand side of the inequality (9)
as follows:∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt −

∫ T−h

0

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt −

∫ T

T−h

〈
η∗(t), x(t − h) − x̃(t − h)

〉
dt

=
∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt −

∫ T−2h

−h

〈
η∗(t + h), x(t) − x̃(t)

〉
dt −

∫ T−h

T−2h

〈
η∗(t + h), x(t) − x̃(t)

〉
dt

=
∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt −

∫ T−h

0

〈
η∗(t + h), x(t) − x̃(t)

〉
dt = 0

Thus, the inequality (9) can be simplified as follows∫ T

0 [1(x(t), t) − 1(x̃(t), t)]dt ≥
∫ T

0

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt (10)

−
〈
ψ∗(T), x(T) − x̃(T)

〉
Now we transform the expression in the square parentheses on the right hand side of (10):〈

d2(x(t) − x̃(t))
dt2 , x∗(t)

〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

=
d
dt

〈
d(x(t) − x̃(t))

dt
, x∗(t)

〉
−

d
dt

〈
dx∗(t)

dt
, x(t) − x̃(t)

〉
.

Then we use again the simplest and most useful particular case x(0) = x̃(0) = θ of feasibility solution of
(PCH) and the condition x∗(0) = x∗(T) = 0 of theorem. Then the integral on the right hand side of (10) over
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the interval [0,T] can be computed as follows∫ T

0

[〈
d2(x(t)−x̃(t))

dt2 , x∗(t)
〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉]

dt

=
〈

d(x(T)−x̃(T))
dt , x∗(T)

〉
−

〈
d(x(0)−x̃(0))

dt , x∗(0)
〉

(11)

−

〈
dx∗(T)

dt , x(T) − x̃(T)
〉
+

〈
dx∗(0)

dt , x(0) − x̃(0)
〉
= −

〈
dx∗(T)

dt , x(T) − x̃(T)
〉
.

By substituting the expression of the integral (11) into the inequality (10) we deduce that∫ T

0
[1(x(t), t) − 1(x̃(t), t)]dt ≥ −

〈
dx∗(T)

dt
, x(T) − x̃(T)

〉
(12)

−
〈
ψ∗(T), x(T) − x̃(T)

〉
= −

〈
dx∗(T)

dt
+ ψ∗(T), x(T) − x̃(T)

〉
But since by the definition of the dual cone

K∗P(x̃(T)) = {x∗ : ⟨x∗, x(T) − x̃(T)⟩ ,∀x(T) ∈ KP(x̃(T))}

from condition (iii) of the theorem that it follows that − dx∗(T)
dt − ψ

∗(T) ≥ 0. Thus, from the inequality (12) we
obtain that ∫ 1

0
[1(x(t), t) − 1(x̃(t), t)]dt ≥ 0

Finally, we obtain that J[x(t)] ≥ J[x̃(t)],∀x(t), t ∈ [0,T], i.e. x̃(t), t ∈ [0,T] is optimal.

Below we prove that if a mapping F depends only on x, then the adjoint inclusion involves only
one conjugate variable, that is, there are no auxiliary adjoint variables η∗(t),u∗(t) in the conjugate second
order delay-DFIs. Apparently, this occurs because a mapping F doesn’t depend on derivatives x′(t), x′(t−h).

Corollary 3.2. Suppose that for the problem (PCH) with second order delay-DFIs a set-valued mapping F depends
only on x, that is, F(·, t) ≡ G(·, t) : Rn ⇒ Rn and that the conditions of Theorem 3.1 are satisfied. Then the second
order Euler-Lagrange delay-DFIs and transversality condition (iii) of Theorem 3.1 consist of the following

(i) d2x∗(t)
dt2 ∈ G∗ (x∗(t); (x̃(t), x̃′′(t)) , t) − ∂1(x̃(t), t) a.e. t ∈ [0,T], x∗(0) = 0,

(ii) −
dx∗(1)

dt ∈ K∗P(x̃(1)), x∗(T) = 0,

(iii) d2x̃(t)
dt2 ∈ GA (x̃(t); x∗(t), t) , a.e. t ∈ [0,T].

Proof. Indeed, it remains only establish the second order Euler-Lagrange delay-DFIs and transversality
condition. This is an immediate consequence of Theorem 3.1; by passing to the formal limit in the conditions
of this theorem we have the needed result.

Corollary 3.3. In addition, to assumptions of Theorem 3.1 let F be a closed set-valued mapping. Then the conditions
(i), (ii), (iv) of Theorem 3.1 can be rewritten in term of subdifferentials of Hamiltonian function in the more symmetric
form.

Proof. Using Lemma 2.3 we should prove only the validity of the inclusion

d2x̃(t)
dt2 ∈ ∂v∗HF (x̃(t), x̃′(t), x̃(t − h); x∗(t)) , a.e. t ∈ [0,T]. (13)

Indeed, by Lemma 2.3 the argmaximum set at a given point is the subdifferential of the Hamiltonian
function with respect to v∗ and the inclusion (iv) of Theorem 3.1 coincides with the inclusion (13). Therefore,
the assertions of corollary are equivalent to the conditions (i), (ii), (iv) of Theorem 3.1.
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Corollary 3.4. For the problem (PCH) with non-delayed second order differential inclusions

infimum J(x(·)) =
∫ T

0 1(x(t), t)dt
subject to x′′(t) ∈ F0 (x(t), x′(t), t) , a.e t ∈ [0,T]

x(0) = θ, t ∈ [0,T], x(T) ∈ P

the second order Euler-Lagrange inclusion has a form(
d2x∗(t)

dt2 +
dψ∗(t)

dt
, ψ∗(t)

)
∈ F∗0 (x∗(t); (x̃(t), x̃′(t), x̃′′(t)) , t) − {∂1(x̃(t), t)} × {0} a.e. t ∈ [0,T]

Proof. Indeed, in this case F0(·, t) : R2n ⇒ Rn and F (x,u1,u2, t) = F0 (x,u1, t) ,∀u2 ∈ Rn is defined as
F∗ (v∗; (x,u1,u2, v) , t) = F∗0 (v∗; (x,u1, v) , t) × {0}. It means that u∗2 = 0 and consequently, η∗(t) ≡ 0, t ∈ [0, 1].
Then the proof of the corollary follows immediately from the conditions (i), (ii) of Theorem 3.1.

Theorem 3.5. Suppose that 1 : Rn
× [0,T]→ R1 is nonconvex function with respect to x, and F is a nonconvex set-

valued mapping such that KgphF (·,t) (x̃(t), x̃′(t), x̃(t − h), x̃′′(t)) is a local tent. Besides, suppose that KP(x̃(T)), x̃(T) ∈ P
is a local tent. Then for an optimality of the arc x̃(t), t ∈ [0,T] among all feasible solutions in such a noncon-
vex problem (PCH), it is sufficient that there exist a triple

{
x∗(t), ψ∗(t), η∗(t)

}
of absolutely continuous functions

x∗(t), x∗′(t), ψ∗(t), η∗(t), t ∈ [0,T] satisfying the conditions of Theorem 3.1 in the nonconvex case:

(i)
(

d2x∗(t)
dt2 +

dψ∗(t)
dt − η

∗(t + h) + x∗(t), ψ∗(t), η∗(t)
)
∈ F∗ (x∗(t); (x̃(t), x̃′(t), x̃(t − h), x̃′′(t)) , t) ,

a.e. t ∈ [0,T − h), x∗(0) = 0;

(ii)
(

d2x∗(t)
dt2 +

dψ∗(t)
dt + x∗(t), ψ∗(t), η∗(t)

)
∈ F∗ (x∗(t); (x̃(t), x̃′(t), x̃(t − h), x̃′′(t)) , t) ; a.e. t ∈ [T − h,T];

(iii) d2x̃(t)
dt2 ∈ FA (x̃(t), x̃′(t), x̃(t − h); x∗(t), t) , a.e.t ∈ [0,T],

(iv) 1(x, t) − 1(x̃(t), t) ≥ ⟨x∗(t), x − x̃(t)⟩ , t ∈ [0,T],∀x ∈ Rn, x∗(T) = 0.

Proof. By condition (i) of theorem and definition of LAM in the nonconvex case (see Section 2)〈
d2x(t)

dt2 , x∗(t)
〉
−

〈
d2x̃(t)

dt2 , x∗(t)
〉
≤

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉
+ ⟨x∗(t), x(t) − x̃(t)⟩

+ d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
−

〈
η∗(t + h), x(t) − x̃(t)

〉
+

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [0,T − h)

whereas by the condition (iv) of theorem for x = x(t) we can write

1(x(t), t) − 1(x̃(t), t) ≥
〈

d2(x(t)−x̃(t))
dt2 , x∗(t)

〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

(14)

−
d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
+

〈
η∗(t + h), x(t) − x̃(t)

〉
−

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [0,T − h)

By a similar way for x = x(t) we obtain

1(x(t), t) − 1(x̃(t), t) ≥
〈

d2(x(t)−x̃(t))
dt2 , x∗(t)

〉
−

〈
d2x∗(t)

dt2 , x(t) − x̃(t)
〉

(15)

−
d
dt

〈
ψ∗(t), x(t) − x̃(t)

〉
−

〈
η∗(t), x(t − h) − x̃(t − h)

〉
, t ∈ [T − h,T]

In the proof of Theorem 3.1 from the latter inequalities (14), (15) is justified (10) for a nonconvex case.
Thus, the furthest proof of theorem is similar to the one for Theorem 3.1.

We note that in the convex case, the conditions (iv), (v) of Theorem 3.5 are equivalent to the conditions
x∗(t) ∈ ∂x1(x̃(t), t) and (iii) of Theorem 3.1, respectively. Then for a convex problem (PCH) it is easy to see
that the previous conditions (i) and (ii) of Theorem 3.1 coincide with the conditions (i) and (ii) of Theorem
3.5, respectively.
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In the conclusion of this section, let us consider an example on the problem of so-called ”linear” optimal
control problem for the second order delay-differential equations:

minimize J[x(·)] =
∫ T

0 1(x(t), t)dt
(PLH) x′′(t) = A0x(t) + A1x′(t) + A2x(t − h) + Bu(t), a.e. t ∈ [0,T]

x(t) = ξ(t), t ∈ [−h, 0), x(0) = θ, x(T) ∈ P,u(t) ∈ U ⊆ Rr

where 1 is continuously differentiable function in x,Ai, i = 0, 1, 2 and B are n × n and n × r matrices,
respectively, U ⊆ Rr is a convex closed subset. The problem is of finding corresponding to the controlling
parameter w̃(t) ∈ U an arc x̃(t), minimizing J[x(·)] over a set of feasible solutions.
We transform this problem to the following problem with second order delay-DFIs of the form:

minimize J[x(·)] =
∫ T

0 1(x(t), t)dt
x′′(t) ∈ F (x(t), x′(t), x(t − h)) , a.e. t ∈ [0,T] (16)
x(t) = ξ(t), t ∈ [−h, 0), x(0) = θ, x(T) ∈ P

F (x,u1,u2) = A0x + A1u1 + A2u2 + BU

where an admissible arc x(·) is absolutely continuous function together with the first order derivatives for
which x∗′′(·) ∈ Ln

1([0,T]).

Theorem 3.6. The arc x̃(t) corresponding to the controlling parameter w̃(t) minimizes J(x(·)) over a set of feasible
solutions in the convex second order delay-differential problem (PLH), if there exists an absolutely continuous function
x∗(t) together with the first order derivatives, satisfying the second order an adjoint delay-differential equation, the
transversality and Weierstrass-Pontryagin conditions :

d2x∗(t)
dt2 = A∗0x∗(t) − A∗1

dx∗(t)
dt + A∗2x∗(t + h) − 1′(x̃(t), t), a.e. t ∈ [0,T − h)

d2x∗(t)
dt2 = A∗0x∗(t) − A∗1

dx∗(t)
dt − 1

′(x̃(t), t), a.e. t ∈ [T − h,T]

−
dx∗(T)

dt ∈ K∗P(x̃(T)); x∗(0) = x∗(T) = 0
⟨Bw̃(t), x∗(t)⟩ = supw∈U ⟨Bw, x∗(t)⟩ , t ∈ [0,T]

Proof. In this problem we are proceeding on the basic of Theorem 3.1 Thus, taking into account that
F (x,u1,u2) ≡ A0x + A1u1 + A2u2 + BU in the problem (16) it can be easily computed that

HF (x,u1,u2, v∗) = supv {⟨v, v
∗
⟩ : v ∈ F (x,u1,u2)}

= supv {⟨A0x + A1u1 + A2u2 + Bw, v∗⟩ : v ∈ F (x,u1,u2)}

=
〈
x,A∗0v∗

〉
+

〈
u1,A∗1v∗

〉
+

〈
u2,A∗2v∗

〉
+ supw {⟨Bw, v∗⟩ : w ∈ U} ,

where A∗ is adjoint (transposed) matrix of A. Then by Theorem 2.1 [14] one has

F∗ (v∗; (x̃, ũ1, ũ2, ṽ)) =
{ (

A∗0v∗,A∗1v∗,A∗2v∗
)
, −B∗v∗ ∈ K∗U(w̃)

∅, −B∗v∗ < K∗U(w̃)
(17)

where ṽ = A0x̃+A1ũ1 +A2ũ2 +Bw̃, w̃ ∈ U. Thus, using (17) and the relations (i), (ii) of Theorem 3.1 we have
the following system of Euler-Lagrange’s type linear adjoint equations:

d2x∗(t)
dt2 +

dψ∗(t)
dt − η

∗(t + h) = A∗0x∗(t) − 1′(x̃(t), t) (18)
ψ∗(t) = A∗1x∗(t), η∗(t) = A∗2x∗(t), a.e. t ∈ [0,T − h)

d2x∗(t)
dt2 +

dψ∗(t)
dt = A∗0x∗(t) − 1′(x̃(t), t), ψ∗(t) = A∗1x∗(t) (19)

η∗(t) = A∗2x∗(t), a.e. t ∈ [T − h,T]
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Substituting the expressions forψ∗(t), η∗(t) into equations (18), (19) we have second order Euler-Lagrange
type adjoint DFIs (equations):

d2x∗(t)
dt2 = A∗0x∗(t) − A∗1

dx∗(t)
dt + A∗2x∗(t + h) − 1′(x̃(t), t), a.e. t ∈ [0,T − h), x∗(0) = 0 (20)

d2x∗(t)
dt2 = A∗0x∗(t) − A∗1

dx∗(t)
dt − 1

′(x̃(t), t), a.e. t ∈ [T − h,T]. (21)

On the other hand, since ψ∗(T) = A∗1x∗(T) and x∗(T) = 0 it follows that the transversality conditions (iii) of
Theorem 3.1 for linear optimal control problem (PLH) consist of the following

−
dx∗(1)

dt
∈ K∗P(x̃(T)); x∗(T) = 0. (22)

Moreover, the Weierstrass-Pontryagin maximum principle [14, 22] of theorem is an immediate conse-
quence of the conditions (iv) of Theorem 3.1 and formula (17). Indeed, the condition −B∗v∗ ∈ K∗U(w̃) means
that supw∈U ⟨Bw, v∗⟩ = ⟨Bw̃, v∗⟩ and finally,

⟨Bw̃(t), x∗(t)⟩ = sup
w∈U
⟨Bw, x∗(t)⟩ , t ∈ [0,T]

Then by this maximum principle and relations (20)-(22) we have the desired result. The proof is com-
pleted.
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