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Abstract. The paper discusses the optimization of 2-D wave differential inclusions (DFIs) with the Lapla-
cian in a bounded cuboid and the first mixed initial-boundary-value problem. Particular attention is
paid to problems with state constraints, for which optimality conditions are formulated in terms of the
Euler-Lagrange adjoint inclusions. Next, using the well-known Green’s formula, the obtained results are
generalized to the multidimensional case. In problems with convex inequalities, dual cones are calculated,
which are an integral part of Euler-Lagrange inclusions. The examples show that when constructing an
adjoint inclusion, it is very important to consider the phase boundary”.

1. Introduction

The problem of optimal control of ordinary [2, 4, 6–8, 11, 14, 16–22, 31] and partial differential equa-
tions/inclusions [5, 10, 12–15, 23–25, 27, 28, 30] occurs in many applications, from engineering to science in
economic dynamics, classical optimal control problems, differential games, etc. The article [23] is devoted
to the optimization of gradient DFIs in a rectangular area, optimality conditions are obtained. The results
obtained in terms of the Euler-Lagrange adjoint inclusion divergence operation are extended to the multi-
dimensional case. Such results are based on LAMs, related to Mordukhovich’s coderivative concept. The
article [15] concerns to the optimal control problem defined by hyperbolic discrete and DFIs. An approxi-
mation method is used to formulate sufficient optimality conditions for a continuous problem. To construct
associated partial DFIs, equivalence theorems for LAMs are proven. In [25], dynamic optimization prob-
lems for hyperbolic systems with boundary controls and pointwise state constraints are considered, and the
necessary conditions of optimality are derived. In contrast to parabolic dynamics, such systems have not
been sufficiently studied in the literature. In [20], based on the so-called adjoint DFIs of the Euler-Lagrange
type of higher order and the Hamiltonian, a sufficient optimality condition is obtained for higher-order
DFIs. It is proved that the adjoint inclusion for first-order DFI, defined in terms of LAM, coincides with the
classical Euler-Lagrange inclusion. Optimality conditions are formulated for some examples. The work [28]
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is devoted to the optimization of the Mayer problem with Darboux-type DFI and duality. It is shown that
each pair of solutions to the primal and dual problems satisfies the duality relations and that the optimal
values in the primal convex and dual concave problems are equal. The article [21] is mainly devoted to the
theory of duality of boundary value problem for ordinary higher-order DFIs, based on LAM in the form of
Euler-Lagrange type inclusions and transversality conditions, sufficient optimality conditions obtained. It
is noteworthy that inclusions of Euler-Lagrange type for simple and dual problems are “duality relations”.
The author’s book [14] is a complete study on the approximation and optimization of ordinary and partial
DFEs. In [24], the optimization of hyperbolic equations with controls under Neumann boundary conditions
was carried out. Focusing on the multidimensional wave equation with a nonlinear term, the necessary
conditions for optimality are derived. In [30], a convex optimal control problem is considered, including a
class of linear hyperbolic partial differential systems. A computational algorithm has been developed that
generates minimizing control sequences.

There are also interesting problems devoted to some qualitative problems of various ordinary/partial
differential equations/inclusions [1–3, 5, 9, 10, 29, 32]; the main goal of the paper [2] is to provide new
explicit criteria for characterizing weak lower semicontinuous Lyapunov pairs or functions associated
with first-order DFIs in Hilbert spaces. These dual criteria are expressed through the proximal and main
subdifferentials of the nominal functions. In the paper [1], using the Picard operator technique, some Ulam-
type existence and stability results are investigated for the Darboux problem associated with some partial
fractional order differential inclusions. The paper [5] proves the existence of global set-valued solutions
of the Cauchy problem for partial differential equations and DFIs with both single valued and set-valued
initial conditions.

As mentioned above, optimal control problems described by partial DFIs are increasingly encountered
in various applications. Hyperbolic differential equations/inclusions arise in many applied problems such
as string vibrations, acoustic modelling, supersonic fluid flows, etc.

The novelty of the article is the use of cones of tangent directions and their dual cones in methods
for solving problems with 2D wave - hyperbolic DFIs and with phase constraints, which can be useful
for problems with parabolic and elliptic DFIs. And when deriving these conditions in problems of this
kind, it is inevitable to use the discretized method, equivalence theorems and the passage to the limit to a
continuous problem, accompanied by complex cumbersome calculations, and therefore are omitted.

The paper is organized in the following order: In Section 2, for the convenience of readers, some
concepts are presented, such as the Hamilton function and the argmaximum sets from the book [14], and
the main problem with state constraints are stated. In Section 3, we formulate the main result on sufficient
optimality conditions for hyperbolic DFIs with a 2-D self-adjoint Laplacian. Further, by specifying set-
valued mapping Ω : R3 ⇒ Rn nusing the solution set of systems of inequalities, the adjoint differential
inclusion is analysed in detail. At the same time, it is interesting to note that the Euler-Lagrange type adjoint
DFIs are accompanied by homogeneous boundary conditions and “endpoint conditions” instead of initial
conditions. In Section 4, Theorem 3.1 is generalized by analogy to multidimensional hyperbolic DFIs; When
proving the optimality condition, Green’s formula is used. Some examples are also discussed. Section 5
considers a model with a polyhedral set-valued mapping, using Farkas’ Theorem and LAM formulates
the optimality condition in terms of “Lagrangian” variables and concludes with a specific example. These
examples show that when constructing an adjoint equation, only the “boundary points” of the constraint
states are important.

2. Preliminary information and problem statement

Let us give the necessary definitions and concepts from the book [14]; let ⟨v,u⟩ is a scalar product
of a pair (v,u) ∈ Rn. A set-valued mapping F : Rn ⇒ Rn is convex if gph F = {(v,u) : u ∈ F(v)} is
convex. For a set-valued mapping F, we introduce the Hamilton function and the argmaximum set:
HF (v,u∗) = supu {⟨u,u

∗
⟩ : u ∈ F(v)} ,u∗ ∈ Rn; FA (v; u∗) = {u ∈ F(v) : ⟨u,u∗⟩ = HF (v,u∗)}

For a convex set-valued F we let HF (v,u∗) = +∞, if F(v) = ∅.
The cone of tangent directions at a point (ṽ, ũ) ∈ gph F will be denoted by KF(ṽ, ũ) ≡ Kgph (ṽ, ũ) :
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Kghh (ṽ, ũ) = cone(gph F − (ṽ, ũ)) = {(v̄, ū) :
v̄ = γ(v − ṽ), ū = γ(u − ũ), γ > 0, (v,u) ∈ gph F}.

The cone KA(v,u), (v,u) ∈ A of tangent directions of nonconvex set A ⊂ R2n is defined as the set of (v̄, ū),
for which there exists a function φ : (0,+∞)→ R2n with φ(γ)→ 0 as γ ↓ 0 such that (v,u)+γ(v̄, ū)+φ(γ) ∈ A
for sufficiently small γ. Moreover, in order to avoid choosing the function φ for each tangent direction, can
be used the concepts of a local tent [14].

Recall that a set-valued mapping F∗(·; (ṽ, ũ)) : Rn ⇒ Rn defined by

F∗ (u∗; (ṽ, ũ)) = {v∗ : (v∗,−u∗) ∈ KF ∗ (ṽ, ũ)}

is called the LAM to F where KF
∗(ṽ, ũ) is the dual cone. In terms of the Hamiltonian function, LAM in the

”non-convex” case is defined as follows:

F∗ (u∗; (ṽ, ũ)) := {v∗ : HF (v,u∗) −HF (ṽ,u∗) ≤ ⟨v∗, v − ṽ⟩ ,∀v ∈ Rn
} , ũ ∈ FA (ṽ; u∗) .

Note that for a convex set-valued mapping HF (·,u∗) is concave function. Now we present the following
important theorem, which appears repeatedly throughout the article.

Theorem 2.1. ([14]) Let F : Rn ⇒ Rn be a convex mapping. Then

F∗ (u∗; (v,u)) =
{
∂HF (v,u∗) , u ∈ FA (v; u∗) ,
∅, u ∈ FA (v; u∗) , where ∂HF (v,u∗) = −∂ [−HF (v,u∗)] .

Note that the concept of LAM given in the article is closely related to the concept of coderivative concept of [24, 25],
which is essential in the non-convex case.

The domain and epigraph of a function f are defined as follows

dom f = {x : f (x) < +∞}, epi f =
{(

x0, x
)

: x0
≥ f (x)

}
.

It is important to note that
(
x0, x

)
∈ epi f only when x ∈ dom f , since if f (x) = +∞, then there is no real number x0

such that x0
≥ f (x).

In Section 5, we consider the optimal control of 2-D wave DFIs with state constraints. Although the
wave equation is a special type of PDE that describes the behaviour of waves such as light, sound or water
waves, we also study under this name the optimization of the problem for hyperbolic DFIs in two spatial
dimensions, containing a self-adjoint Laplacian in a bounded cuboid:

minimize J[v(·, ·, ·)] =
∫ T

0

"
Q

f (v(x, y, t), x, y, t)dxdydt, (1)

(WHP)
∂2v(x, y, t)

∂t2 − ∇
2v(x, y, t) ∈ F(v(x, y, t), x, y, t), (x, y, t) ∈ Q × [0,T], (2)

v(x, y, t) ∈ Ω(x, y, t), (x, y, t) ∈ Q × [0,T], Q = [0,L] × [0,S], (3)
v(x, y, 0) = α1(x, y), vt(x, y, 0) = α2(x, y), v(x, 0, t) = β0(x, t),

v(x,S, t) = βS(x, t), v(0, y, t) = γ0(y, t), v(L, y, t) = γL(y, t), (4)

where F(·, x, y, t) : Rn ⇒ Rn and Ω : R3 ⇒ Rn are a convex set-valued mappings, f (·, x, y, t) is proper
convex function, ∇2 is a 2-D Laplacian: ∇2 = ∂2

∂x2 +
∂2

∂y2 and α1, α2 and β0, βS, γ0, γL are given continuous
functions, α1, α2 : Q → Rn, β0, βS : [0,L] × [0,T] → Rn;γ0, γL : [0,S] × [0,T] → Rn; L,S,T are real positive
numbers. Since hyperbolic DFI (2) is second order in time, values of v(x, y, t) and its partial derivative
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on t must be specified along the initial time. On the other hand, since DFI (2) is the second order in
space, the values of v(x, y, t) must be specified along boundaries of the region Q × [0,T]. A rectangular
parallelepiped Q × [0,T] will also be called a cuboid for brevity. We label this problem (WHP). The
problem consists in finding a solution ṽ(x, y, t) of a first mixed initial-boundary value problem (WHP)
that minimizes (1). We assume throughout the context that feasible solutions are classical solutions; let
PT = Q ×(0,T),ΓT = {(x, y) ∈ ∂Q, 0 < t < T}, ∂Q is the boundary of Q,M0 = {(x, y) ∈ Q, t = 0}. Then a
function v(x, y, t) ∈ C2 (PT) ∩ C1 (

PT ∪ ΓT ∪ M̄0
)
∪ ΓT ∪ M̄0

)
satisfying the DFI (2) and condition v(x, y, 0) =

α1(x, y), vt(x, y, 0) = α2(x, y) on M0, and the boundary conditions in ΓT is called the classical solution of the
initial-boundary value problem (1)-(4). Note that the definition of a solution in the classical sense in no
way prevents the implementation of this method for other (classical, generalized, almost everywhere, etc.)
classes of solutions.

3. Optimality conditions for wave DFIS with state constraints

To formulate the theorem on the optimality condition, we first introduce the hyperbolic type DFI
with selfadjoint Laplacian, the associated argmaximum conditions and a homogeneous ”endpoint” and
boundary conditions:

(i) ∂2v∗(x,y,t)
∂t2 − ∇

2v∗(x, y, t) ∈ F∗
(
v∗(x, y, t);

(
ṽ(x, y, t), ṽtt(x, y, t) − ∇2ṽ(x, y, t)

)
, x, y, t

)
−∂ f (ṽ(x, y, t), x, y, t) + K∗

Ω
(ṽ(x, y, t)), (x, y, t) ∈ Q × [0,T],

(ii) v∗(x, y,T) = 0, ∂v∗(x,y,T)
∂t = 0, v∗(x, 0, t) = v∗(x,S, t) = v∗(0, y, t) = v∗(L, y, t) = 0.

We formulate conditions guaranteeing the nonemptiness of LAM [14]:

(iii)
∂2ṽ(x, y, t)

∂t2 − ∇
2ṽ(x, y, t) ∈ FA

(
ṽ(x, y, t); v∗(x, y, t), x, y, t

)
.

Here, it is assumed that the feasible solutions v∗(x, y, t) are classical.

Theorem 3.1. Suppose that F(·, x, y, t) : Rn ⇒ Rn is a convex mapping and that f (·, x, y, t) is a continuous proper
(does not take the value −∞ and identically is not equal to +∞ ) convex function. Then, for ṽ(x, y, t) ∈ Ω(x, y, t) to
be optimal in problem (WHP) with initial and boundary conditions and 2-D Laplacian hyperbolic DFI, it is sufficient
to have a classical solution v∗(x, y, t) satisfying conditions (i)(iii) with adjoint DFI and homogeneous endpoint and
boundary conditions.

Proof. Using Theorem 2.1, due to the LAM formula, Euler-Lagrange DFI (i) takes the form

HF
(
v(x, y, t); v∗(x, y, t)

)
−HF

(
ṽ(x, y, t); v∗(x, y, t)

)
≤

〈
∂2v∗(x,y,t)

∂t2 − ∇
2v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
(5)

+ f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t) −
〈
η∗(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
where η∗(x, y, t) ∈ K∗

Ω
(ṽ(x, y, t)) or

〈
η∗(x, y, t), ṽ(x, y, t)

〉
= infv(x,y,t)∈Ω(x,y,t)

〈
η∗(x, y, t), v(x, y, t)

〉
.

Then since, by virtue of the definition of the dual cone
〈
η∗(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
≥ 0, it follows from

inequality (5) and condition (iii) that〈
∂2v(x, y, t)

∂t2 − ∇
2v(x, y, t), v∗(x, y, t)

〉
−

〈
∂2ṽ(x, y, t)

∂t2 − ∇
2ṽ(x, y, t), v∗(x, y, t)

〉
≤

〈
∂2v∗(x, y, t)

∂t2 − ∇
2v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
+ f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t).
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Let us write this inequality in the form

f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t)

≥

〈(
vtt(x, y, t) − ṽtt(x, y, t)

)
− ∇

2(v(x, y, t) − ṽ(x, y, t)), v∗(x, y, t)
〉

(6)

−

〈
v∗tt(x, y, t) − ∇

2v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)
〉
.

In turn, from (6) we have

f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t)

≥
〈(

vtt(x, y, t) − ṽtt(x, y, t)
)
, v∗(x, y, t)

〉
−

〈
v∗tt(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
(7)

+
〈
∇

2v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)
〉
−

〈
∇

2(v(x, y, t) − ṽ(x, y, t)), v∗(x, y, t)
〉
.

By direct verification it can be established that〈(
vtt(x, y, t) − ṽtt(x, y, t)

)
, v∗(x, y, t)

〉
−

〈
v∗tt(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
= ∂

∂t

[〈(
vt(x, y, t) − ṽt(x, y, t)

)
, v∗(x, y, t)

〉
−

〈
v∗t(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉]
. (8)

On the other hand, it is not difficult to establish chains of equalities associated with the 2-D Laplacian:〈
∇

2v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)
〉
−

〈
∇

2(v(x, y, t) − ṽ(x, y, t)), v∗(x, y, t)
〉

= ∂
∂x

[〈
v(x, y, t) − ṽ(x, y, t), v∗x(x, y, t)

〉
−

〈(
vx(x, y, t) − ṽx(x, y, t)

)
, v∗(x, y, t)

〉]
+ ∂
∂y

[〈
v(x, y, t) − ṽ(x, y, t), v∗y(x, y, t)

〉
−

〈(
vy(x, y, t) − ṽy(x, y, t)

)
, v∗(x, y, t)

〉]
. (9)

Then, keeping in mind (8) and (9) integrating inequality (7) we obtain∫ T

0

!
Q[ f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t)]dxdydt

≥

∫ T

0

!
Q

∂
∂t

[〈
vt(x, y, t) − ṽt(x, y, t), v∗(x, y, t)

〉
−

〈
v∗t(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉]
dxdydt

+
∫ T

0

!
Q

∂
∂x

[〈
v(x, y, t) − ṽ(x, y, t), v∗x(x, y, t)

〉
−

〈
vx(x, y, t) − ṽx(x, y, t), v∗(x, y, t)

〉]
dxdydt

+
∫ T

0

!
Q

∂
∂y

[〈
v(x, y, t) − ṽ(x, y, t), v∗y(x, y, t)

〉
−

〈
vy(x, y, t) − ṽy(x, y, t), v∗(x, y, t)

〉]
dxdydt. (10)

Now we denote the integrals on the right side of (10) by Ii, i = 1, 2, 3, respectively, and transform them, we
will do this for example for I1:

I1 =
!

Q

[〈
vt(x, y,T) − ṽt(x, y,T), v∗(x, y,T)

〉
−

〈
v∗t(x, y,T), v(x, y,T) − ṽ(x, y,T)

〉]
dxdy

−

!
Q

[〈
vt(x, y, 0) − ṽt(x, y, 0), v∗(x, y, 0)

〉
−

〈
v∗t(x, y, 0), v(x, y, 0) − ṽ(x, y, 0)

〉]
dxdy.

Then from the feasibility of solutions v(x, y, t), ṽ(x, y, t), and from conditions (4) and (ii) it follows that
I1 = 0. The integrals I2 and I3 are calculated by analogy. Thus I1 = I2 = I3 = 0.

Finally, from inequality (10) we have∫ T

0

"
Q

[ f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t)]dxdydt ≥ 0

or J[v(·, ·, ·)] ≥ J[ṽ(·, ·, ·)] for all admissible solutions.

The following calculations are useful for computing K∗
Ω

(ṽ(x, y, t) in the case of specifying the setΩ(x, y, t)
by inequalities.
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Corollary 3.2. Let a setΩ(x, y, t) be given as a solution set to the inequalityΩ = {v : φ(v) ≤ 0}, where φ be a convex
function continuous in ṽ ∈ Ω = {v : φ(v) ≤ 0}, (x, y, t) ∈ Q × [0,T], and suppose that there is a
point v1 such that φ (v1) < 0. Then for the problem (WHP) with Ω = {v : φ(v) ≤ 0}, (x, y, t) ∈ Q × [0,T] the
condition (i) of Theorem 3.1 is replaced as follows:

v∗tt(x, y, t) − ∇
2v∗(x, y, t) ∈ F∗

(
v∗(x, y, t);

(
ṽ(x, y, t), ṽtt(x, y, t) − ∇2ṽ(x, y, t)

)
, x, y, t

)
−∂ f (ṽ(x, y, t), x, y, t) − cone ∂vφ(ṽ(x, y, t)), φ(ṽ(x, y, t)) = 0, (x, y, t) ∈ Q × [0,T], (11)

where cone ∂νφ(ṽ) is the cone generated by the subdifferential set ∂vφ(ṽ), i.e.

cone ∂vφ(ṽ) =
{
u∗ : u∗ = αv∗, v∗ ∈ ∂vφ(ṽ), α > 0

}
. (12)

Proof. By Theorem 1.34 [14] the cone K∗
Ω

(ṽ) is the dual cone at ṽ ∈ Ω = {v : φ(v) ≤ 0} calculated as follows

K∗Ω(ṽ) =
{
{0}, if φ(ṽ) < 0,
− cone vφ(ṽ), if φ(ṽ) = 0.

Then, taking into account the last formula in the condition of Theorem 3.1, we immediately obtain the
required result.

Proposition 3.3. Suppose that the set Ω is defined as follows

Ω =
{
v : φk(v) ≤ 0, k ∈ I1;φk(v) = 0, k ∈ I2

}
,

where I1 and I2 are finite sets of indices and φk, k ∈ I1 ∪ I2 are continuously differentiable convex functions, and the
gradient vectors φ′k(ṽ), k ∈ I2, ṽ ∈ Ω are linearly independent. Then the dual cone K∗

Ω
(ṽ) has a form

K∗Ω(ṽ) =

v∗ : v∗ = −
∑

k∈I1(ṽ)U2

γkφ
′

k(ṽ), γk ≥ 0, k ∈ I1(ṽ)

 , I1(ṽ) =
{
k ∈ I1 : φk(ṽ) = 0

}
.

Proof. First of all, we show that from the linear independence of the vectors φ′k(ṽ), k ∈ I2 it follows that the
direction v̄ satisfying relations〈

v̄, φ′k(ṽ)
〉
< 0, k ∈ I1(ṽ);

〈
v̄, φ′k(ṽ)

〉
= 0, k ∈ I2 (13)

is a tangent vector. Indeed, on the one hand φk(ṽ + γv̄) = 0, k ∈ I2 for small γ > 0. On the other hand,
according to the well-known analysis formula for k ∈ I1

φk(ṽ + γv̄) = φk(ṽ) + γ
〈
v̄, φ′k (ξk)

〉
. (14)

Here if k ∈ I1\I1(ṽ), then φk(ṽ) < 0 and φk(ṽ + γv̄) < 0 for sufficiently small γ > 0. In this case, if k ∈ I1(ṽ)
from (14) we have

φk(ṽ + γv̄) = γ
〈
v̄, φ′k(ṽ)

〉
+ γ

〈
v̄, φ′k (ξk) − φ′k(ṽ)

〉
.

Hence, since ξk → 0 as γ → 0 the second term on the right tends to zero faster than γ. Therefore,
due to inequality (13) φk(ṽ + γv̄) < 0, k ∈ I1(ṽ) for small γ > 0. So for sufficiently small γ the relations
φk(ṽ+ γv̄) < 0, k ∈ I1;φk(ṽ+ γv̄) = 0, k ∈ I2, are satisfied, which means that ṽ+ γv̄ ∈ Ω. In turn, this inclusion
means that v̄ is the tangent direction to the set Ω. Thus, it follows that

KΩ(ṽ) =
{
v̄ :

〈
v̄, φ′k(ṽ)

〉
< 0, k ∈ I1(ṽ);

〈
v̄, φ′k(ṽ)

〉
= 0, k ∈ I2

}
.

Consequently, applying the Farkas’Theorem 1.13 [14] we obtain the required form of the dual cone K∗
Ω

(ṽ).
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Remark 3.4. If a convex function φ differentiable at a point ṽ, then by Theorem 1.28 [14] the subdifferential
∂vφ(ṽ) consists of the single gradient vector at this point, i.e. ∂vφ(ṽ) =

{
φ′(ṽ)

}
. Then by formula (12)

cone2 ∂v(ṽ) =
{
αφ′(ṽ), α > 0

}
and therefore in condition (11) of Corollary 3.2 the cone ∂vφ(ṽ(x, y, t)) should

be replaced with αφ′(ṽ(x, y, t)), α > 0.

Corollary 3.5. Let us consider the problem (WHP) without phase constraint, which is equivalent to the fact that
Ω(x, y, t) ≡ Rn, (x, y, t) ∈ Q × [0,T]. Then in the condition (i) of Theorem 3.1 K∗

Ω
(ṽ(x, y, t) ≡ {0}.

Proof. Since Ω(x, y, t) ≡ Rn, (x, y, t) ∈ Q × [0,T] it follows that KΩ(ṽ(x, y, t)) ≡ Rn and K∗
Ω

(ṽ(x, y, t) ≡
{0}.

The following theorem shows that all the results presented in this article are also valid in non-convex
problems, and we considered the convex case only for the sake of simplicity of presentation.

Theorem 3.6. Let us assume that a non-convex problem (WHP) with a non-convex Hamilton function HF is given,
where LAM F∗ is determined by the Hamilton function. Then for optimality ṽ(x, y, t) in this non-convex problem it
is sufficient to have a classical solution v∗(x, y, t) satisfying conditions:

(1) ∂2v∗(x,y,t)
∂t2 − ∇

2v∗(x, y, t) + v∗(x, y, t)

∈ F∗
(
v∗(x, y, t);

(
ṽ(x, y, t), ṽtt(x, y, t) − ∇2ṽ(x, y, t)

)
, x, y, t

)
, (x, y, t) ∈ Q × [0,T],

(2) f (v, x, y, t) − f (ṽ(x, y, t), x, y, t) ≥
〈
v∗(x, y, t), v − ṽ(x, y, t)

〉
,∀v ∈ Rn,

(3) v∗(x, y,T) = 0, ∂v∗(x,y,T)
∂t = 0, v∗(x, 0, t) = v∗(x,S, t) = v∗(0, y, t) = v∗(L, y, t) = 0,

(4) ∂2ṽ(x,y,t)
∂t2 − ∇

2ṽ(x, y, t) ∈ HF
(
ṽ(x, y, t); v∗(x, y, t), x, y, t

)
.

Proof. Due to the LAM defined by the non-convex Hamilton function, it follows from condition (1) that for
any feasible solution v(, , ·,),wehave

HF
(
v(x, y, t); v∗(x, y, t)

)
−HF

(
ṽ(x, y, t); v∗(x, y, t)

)
≤

〈
v∗tt(x, y, t) − ∇

2v∗(x, y, t) + v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)
〉
,

which by condition (4) implies that〈
vtt(x, y, t) − ṽtt(x, y, t) − ∇2(v(x, y, t) − ṽ(x, y, t)), v∗(x, y, t)

〉
≤

〈
v∗tt(x, y, t) − ∇

2v∗(x, y, t) + v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)
〉

or by virtue of the condition (2) from the last relation for all feasible solution v(·, ·, ·) in a more convenient
form we have

f (v(x, y, t), x, y, t) − f (ṽ(x, y, t), x, y, t) ≥
〈
v∗(x, y, t), v(x, y, t) − ṽ(x, y, t)

〉
≥

〈
vtt(x, y, t) − ṽtt(x, y, t) − ∇2(v(x, y, t) − ṽ(x, y, t)), v∗(x, y, t)

〉
−

〈
v(x, y, t) − ṽ(x, y, t), v∗tt(x, y, t) − ∇

2v∗(x, y, t)
〉
.

Now, it is easy to see that the last inequality is nothing more than relation (7). Therefore, integrating this
inequality over Q × [0,T] and using the initial and boundary conditions (3), we obtain the desired result
and to avoid repetition we omit further proof.

4. Optimization of multidimensional problem

The formulated problem (1)-(4) can be generalized to second-order hyperbolic DFIs; Assume that M is
a bounded convex closed region of Rn,PT ⊂ Rn+1 is a bounded cylinder PT = {x ∈M, 0 < t < T} and that PT
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is the lateral surface of cylinder, ∂M is the piecewise smooth boundary of M, and P0 = {x ∈ M, t = 0} is the
lower base of PT. Now let us formulate the first mixed problem:

minimize
∫ T

0

∫
M f (v(x, t), x, t)dxdt,

(PGC) ∂2v(x,t)
∂t2 − ∇

2v(x, t) ∈ G(v(x, t), x, t), (x, t) ∈ PT, (15)

v(x, t) ∈ V(x, t), ∇2v(x, t) = ∂2v(x,t)
∂x2

1
+ · · · +

∂2v(x,t)
∂x2

n
,

(0) = φ(x), vt(x, 0) = ψ(x), x = (x1, . . . , xn) ∈M; v(x, t) = χ(x, t), (x, t) ∈ ΓT, (16)

where G(v, x, t) : Rn+2 ⇒ R1 is a convex multivalued mapping, the function f (·, x, t) is convex φ,ψ, χ
are continuous. Then v(x, t) ∈ C2 (PT)

⋂
C1 (PT ∪ ΓT ∪ P0), satisfying (15), conditions (16) and conditions

v(x, t) ∈ V(x, t), is called a solution (in the classical sense) of this problem.

Theorem 4.1. Let f (·, x, t) be a continuous proper convex function and G(v, x, t) : Rn+2 ⇒ R1 be a convex set-valued
mapping. Then for ṽ(x, t) ∈ V(x, t), to be optimal in problem (PGC), it is sufficient that there is a solution v∗(x, t) that
satisfies conditions (iv)-(vi):

(iv) ∂2v∗(x,t)
∂t2 − ∇

2v∗(x, t) ∈ G∗
(
v∗(x, t);

(
ṽ(x, t), ṽtt(x, t) − ∇2ṽ(x, t)

)
, x, t

)
− ∂ f (ṽ(x, t), x, t) + K∗V(ṽ(x, t),

(x, t) ∈M × [0,T],

(v) v∗(x,T) = 0, ∂v∗(x,T)
∂t = 0, x ∈M; v∗(x, t) = 0, (x, t) ∈ ΓT,

(vi) ∂2ṽ(x,t)
∂t2 − ∇

2ṽ(x, t) ∈ GA (ṽ(x, t); v∗(x, t), x, t)

Proof. According to the inequality (5) expressed in terms of the Hamilton function we can write

HG (v(x, t); v∗(x, t)) −HG (ṽ(x, t); v∗(x, t))

≤

(
v∗tt(x, t) − ∇

2v∗(x, t)
)

(v(x, t) − ṽ(x, t)) (17)

+ f (v(x, t), x, t) − f (ṽ(x, t), x, t) − ϕ∗(x, t)(v(x, t) − ṽ(x, t)), (x, t) ∈ PT,

where ϕ∗(x, t) ∈ K∗V(ṽ(x, t)). Then under the condition (vi) of theorem we get from (17)

f (v(x, t), x, t) − f (ṽ(x, t), x, t)

≥

(
vtt(x, t) − ṽtt(x, t) − ∇2(v(x, t) − ṽ(x, t))

)
v∗(x, t)

−

(
v∗tt(x, t) − ∇

2v∗(x, t)
)

(v(x, t) − ṽ(x, t)).

Then, bearing in mind (8), if we integrate this inequality, we have∫ T

0

∫
M[ f (v(x, t), x, t) − f (ṽ(x, t), x, t)]dxdt

≥

∫ T

0

∫
M

∂
∂t

[
v∗(x, t) (vt(x, t) − ṽt(x, t)) − v∗t(x, t)(v(x, t) − ṽ(x, t))

]
dxdt (18)

+
∫ T

0

∫ T

M

[
∇

2v∗(x, t)(v(x, t) − ṽ(x, t)) − v∗(x, t)∇2(v(x, t) − ṽ(x, t))
]

dxdt

where dx = dx1 · · · dxn.
We denote the integrals to the right of (18) as L1 and L2, respectively. Then

L1 =
∫

M

[
v∗(x,T) (vt(x,T) − ṽt(x,T)) − v∗t(x,T)(v(x,T) − ṽ(x,T)]dx

−

∫
M

[
v∗(x, 0) (vt(x, 0) − ṽt(x, 0)) − v∗t(x, 0)(v(x, 0) − ṽ(x, 0))

]
dx.

Since v(x, t), ṽ(x, t) are feasible, by the initial conditions (16) v(x, 0) = φ(x), vt(x, 0) = ψ(x) and by endpoint
conditions v∗(x,T) = 0, v∗t(x,T) = 0 (see (iv)) we obtain that L1 = 0.
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Calculate the integral L2. By the familiar Green’s formula, we have

L2 =
∫ T

0

∫
M

[
∇

2v∗(x, t)(v(x, t) − ṽ(x, t)) − v∗(x, t)∇2(v(x, t) − ṽ(x, t))
]

dxdt

=
∫ T

0

∫
∂M

[
(v(x, t) − ṽ(x, t)) ∂v∗(x,t)

∂n − v∗(x, t) ∂(v(x,t)−ṽ(x,t))
∂n

]
dsdt,

where n is the unit normal vector external to the boundary ∂M in Rn−1 of region M.
Since by condition v∗(x, t) = 0, x ∈ ∂M, 0 < t < T of theorem and boundary condition v(x, t)
= ṽ(x, t) = χ(x, t), (x, t) ∈ ΓT it follows that L2 = 0. Finally, from inequality (18) we have

∫ T

0

∫
M[ f (v(x, t), x, t)−

f (ṽ(x, t), x, t)]dxdt ≥ 0 or J[v(·, ·)] ≥ J[ṽ(·, ·)] for all feasible v(·, ·).

Consider the following problem:

minimize J[v(·, ·, ·)] =
∫ T

0

!
Q f (v(x, y, t), x, y, t)dxdydt

∂2v(x,y,t)
∂t2 − ∇

2v(x, y, t) = A(t)v(x, y, t) + w(x, y, t), (19)
v(x, y, t) ∈ Ω(x, y, t),w(x, y, t) ∈ U,

v(x, y, 0) = α1(x, y), ∂v(x,y,0)
∂t = α2(x, y), v(x, 0, t) = β0(x, t), v(x,S, t)

= βS(x, t), v(0, y, t) = γ0(y, t), v(L, y, t) = γL(y, t),Q = [0,L] × [0,S]

where A(t), t ∈ [0,T] is a n × n continuous matrix, U ⊂ Rn is a convex closed set, and f is continuously
differentiable function of v. We must find the control parameter w̃(x, y, t) ∈ U, (x, y, t) ∈ Q × [0,T] that
minimizes J[v(·, ·, ·)], where F(v, x, y, t) = A(t)v +U. It is easy to see that

F∗
(
u∗, (v,u), x, y, t

)
=

{
A∗(t)u∗, − u∗ ∈ K∗U(w),

∅, − u∗ < KU ∗ (w),
u = A(t)v + w. (20)

Therefore, using (20), and Theorem 3.1, we get

∂2v∗(x,y,t)
∂t2 − ∇

2v∗(x, y, t)
∈ A∗(t)v∗(x, y, t) − f ′v(ṽ(x, y, t), x, y, t) + K∗U(ṽ(x, y, t), (21)
v∗(x, y,T) = 0, v∗t(x, y,T) = 0, v∗(x, 0, t) = v∗(x,S, t)
= v∗(0, y, t) = v∗(L, y, t) = 0, ṽ(x, y, t) ∈ Ω(x, y, t) (22)

Besides, we have 〈
w − w̃(x, y, t), v∗(x, y, t)

〉
≤ 0, w ∈ U

where we get Pontryagin’s maximum principle [26]:〈
w̃(x, y, t), v∗(x, y, t)

〉
= max

w∈U

〈
w, v∗(x, y, t)

〉
(23)

Let us formulate the result obtained

Theorem 4.2. Let us assume that v∗(x, y, t) satisfies (21)-(23) for some control function w̃(x, y, t). Then the solution
ṽ(x, y, t) in problem (19) is optimal.

Corollary 4.3. Suppose that in the problem (1)-(4) F(u, x, y, t) ≡ U ⊂ Rn is a convex compact and there exists a
gradient f ′v(ṽ(x, y, t), x, y, t). Then w̃(x, y, t) ∈ U is a solution to such a problem if the solution v∗(x, y, t) satisfies the
relations

∂2v∗(x,y,t)
∂t2 − ∇

2v∗(x, y, t) ∈ K∗
Ω

(
ṽ(x, y, t) − f ′v(ṽ(x, y, t), x, y, t)〈

w̃(x, y, t), v∗(x, y, t)
〉
= maxw∈U

〈
w, v∗(x, y, t)

〉
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Proof. Since gph F = Rn
×U it follows that KF(v,u) = Rn

× KU(w). Hence

KF ∗ (v,u) = {0} × K∗U(w)

On the definition of LAM

F∗ (u∗; (v,u)) =
{

0, if u∗ ∈ K∗U(w)
∅, if u∗ < KU ∗ (w)

It remains to apply Theorem 3.1:

∂2v∗(x, y, t)
∂t2 − ∇

2v∗(x, y, t) ∈ K∗Ω(ṽ(x, y, t)) − f ′v(ṽ(x, y, t), x, y, t);〈
w − w̃(x, y, t), v∗(x, y, t)

〉
≤ 0, w ∈ U.

5. 2-D wave polyhedral DFIs

Let us write the matrix form of the problem in the form of a hyperbolic polyhedral DFI, defined using a
finite number of linear inequalities:

minimize J[v(·, ·, ·)] =
∫ T

0

!
Q f (v(x, y, t), x, y, t)dxdydt,

(PHP) Av(x, y, t) − B
(
∂2v(x,y,t)
∂t2 − ∇

2v(x, y, t)
)
≤ d, (x, y, t) ∈ Q × [0,T],

v(x, y, t) ∈ Ω,Ω = {v : Dv ≤ c},
v(x, y, 0) = α1(x, y), vt(x, y, 0) = α2(x, y), v(x, 0, t) = β0(x, t),

v(x,S, t) = βS(x, t), v(0, y, t) = γ0(y, t), v(L, y, t) = γL(y, t),Q = [0,L] × [0,S],

where A,B,D are s×n dimensional matrices, d, c are s-dimensional column-vector, f (·, x, y, t) is a polyhedral
function, i.e. epi f is a polyhedral set in Rn+1. Here F(v) = {u : Av − Bu ≤ d} is a set-valued mapping,
Ω = {v : Dv ≤ c} is a polyhedral set. Now we will use Theorem 3.1 for problem (PHP). By analogy with the
formula for calculating the LAM for a polyhedral mapping [14], we obtain that

F∗ (u∗; (ṽ, ũ)) =
{
−A∗q : u∗ = −B∗q, q ≥ 0, ⟨Aṽ − Bũ − d, q⟩ = 0

}
.

On the other it is not hard to calculate that KΩ(ṽ) = {v̄ : Dv̄ ≤ 0} and then according to the Farkas’ Theorem
1.13 [14] we have

K∗Ω(ṽ) =
{
η∗ : η∗ = −D∗γ, γ ≥ 0

}
.

Then applying Theorem 3.1 we get

∇
2v∗(x, y, t) − ∂2v∗(x,y,t)

∂t2 − A∗q(x, y, t) ∈ ∂ f (ṽ(x, y, t), x, y, t) − K∗
Ω

(ṽ(x, y, t)), v∗(x, y, t) = −B∗q(x, y, t)
q(x, y, t) ≥ 0〈

Aṽ(x, y, t) − B
(
ṽtt(x, y, t) − ∇2ṽ(x, y, t)

)
− d, q(x, y, t)

〉
= 0

v∗(x, y,T) = 0, v∗t(x, y,T) = 0, v∗(x, 0, t) = v∗(x,S, t) = v∗(0, y, t) = v∗(L, y, t) = 0 (24)

Let’s substitute v∗(x, y, t) = −B∗q(x, y, t) and η∗(x, y, t) = −D∗γ(x, y, t) into relation (24)

B∗
(
qtt(x, y, t) − ∇2q(x, y, t)

)
− A∗q(x, y, t) ∈ ∂ f (ṽ(x, y, t), x, y, t) +D∗γ(x, y, t),〈

Aṽ(x, y, t) − B
(
ṽtt(x, y, t) − ∇2ṽ(x, y, t)

)
− d, q(x, y, t)

〉
= 0, (25)

B∗q(x, y,T) = 0,B∗qt(x, y,T) = 0, (26)
B∗q(x, 0, t) = B∗q(x,S, t) = B∗q(0, y, t) = B∗q(L, y, t) = 0.

Thus, we obtain the following theorem.
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Theorem 5.1. Suppose that f (·, x, y, t) : Rn
→ R1 is a polyhedral function and that F : Rn ⇒ Rn is a polyhedral

mapping. Then, in order for the solution ṽ(x, y, t), to be optimal in the problem (PHP), it is sufficient that there exist
functions q(x, y, t) ≥ 0, γ(x, y, t) ≥ 0 satisfying (25) and the conjugate condition (26).

Example 5.2. Consider a problem with 2-D wave DFI for which the exact solution is calculated:

minimize J[v(·, ·, ·)] =
∫ π

0

!
Q v(x, y, t)dxdydt

∂2v(x,y,t)
∂t2 − ∇

2v(x, y, t) ≥ 0,Q = [0, π] × [0, π], (27)
v(x, y, 0) = sin x · sin y, vt(x, y, 0) = 0,

v(x, 0, t) = 0, v(0, y, t) = 0, v(π, y, t) = 0, v(x, π, t) = 0.

Comparing with the problem (WHP) we see that in the problem (27) F(v) = {u : u ≥ 0}, gphF = {(v,u) :
u ≥ 0},dom F = R1, so that A = D = [0],B = [1], c = d = 0 and f (v(x, y, t)) = v,F : R1 ⇒ R1,L = S = T =
π, α1(x, y) ≡ sin x · sin y, α2(x, y) = β0(x, t) = γ0(y, t) = βπ(x, t) = γπ(y, t) ≡ 0. Second relation of (25) has a
form (

∂2ṽ(x, y, t)
∂t2 − ∇

2ṽ(x, y, t)
)

q(x, y, t) = 0,

which means either q(x, y, t) = 0 or ∂2ṽ(x,y,t)
∂t2 − ∇

2ṽ(x, y, t) = 0. On the other hand, taking into account
∂ f (v) = {1} in the first relation (25) we obtain

∂2q∗(x, y, t)
∂t2 − ∇

2q∗(x, y, t) = 1,

where q∗(x, y, t) is a nontrivial solution (otherwise, we have 0 = 1, which is impossible). Finally, it follows
that ṽ(x, y, t) is a solution of the following wave equation with inhomogeneous initial-boundary conditions:

∂2ṽ(x,y,t)
∂t2 − ∇

2ṽ(x, y, t) = 0
v(x, y, 0) = sin x · sin y, vt(x, y, 0) = 0,

v(x, 0, t) = 0, v(0, y, t) = 0, v(π, y, t) = 0, v(x, π, t) = 0,

which admits the exact fsolution ṽ(x, y, t) = sin x · sin y · cos
√

2t. It is easy to check that the initial and
boundary conditions are met; indeed, ṽt(x, y, t) = −

√
2 sin x · sin y · sin

√
2t and are satisfied:

ṽ(x, y, 0) = sin x · sin y, ṽt(x, y, 0) = 0, ṽ(x, 0, t) = ṽ(0, y, t) = 0,

ṽ(π, y, t) = sinπ sin y cos
√

2t = 0, ṽ(x, π, t) = sin x sinπ cos
√

2t = 0.

Then, substituting ṽ(x, y, t) = sin x · sin y · cos
√

2t into J[v(·, ·)] we find that the minimum value of (27) is
(4/
√

2) sin
√

2π :

J[ṽ(·, ·, ·)] =
∫ π

0

"
Q

ṽ(x, y, t)dxdydt =
∫ π

0

∫ π

0

∫ π

0
(sin x · sin y · cos

√

2t)dxdydt

= −

∫ π

0

∫ π

0
[cos x · sin y · cos

√

2t]χ=πx=0 dydt = 2
" π

0

∫ π

0
sin y · cos

√

2tdydt

= −2
∫ π

0
[cos y · cos

√

2t]y=π
y=0 dt = 4

∫ π

0
cos
√

2tdt = 4
[

sin
√

2t
√

2

]t=π

t=0

=
4
√

2
sin
√

2π.

Remark 5.3. Consider the optimal control of 1-D wave DFIs with state constraints:

minimize J[v(··)] =
!

Q f (v(x, t), x, t)dxdt,

∂2v(x,t)
∂t2 − ∇

2v(x, t) ∈ F(v(x, t), x, t),
v(x, t) ∈ Ω(x, t), (x, t) ∈ Q, Q = [0,L] × [0,T], (28)

v(x, 0) = α1(x), vt(x, 0) = α2(x), v(0, t) = γ0(t), v(L, t) = γL(t),
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where F(·, x, t) : Rn ⇒ Rn and Ω : R2 ⇒ Rn are a convex set-valued mappings, f (·, x, t) is proper convex
function, ∇2 = ∂2/∂x2 and α1, α2 and γ0, γL are given continuous functions, α1, α2 : Q → Rn, γ0, γL :
[0,L] × [0,T]→ Rn; L,T are real positive numbers.
The conditions (i)-(iii) of Theorem 3.1 have the form

∂2v∗(x,t)
∂t2 − ∇

2v∗(x, t) ∈ F∗
(
v∗(x, t);

(
ṽ(x, t), ṽtt(x, t) − ∇2ṽ(x, t)

)
, x, t

)
−∂ f (ṽ(x, t), x, t) + K∗

Ω
(ṽ(x, t); (x, t) ∈ Q,

v∗(x,T) = 0, ∂v∗(x,T)
∂t = 0, v∗(0, t) = v∗(L, t) = 0, (29)

∂2ṽ(x,t)
∂t2 − ∇

2ṽ(x, t) ∈ FA (ṽ(x, t); v∗(x, t), x, t) .

Example 5.4. Let’s consider an optimization problem with a one-dimensional wave differential equation
of hyperbolic type:

minimize J[v(·, )] =
!

Q v(x, t)dxdt,

∂2v(x,t)
∂t2 − ∇

2v(x, t) ∈M, (30)
v(x, 0) = sin x, vt(x, 0) = 0, v(0, t) = v(π, t) = 0,

where according to problem (28) F(·, x, t) : R1 ⇒ R1 is a constant mapping, F(v) = M = [−1,+1], gph
F = {(v,u) : u ∈ M},dom F = R1,Q = [0, π] × [0, π],Ω(x, t) ≡ R1. Obviously, according to (29) the LAM
F∗ (u∗; (v,u)) should be calculated. Since HF (v,u∗) = supu {u · u

∗ : u ∈M} ,u∗ ∈ R1 it is obvious that HF (v,u∗) =
sgn u∗, i.e.

HF (v,u∗) =
{

1 if u∗ > 0,
−1, if u∗ < 0.

It follows that F∗ (u∗; (v,u)) = ∂HF (v,u∗) ≡ {0} and does not depend on v∗. On the other hand, f ′v(ṽ(x, y, t), x, y, t) =
1 and K∗

Ω
(ṽ(x, t)) ≡ {0}. Hence, the adjoint wave equation with a homogeneous endpoint and boundary-

value problem according to (29) is

∂2v∗(x, t)
∂t2 − ∇

2v∗(x, t) = −1, v∗(x, π) = 0, v∗t(x, π) = 0, v∗(0, t) = v∗(π, t) = 0.

Note that FA (v; u∗) = {−1,+1} and for optimality of ṽ(x, t) on the last condition (29) we should use ṽtt(x, t) −
∇

2ṽ(x, t) = ±1 and other values of M are not suitable in advance for optimality. In particular, if in problem
(30) M = {0}, then by direct verification we find that the solution of the problem

∂2v(x, t)
∂t2 − ∇

2v(x, t) = 0,

v(x, 0) = sin x, vt(x, 0) = 0, v(0, t) = v(π, t) = 0

is v(x, t) = sin x cos t and then the minimum value of (30) is equal to zero:"
Q

ṽ(x, t)dxdt =
∫ π

0

∫ π

0
(sin x cos t)dxdt = −

∫ π

0
[cos x cos t]x=π

x=0 dt = 2
∫ π

0
cos tdt = 0.

6. Conclusion

Another issue of discussion is establishing the necessary conditions for optimality, as well as reducing
the “gap” between necessary and sufficient conditions. Examples show that for constructing the Euler-
Lagrange DFI, the decisive role is played by the points belonging to the argmaximum set. Based on the
polyhedral LAM, optimality conditions for (PHP) are formulated. The study of optimality results for such
problems can also make a great contribution to the development of other polyhedral (elliptic, parabolic)
optimal control problems. Note that at least the finiteness of the number of discontinuity/switching points
is of particular interest in optimal control theory. Thus, in our polyhedral problem, it makes sense to obtain
a similar result in a region where the number of vertices is constant.
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