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Vanishing results of the F-stress energy tensor

Guoqing He?

?School of Mathematics & Statistics, Anhui Normal University, Wuhu 241000, P. R. China

Abstract. In this paper, we study some vanishing results of the F-stress energy tensor Sr associated to the
F-energy where the target manifold is equipped with a metric connection having non-vanishing torsion. By
estimating the norm of Sy, we introduce a ®g r-energy functional for maps. The critical map of this functional
is called a @gr-harmonic map. We obtain some vanishing results of Sy by studying Liouville theorems for
the @gp-harmonic map. Firstly, we find that the equation of ®gr-harmonic map with respect to the metric
torsion connection coincides with that of ®gr-harmonic map with respect to the Levi-Civita connection.
This shows a rigidity signature of @ r-harmonic map being invariant under connection transforms from the
Levi-Civita connection to the metric torsion connection. Then, under suitable conditions on the Hessian of
the distance function and the degree of F(f), we derive several Liouville theorems for the ®g r-harmonic map
by assuming either growth condition of the @gr-energy or an asymptotic condition at the infinity for the
maps. In the end of paper, we also obtain the unique constant solution of the constant Dirichlet boundary
value problemson on starlike domains for the ®gr-harmonic map. These vanishing theorems extend some

results in [18, 19] where F(t) are given as t and (2t)"2/p (p > 2), respectively, and target manifolds are
endowed with Levi-Civita connections.

1. Introduction

M. Ara [4] introduced the F-harmonic map between two Riemannian manifolds and its associated
stress energy tensor named as F-stress energy tensor. The concept of F-harmonic maps is a generalization
of harmonic maps, p-harmonic maps or exponentially harmonic maps. Let F : [0, +00) — [0, +0) be a C?
function with F(0) = 0 such that F/ > 0 on (0, +o0). A smoothmap u : (M"™, g) — (N", h) between Riemannian
manifolds (M™, g) and (N", h) is said to be an F-harmonic map if it is a critical point of the following F-energy

functional Er(u) given by
|dul?
Er(w)= | F(=-)dv,
M
with respect to any compactly supported variation, where |du| is the Hilbert-Schmidt of the differential du of

u and dv,; denotes the volume element on M. It is the energy, the p-energy, the a-energy and the exponential
energy when F(t) = t, 22 /p (p > 2), (1 + 2t)* (a > 1,dimM = 2) and ¢', respectively.
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The F-stress energy tensor associated with the functional Er(u) is given by

2 2
5:(%, 1) = F(0 0906, ) - P (S ux, v),

where X, Y are vectors on M. Itis known that the stress energy tensor is a useful tool for studying the energy
behavior and vanishing results of related functional (cf. [14]). If M is compact, the set G of the Riemannian
metrics on M is an infinite dimensional manifold and its tan§ent space at g is identified with symmetric
(0,2)-tensors T,;G. For a deformation {g;} of g, we denote w = % gili=o. Now we fix u : M — (N, h) and define

the functional &p(g;) = fM ('dgl )dv,,. Using lemma 2.1 in [14], we can easily obtain the following result.

Theorem 1.1. Let u : M — (N,h) be a smooth map and assume that M is compact. Then %SF(gt)Itzo =
3 i (Sr wddo,.

From Theorem 1.1, we know that S = 0 is the Euler-Lagrange equation for the functional E(g;). So it
is necessary to get some results of Sp = 0 under some conditions. In fact, the vanishing results of the stress

energy tensor S associated to the energy E(u) = fM @dz}g and the p-stress energy tensor S, associated to the

p-energy E,(u) = | 'd%pdvg have been studied in [17-19]. As natural generalizations of the stress energy

tensor S and the p-stress energy tensor S,, we will obtain the vanishing problem of the F-stress energy
tensor Sr.

Similar to [29] (see also [14, 15]), we may define the upper degree dr and the lower degree Ir of F as
follows:

P 5(0)
P FO)
and
0
e =inf T

In general, we have Ir < dr. From now on, we always assume that dr < +oo0, m > 4lr and F”” > 0 on (0, +0).
Let {e1,--- ey} be a local orthonormal frame field on M. Let ||Sr|| denote the norm of the F-stress energy
tensor. Now we first estimate ||Sg||* in the following

m m
|du

lISEII* = Z (SF(eizej))z = Z (P(@)g(e,«,e/) - F'(d%z

=1 ij=1

W'hies ep))

2 2
(P(ldL')) —2P(M)F'('d”| )|alu|2+(1f'(|”%|))2||u*h||2
F(M) 2

= = a2 R (S
< - ai(FEE) 4 (X2

2
[y
4 P Ll Y2 ) 2
F( )

2
< = 1) (FCE o 5 (R N

| F (gllu*hll)z

= - ai (D) A

where we used |[dul* < Vmllu*h|| and F” > 0. According to (1), we introduce the definitions of ®gr-energy
functional Eq,, and the ®sr-harmonic map as follows in order to study vanishing problem S = 0.
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Definition 1.2. The @5 r-energy density eq,, (1) of u is given by

dul? 2 4d; m
) + ﬁ(

€0y, (1) = (m = 4lp)(F(— - -

D)

The s p-energy Eo,, of u is defined by

dZ
o) = [ e o, = [ [on-ai(F RO S o,

Definition 1.3. A smooth map u is said to be a Og r-harmonic map if it is a critical point of the @g -energy functional
Eo,, with respect to any smooth compactly supported variation of u.

We may study the vanishing results of Sr = 0 by investigating the Liouville theorems for ®gr-harmonic
maps. It is well known that studying Liouville type results is one of important problems for harmonic
maps, generalized harmonic maps or generalized harmonic forms (see [5, 12, 14, 16-20, 24, 26-28, 35] and
the references therein). Most Liouville results have been established by assuming either the finiteness of
the energy of the map or the smallness of whole image of the domain manifold under the map. But Jin
[28] proved several interesting Liouville theorems for harmonic maps from complete manifolds, whose
assumptions concern the asymptotic behavior of the maps at infinity. Dong, Lin and Yang [16] generalized
Jin’s method to F-harmonic maps, obtained some Liouville theorems and gave their applications.

In the literature on harmonic maps one usually choose to utilize the Levi-Civita connections. Harmonic
maps with a connection different from the Levi-Civita connection on the domain manifold have already
been investigated in great generality. Such maps become known as V-harmonic maps and include the
classes of Hermitian, affine and Weyl harmonic maps into Riemannian manifolds, see the introduction of
[11] for more details. In [8], V. Branding gave the equation for harmonic maps where the target manifold is
endowed with a connection with metric torsion, named as harmonic maps with torsion. But the V-harmonic
map and the harmonic map with torsion can not be obtained as a critical point of some energy functional in
general. They are given only by adding some extra structures to the standard harmonic map equation. In
this paper, we are going to study ®sr-energy functional Eq,, where the target manifold is equipped with a
metric torsion connection.

Firstly, we introduce connections with torsion. Let VN denote the Levi-Civita connection of a Riemannian
manifold (N, ). For any affine connection there exists a (2, 1)-tensor field A such that

VIV = ViV + AU, V)

for all vector fields U, V € I'(TN). The torsion tensor T(U, V) is related to the torsion endomorphism A(U, V)
via
vV =VIU - [U, V] = TU, V) = A(U, V) — AV, U).
If VNI = 0, then VY is called a metric torsion connection on N. Obviously, if VN is a metric torsion, then
the endomorphism A(U -) has to be skew-adjoint

WA, V), W) = =h(A(U, W), V).

There exist several geometric settings where connections with metric torsion naturally appear. For a
compact Hermitian manifold, it has a canonical connection, the so-called Chern connection, which has non-
vanishing torsion (see [30]). Another famous connection in Hermitian geometry that carries non-vanishing
torsion is the Gauduchon connection (see [21, 22]). In the case of a pseudo-Hermitian manifold, there exists
a canonical linear connection which preserves both the CR structure and the Webster metric. This particular
connection is called the Tanaka-Webster connection (see [13, 33, 34]), and it also has non-vanishing torsion.
Connections with metric torsion have been intensively studied in the physics literature (see [32]). Cartan
[10] classified connections with metric torsion. The geodesics of connections with vectorial torsion were
investigated in [3], and various geometric aspects of manifolds having a connection with vectorial torsion
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were studied in [2]. The uniformization theorem on closed surfaces for a metric connection with vectorial
torsion was proved via the Ricci flow in [9]. For more details on the geometry of Riemannian having a
connection with metric torsion we refer to the lecture notes [1].

In this paper, we derive the first variation formula of the ®sr-energy functional Eg,, and obtain the
equation of ®sr-harmonic maps where the target manifold is equipped with a metric torsion connection.
We find that the equations of ®gr-harmonic map obtained via the variational principle are same under
the Levi-Civita connection and connections with metric torsion, respectively. This shows some rigidity
signature of @gr-harmonic map being invariant under connection transforms.

To generalize the Liouville results for harmonic maps to the ®sr-harmonic maps, we first introduce the
Dg p-stress energy tensor S, associated to the functional ®sr. We prove that the @ r-harmonic map satisfies
the conservation law, thatis, divSe,, = 0. Using a basic integral formula linked naturally to the conservation
law enables us to establish a monotonicity formula for these @gr-harmonic maps. Consequently, several
Liouville type theorems and vanishing results from these monotonicity formulae under suitable growth
conditions on the ®gr-energy. We also obtain a vanishing result under the condition of slowly divergent
energy.

Next we generalize Jin’s method and results to the ®sr-harmonic maps. The procedure consists of two
steps. The first step is to use the monotonicity formula to establish a lower bound for the growth rates
of the ®gr-energy. The second step is to use the asymptotic assumption of the maps at infinity to obtain
the upper functional growth rates of the ®gr-harmonic maps. Under suitable conditions of the domain
manifolds, one may show that these two growth rates are contradictory unless the ®gr-harmonic map is
constant. In this way, we establish some Liouville theorems for the ®gr-harmonic maps with asymptotic
property at infinity from some complete manifolds.

In addition to establishing Liouville type results, we investigate the constant Dirichlet boundary value
problem as well. We obtain the unique constant solution of the constant Dirichlet boundary value problem
on starlike domains for the ®g r-harmonic map.

2. The ®gr-harmonic map under metric torsion connections

In this section, we give the first variation formula for the ®gr-energy functional Eq,, by using the
connection with metric torsion on the target manifold. Then we obtain the equation of the ®gr-harmonic
map. We may conclude that the equations of the ®gr-harmonic maps are invariant under the connection
transform by variational principle.

LetV, VN and VN always denote the Levi-Civita connections of M and N, and a connection with torsion

of N, respectively. Let V and V be the induced connections by VN and V¥ on u~!TN, which are defined by

P _ N -~ _ON
VxW = Vdu(X)Wr VxW = vdu(X)Vv’

where X is a tangent vector of M and W is a section of u"'TN. Now we define the tensor or,, which plays
an important role in our argument, as follows:

oru(X) = Z 8d( Wllu*hll)_lp(gIlu*hII)P'(gIIu*hII)h(du(X)f du(e;))dule;)
j=1

()
|dul®
2

) lduP?
+ 2(m — 4lp)F( )F (T)du(X)
for any vector field X on M, where {ej}}”zl is a local orthonormal frame. If u is a constant map, we may define
opu = 0. .

Denote divor, and divor, the divergence of or, with respect to the Levi-Civita connection and the

connection with torsion, respectively, that is, divog, = Z;il(rvveiaﬂu)(e,-) and %ap,u = Y (Veoru)(e). We
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define ®g r-tension field 7o, (1) of u by
_ m
T, (4) = di00p, - ) | Aldu(e), oru(e))) = divor,.
i=1

Theorem 2.1. Let u : (M",g) — (N",h) be a smooth map where (N", h) is endowed with a metric connection with
torsion. Let u; : (M™,g) X (=6,0) = (N",h), =6 < t < 0, be a family of compactly supported variations such that
up=uandV = %”t‘lt o. Then

dEog,(u)
dt

=0 j}\; h(V, o, (1))do,. 5

Proof. Let W : M X (=6,0) — N be a smooth map defined by W(x, t) = u;(x), where M X (=9, 6) is equipped
with the product metric. We extend the vector fields % on (-06,6) and X on M naturally to M X (=6, 0), and
denote these vectors also by %, X. We shall use the notations V, V and V for the Levi-Civita connections on
M x (-6, 6) and induced connections on W~!TN, respectively.

Now we compute

2
2 - (L 1 20 Y gy
WF , AR 9 |dVP % \/_ . ,«/‘ .
= 20m 49RO P S0 S50 « ZEr e hi) 2 (1)
= 2(m — 41)F( 'd\p'z)F' "”"2)Z W dW(e), dW )

8d2 -~
\/_ll‘l’*hﬂ 'F( ‘/_II‘I’*hII)F’( \/Z%H‘I’*hﬂ) Z h(V o dW(e;), dW (e)h(dW (e;), d¥(e))
i=1

h(V 2 dW(er), orw(e:))

[\”/]§

Il
—_

¥ 2 0r0(e0) +Zh(A<d\If< ) dW(e) ~ AW, dV(5), 070 (e)

[ (D), 0r0(e)) ~ HAW(S), Teoru(e)] + Y WAGP (), opv(e), dP(S0)

i=1

Lo

1l
—_

1

Here we used

V3 dW(e) ~ Ve dW(D) = AW, dW(e) - A@Y(e), dV(5)

and

Y HA@R(D), a% (), orw(e) = 0.
i=1

Let X; be a compactly supported vector field on M such that g(X;,Y) = h(d\y(%), oru(Y)) for any vector
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Y on M. Then

IVE o A

442
2 o —aiir Sy +7F[F< 19 HIY?)

p”/p

leig (X, ei) — h(d‘P( )/ve,GF‘P(el))+h(A(d\Ij(ez) Gw(ez)),d‘lf(—))]

]
—_

[\”/13

[9(V: X, 00 + 9(X, Ve~ H@P(5), Verule) ~ AP, or(e)] @

1l
—_

i

) m a ~
= divX; - Z h(d‘y(a), Veorw(er) — opw(Veer) — A(dWY(e), orw(e)))
p)

= diUXt - h(d\y(%),%ag\y - Z A(d‘I’(e,), qu/(ei)).
i=1

From (4) and Green’s theorem, we have

m
Svssu)| == [ hv.@oar, - ) Aldute, ora(edo, = - [ bV, o, (o,
- M i=1 M

Remark 2.2. If we use the the Levi-Civita connection on the target manifold (N", h), we can deduce that the first
variation formula for the ®s p-energy functional Eo, is

d ‘
S Dsru)| == | WV divop)dog =~ | h(V, Ty, (w))do,
dat ™ t=0 M ’ M .

This shows that the critical points of the ®s p-energy functional Eq,, are the same under the Levi-Civita connection
and the connection with metric torsion on the target manifold, respectively.

Proposition 2.3. A smooth map u : (M™,g) — (N", h) is g r-harmonic where N is equipped with metric torsion
connections if it is a solution of the Euler-Lagrange equation

Tog, (1) = 0. (5)

3. Mg -stress energy tensor

In this section, we introduce the definition of the ®gf-stress energy tensor So,, associated with the
®g r-energy functional Eq,, and obtain some properties of the @ p-stress energy tensor Sg,,.

Following Baird [7], we define a symmetric 2-tensor So,, of u associated to the functional ®sr (which
we call, the @g r-stress energy tensor of u, in short) by

Vm

|du|2 o | A
-+ - [E( 5

Sgr (X, Y) = {(m = 4Ip)[F(- b HIDI)g(X, Y) = h(du(X), 07, (Y)

where X, Y are any smooth vectors on M.
Recall that for a two tensor field T € I'(T*M ® T*M), its divergence divT € I'(T*M) is given by

(@ioT)(X) = ) (VaT)e:, X)

i=1

where {e;} is an orthonormal basis of TM.
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Theorem 3.1. Letu : (M™,g) — (N", h) be a smooth map where N is endowed with a connection with metric torsion
and So,, be the associated stress-energy tensor. Then for any vector field X on M, we have

(divS(DS,F)(X) = _h(TCDs,F(u)/ dM(X))

Proof. We choose a local orthonormal frame filed {e;}!" | at a point x such that V,.ej|, = 0. Then for any vector
field X € I'(TM), at x, we have

(divSp,)(X)

= Z(Ve,'sfbsyf)(eir X) = Z [ei(s‘bsf(ei/ X)) - S(Dsyg(ei/ Ve,'X)]
i=1 i=1
& 4d2  \Jm

2
= Y fetm - 41T + S EES ) Plgter X) ~ horden, du(x)]

i=1

B
2 4d?

" 2 4d?

= Y etton - a2 2 ey igee, x)

i=1

- Z ei(h(oru(e), du(X))) + Z h(ogy(e), du(Ve, X))

i=1 i=1

2 4 n,
= X(en — 412 2 e i) - Y Ve, du()

i=1

= Y (e, Vedu(X)) + Y H(oru(er), du(Ve X))
i=1

i=1

— [(m — 4lp)(F( 1 Rl))g(es, Ve X) + h(oru(e), du(Ve,-X))}

= Y h(Vxdu(er), opue)) = Y h(Veoru(er), du(X)
i=1

i=1

= Y orae), Vadu(X)) + ¥ h(orues, du(Ve X))

i=1 i=1

= Y H(Vxdue), oraed) = Y H(Veor(e), dux) = Y, hogaten, (Ve di)(X))
i=1 i=1 i=1

= Z h(A(du(X), du(e;)) — A(du(e;), du(X)), orule)) — Z h(&eloﬁu)(&)’ du(X))

i=1 i=1

= Y mA@u(E), orue)), dux) = Y 1(Voor) (e, du(X)

i=1 i=1

== Y (Voor)(er) - Aldu(er), or(en), du(X))
i=1

= — Z h(Tq;S'F(u)/ du(X))/
i=1

where we used

(Vxdu)(e) ~ (Ve du)(X) = Adu(X), du(er)) ~ Aldu(e:), du(X)
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and

) HA( ), due), (e = 0

m
i=1
|

Corollary 3.2. If u : (M™,g) — (N", h) is a Qg r-harmonic map. Then u satisfies the ®gr-conservation law, i.e.,
diZJS@S/F =0.

Recall that for two 2-tensors T4, T € I'(T*M ® T*M), their inner product is defined as follows:
m
(T, T2) = Z T1(ei, /) T2(ei, )
ij=1

where {e;} is an orthonormal basis with respect to g. For a vector field X on M, its dual one form 8y is given
by

0x(Y)=9(X,Y),VY € TM.
The covariant derivative of Oy is given by
(VOx)(Y, Z2) = (VYOx)(Z) = g(VyX, 2), VY, Z € TM.
If X = Vg is the gradient of some C? function @ on M, then Ox = dp and VyOx = Hess,(¢).

Lemma 3.3. ([7, 14, 16]) Let T be a symmetric (0, 2)-tensor and Let X be a vector field, then
div(ixT) = (divT)(X) + (T, VOx) = (divT)(X) + %(T, Lxg), (6)

where ixT € AY(M) denotes the interior product by X and Ly is the Lie derivative of the metric g in the direction of X.

Let D be any bounded domain of M with C' boundary. By applying (6) to So,, and using the divergence
theorem, we obtain the following integral formula

f S(DSVF (X’ V)dsg = f[(SCI)s;/ %LX9> + (diUSGJS,F)(X)]de (7)
dD D

where v is the unit outward normal vector field along JD. In particular, if u is a @gp-harmonic map, then
divSe,, = 0. So we have

1
f Sq)S,F(X/V)ng = f<S<D5,F, ELxg>dvg. ®)
dD D

4. Monotonicity formulae and vanishing results under the growth condition

In this section we will apply (8) to obtain the monotonicity formula for the @g r-energy of @g r-harmonic
map. Furthermore, some Liouville type results will be obtained.

Let (M, g) be a complete Riemannian manifold with a pole xo. Denote by r(x) be the distance function
relative to the pole xy, that is, 7(x) = dist,(x, x9). On a complete Riemannian manifold with a pole, one can
take r to go to infinity. Set B(p) = {x € N : r(x) < p}. Because of Hessg(rz) = 2dr ® dr + 2rHess,(r), it is known
that % is always an eigenvector of Hessg(r2) associated to eigenvalue 2. Denote by Amax (resp. Amin) the
maximum (resp. minimal) eigenvalues of 2rHess,(r) at each point of M \ {xo}.
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Theorem 4.1. Letu : (M™,g) — (N", h) be a ®g p-harmonic map. If there exists the following inequality on (M™, g),

-1
1+ ’”TAmm — 2dr max{2, Amax} > A, 9)

where A is a positive constant, then we have

Fyp [ = A1) FCEL Y2 + 2 Bl P fB( [ = 41 P )2 + 2 (P ) g

oy Pz

forany 0 < p1 < pa.

Proof. Taking D = B(R) and X = 1V7? = r£ in (8), we have

J d 1
f&B(R) SCI)S,F(TEI E)dsg - L(R)<S®S'F’ ELr%gﬂiz}y (10)

Let {e;}!" | be an orthonormal basis and ¢, = %. We also assume that Hessg(r2) becomes a diagonal matric
with respect to {e;}!,. Then we have

(SosrLy29)

Z Sag, (e, e)(L, 2 9)(61‘, ej)

i,j=

- d
3 {[om = L 4 2 e Yy e e, 00 ) - e, omae L, e )

—_

i,j=1 (11)
_i[(_g M _Pﬂ*z 2,._m ) ) 2N (p. p.
= ECZ)) + —L (== ki) | Hessy(P)(ei,e) = ) h(du(ei), op.le;)) Hessy()(eir )
i=1 ij=1
> [(m —4lp)(F(|du| ))2+—(F(£|| H]I2 + (1 = D Amin] = Max(2, Amaxd Y Bldu(e), opuler).
i=1
Here
Y hdu(es), oru(e)
i=1
m m 2
= ) e, ]Z; %in(uu*hnﬂﬂ@nu*hnﬂ?’(?||u*h||>h<du<e,->, du(e))du(e;)
20 - 4t (P () 1)
(12)
8d 2 2
- \/EF(in wHDE Ll -+ 20 1) pr (L
882 L hl|F (L k) , BEp ) P
== F(—||u*h 2(m — 4l F
R T T (F(=lhID)? +20m = 41) =2 Ty (FZ-)
B LR I e
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From (11), (12) and (9), we obtain

— d2
(S 2L 2 [14 2L 2 = 2 maxt2, A [0 = a1 (FCEE 2 4 228 L)
’ - " (13)
|du| 4d .
2 Afon - a2+ 2 )
On the other hand, by the coarea formula, we have
d d. . lduP , 4df  Nm d J
fa o S35 3y s = R fa o L = 41T+ ZEEIHNY] = (), 0550 sy
_ |d P, 4 N
=& [ [on- s G+ T e s,
- SdIZ: * -1 \/% * ’ \/ﬁ * a 2
-R fa B(R)[Z 7o 0 ) PO I (i D (50 due) "
jdui? -, ldu?
+2(m — 4lp)P(—)F (—)h(d( )du( ))]dsg

YL A
< [ o [0 = 4T+ SEEC

1)) |ds,
d dul ,  Ady  Nm
~ryz [ =4I ECE + SEECT e,

Hence by (10), (13) and (14), we obtain

i LIR v duf v,
RoR fB o LI ECY +—<F< i) Jdo, = A f | [ EC) +—(F( ju*))? oy,

ie.,

4 L0 = AIEYECHE))? + S (P ) P,
iR A > 0.

Integrating the above formula on [p1, p2], we can get

Fyo [0 = A1) (LN + 22 F G ahi)? oy fB< [ = 41p) (LN + 2 F )

2 Pz

P1
O

Using the monotonicity formula, we immediately obtain the following vanishing results.

Theorem 4.2. Under the same conditions of Theorem 4.1 and

2
| o i F( 22 —(P( Vo, = o),

then u is a constant map. Hence the F-energy stress tensor Sg is vanishing, i.e., Sp = 0.
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Proof. By Theorem 4.1, we have

L |d |2 a; ‘/_ * |d |2 42 \/11_1 )
p_AfB@ S f -t S L e,

forany 0 <p <r.
Letting r — +00, under the assumption, we can obtain

ldul? A2 . , )
fB(p) [ = 419)(EC))? + E B lhh) o, = 0.
Since p is arbitrary, then

|du| Ady  ~\m

(m = 41p)[F(—)F +7F[F<T||u*hu>12z

From the assumption of F, we can obtain
du=0,u"h=0.
This implies that u is a constant map. So we have the vanishing result of Sr. [

We can apply the above vanishing result to some concrete pinched manifolds. In order to do it, we need
the following lemmas.

Lemma 4.3. (see [14, 23, 31]) Let (M, g) be a complete Riemannian manifold with a pole xy and let r be the distance
function relative to xo. Denote by K, the radial curvature of M.
(i) If—a® <K, < —p*witha > 0, B > 0, then

B coth(Br)[g — dr ® dr] < Hess,(r) < a coth(ar)[g — dr ® dr].

(i) If ~ e < K < gy with € >0, A 20,0 < B < 2¢, then

1-£ 4
X [g—dre®dr] < Hess,(r) < %[g —dr®dr].

(iii)If — A(A D<K, < -BCU with A > B> 1, then

é[g —dr ®dr] < Hessy(r) < g[g — dr®dr].

(iv) If -1 < K, < 155 with b2 € [0, 1], then

1+ V1 —4pb? 1+ V1 +4a?

> [g — dr ®dr] < Hess,(r) < > [g —dr®dr].

Lemma 4.4. Let (M, g) be a complete Riemannian manifold with a pole xo and let r be the distance function relative
to xo. Assume that there exist two positive functions hy(r) and hy(r) such that

hi(r)[g — dr ® dr] < Hessy(r) < ha(r)[g —dr®dr] and rhy(r) > 1,

then

1+ mT_l/\min — 202, Amax) = 1+ (1 — 1) () — dderia (7).
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Proof. Applying the Hessian operator to the composed function 72, we have
Hessg(rz) = 2rHess,(r) + 2dr ® dr.

Let {e;}!", be an orthonormal basis and ¢, = %. We also assume that Hessg(r2) becomes a diagonal matric
with respect to {ei}l’.il. Let e, and eg be eigenvectors of 21’Hessg(r) associated to eigenvalue Amax and Amin,
respectively. Then

1+ mT—lAmm — 2dr max{2, Amax}

-1
—1+ 2 2rHess;(r)(eq, €a) — 2dr max{2, 2rHess;(r)(ep, €p)}
>1+ 22 12rhlg(ea,ea) — 2dr max({2, 2rhag(eg, ep)}

=1+ (m — 1)rhy(r) — 2dp max{2, 2rh,(r)}
=1+ (m— 1V)rhy(r) — 4dprhy(r).

O
From Lemma 4.3 and Lemma 4.4, we have the following lemma.

Lemma 4.5. Let (M, g) be a complete Riemannian manifold with a pole xo and let r be the distance function relative
to xo. Denote by K, the radial curvature of M.
(i) If—a® <K, < —p*witha >0, > 0, then

-1
1+m

Amin — 2dF max{2, Amax} > 1 — 4@%.

(ii) If ~ e < K < oy with € >0, A 20,0 < B < 2¢, then

1+ mz—l/\min—demax{Z,/\max} >1+(m-1)(1- %)_4111:6%,

(ilf -2 < K, < ~BED with A > B > 1, then

1+ mT_l/\mm — 2dp max{2, Amax} > 1 + (m — 1)A — 4dyB.

(iv) If -7 < K, < 755 with b* € [0, 1], then

— _ 2
1+ mTlAmm — 2dr max(2, A > 1+ (m — 1) V240 “;41’ —2dp(1 + V1 + 4a2).

Using Theorem 4.2 and Lemma 4.5, we can obtain the following vanishing result.
Corollary 4.6. Let u : (M™,g) — (N", h) be a ®g p-harmonic map from a complete Riemannian manifold with a pole
Xo. Assume that the radial curvature K, of M satisfies one of the following conditions:
(i) —a? <I< < ﬁzwitha>0 B> 0and (m—1)B —4dra > 0;
(ii) ~ e < Ky < e with € >0, A2 0,0 < B < 2eand 1+ (m = 1)(1 - £) - 4dpex > 0;
(iii) — A(A b < K, < - B(B D with A>B>1and 1+ (m—1)A —4drB > 0;

(z'v)—m <K <% with b2 € €0, 1] and 1+ (m — 1)Y= —2dp(1 4+ V1 +442) > 0
If

\d ul2 ady  Nm
fB " {(m —4IR)[FCH)P + —HF(—llu HNPldo, = o(r™),
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where
m— 4dF%, if K, satisfies (i)
Ao 1+ (m—1)(1 - £) - ddpe*, if K, satisfies (i)
1+ (m—1)A —4deB, if K, satisfies (iii)
1+ (m-1)E _2d,(1+ V1+4a?), if K, satisfies (iv)

then u is a constant map. So we know Sr = 0.

The functional ®gr of u is said to be slowly divergent, if there exists a positive function ¢(r) such that
f T odr
Ry TY()

— 41 [F(EYR 4 S gy 2
lim (m FIF(=)] —E[F(=5-lu"hl|)] do, < +oo. (15)
R—+co JpR) Y(r)

Theorem 4.7. Letu : (M™,g) — (N", h) be a Og p-harmonic map. If r(x) satisfies the condition (9) and Og r is slowly
divergent, then u is a constant map and Sp = 0.

for some Ry, and

Proof. From the proof of Theorem 4.1, we have

d dul? 42 ) P
I e e TR I e 2 i,

If u is not a constant map, there exists constants R; > 0 and ¢y > 0 such that
du 4d? m,
f [(m - 4zp>(F<' R 1) ]do, > co
B(R) m 2

for any R > Ry. Thus

Idul \m

4d; . A
faB(R) [(m - 41p)(F(-))? + WF(F(T”” HlD)Y]ds, > %,VR > Ry

Since @ is slowly divergent, then

(m — AIp)[F(LL )P + 2 (R ) 2

& v )

_ fom% Lom —4zp)(P('d”'2)) +§( (g””*h”)ﬂdsg
sz m% Lom —41F)(F('d”' )+ %%(F (g””*h”)ﬂdsg
_ +oo.

This contracts with (15). Therefore, u is a constant map and S =0. O
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5. Vanishing results under the asymptotic condition

In this section, using a similar technique in [16], we can derive a Liouville theorem for the ®g r-harmonic
map. Furthermore we can obtain the vanishing result of F-stress energy tensor Sr. First we give the lower
®sr functional growth rate for the @5 r-harmonic map by using the monotonicity formula.

Proposition 5.1. Let u : (M™, g) — (N", h) be a ®gp-harmonic map from a complete Riemannian manifold with a
pole xo. r(x) is the distance function relative to the pole xq. If r(x) satisfies (9) and u is not constant, then

4d2
f [(m - 41p)(F(=- 'd”' )* + —P(F(gllu*hll))z]dvg > Cw)R® as R— +oo,
B(R) m

where C(u) is a positive constant only depending on u.

Proof. Since u satisfies the condition in Theorem 4.1, we have

Jy [ = A1) FCLE N2 + 22 R )2 o, _ [ — 1) (ECSE)? + S (Sl 2 o
pA RA

for any 0 < p < R. Note that u is not a constant map, there exists some p > 0 such that
2 44>
[ [tz + 2 ™ o, > o
B(p) 2 mo 2

2
oo [(m—éup)(F(%»H“f,—f(F(@uwmn)Z]dvg

or , then

Set C(u) =

d2
| fon- a2 1 25 e o, = CooR?
B(R) m

This completes the proof of the proposition. [J

Set

EE_ () = fB o ) (D)) (F(‘/_nu*hn)) Jdo,-

Next we will use the assumption for the map at infinity to derive an upper bound for the growth rate of
Eg, (1) asR — +oo.

Proposition 5.2. Let u : (M™, g) — (N", h) be a g pr-harmonic map from a Riemannian manifold M with a pole x.
Suppose I > 0 and F(‘/T%Ilu*hH)P’(gHu*hH) < +0o . Assume that r(x) satisfies (9) and (me malr)‘1 < CoRA
for R large enough. If u(x) — po € N as r(x) — +oo, then u must be a constant map, or there exists positive constants
Ro, C, c(u) and n(R) = 0as R — +oo, such that

Eg,, (u) < C(Z(—;? + %)RJ for R>Ro.
Proof. Suppose the ®gr-harmonic map u is not constant, then by Proposition 5.1, the ®gr-energy of u must
be infinite. That is, ng(”) — 400 as R — +oo.
Choose a local coordinate neighborhood (U, ¢) of po in N", such that ¢(po) = 0, and 1t = ¥, 5 hapdy® ®
dyf, y € U satisfies
Iap(y)
o

Y+ 2hap(y)) = (hap(y)) on U
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in the matrices sense (that is , for two n X n matrices A, B, by A > B, we mean that A — B is a positive
semi-definite matrix).

Now the assumption that u(x) — 0 as 7(x) — +oco implies that there exists an R; such that u(x) € U for
r(x) > Ry and

9ha/s(u)
(5, + Zhap()) 2 (hap(u))  for r(x) > Ry. (16)

Forw € Cé(M’" \ B(R1), ¢(U)), we consider the variation u + tw : M™ — N" defined as follows:

u(q), if q€B[R)

W”“))(‘?):{ o7 G + t)@)], if g€M\BR)

for sufficient small [t|. By the definition of ®gr-harmonic maps, we have

d
E|t:0E¢5£(u + ta)) =

that is,

|dM|2 , Idu|2 i ou® dwf ahaﬁ Cau ouf
f \B<R1>( DRI () 2y ox; ox;  out  Ix; ox; e

4d2 \/_ \/_ ou® dawf  Ihag C&u 8uﬁ] ou? Ju®

* 1pe V7% re Y ik jl e - -
+f\B(R1) \/_” whIH I hIDE' Ihhig”g [Zhaﬁ ox; 0x; "o 8u¢ Jx; 0x; hys Xy Ix; 4oy =0
(17)
Now taking w(x) = ¢(r(x))u(x) in (17) for ¢(r) € C7’(R1, +o0), we obtain
4d; \/_ \/_ Ihap du® ouf  ou’ du®
e T Tpe Y7 v N ik jl %P C - - -
f\B(Rl){ \/_ll uh|| " F(——lwhI)F' (——Illu"hl)g" g [Zhaﬁ + u ]X(p( r(x))=— 75 %, o o }dvg
|du|2 Idul . Ohap ou® ouf
+ m — 4lp)F(——)F’ N 2has + ut|p(r(x) =— =—dv
S, = 4RGP g o+ Sty 5 e
4d2 0 y )
+2 f (S P ey L g g 2 quﬁhﬁiai}dvy
M\BR)) - VM Pox; ox; Ixe 9% )

Idul2 Idul2 i out dp(r(x)
+2 4lp)F(——)F Thy, d
S, =4RSP (g 52

By the standard approximation argument, (18) holds for any Lipschitz function ¢ with compact support.
For 0 < ¢ <1, we define

&

1, t<1
Ye(t) = 1+, 1<t<l+e
0, t>1+e.

and choose the Lipschitz function ¢(r(x)) to be

pr) = 0"y -y, (ﬁ», R> Ry = 2R;. 19
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By (19), we have

u* ouf . ou’ ou®

Ady \/— \/— Ihag
_ % 1 vy * 7 * ik ]l gr o ourouw
fM \B(Rl){ ™ (G o HDE (5= 0Bl g7 2o + = ]><<p<r(x>) Pl LT e ldo,

N
4d; \/_ \/_
= Ll hl| " F(—o— Il BI)F (5l kil g™ " 2h,, + u
fB(RmB(Rl) { \m [ ap ]
@ u® 8u5 ou’ oul
= ) o 9%, 7 9, 9 Em o)
4d2 ‘/_ m aha/i dut duf . u dud
* 1 / * ik il C
, f o | I G D o) 2 + S x G5 S5
Ad; m \/_ IMag
+ —|[u*hlIT F(——lu*hl)F’ Rl g™ g"| 2hap + ——u"
fl;((ug)za)\B(R){\/ﬁ ( 2 (>~ )9"9 [ W ]
r(x) ou® ouf  u? ou®
x%(R—l)a—xia—xj yaa—xka—xl}d
and
dul> _, ldul* . ou® (9u
[ - a2 (B g+ S o 2 2 g,
M\B(R)
2 2 My
o™ 4ZF>F<”L'>F'<W' o+ 2t - w@»?‘ e
(R2)\B(R1) X
2 2 ha 8
+f (Wl 4] )F(|d1/l| )F/(ld”| lj[zh B C Ju® Jdu
B(R)\B(R2) ;i ax]
|dul? Ialul2 aﬁ r(x), du” 8uﬁ
+ m— 4ZF—F’ i 2hag + ut | (== 21
fB((1+s)R)\B(R)( P W5 [ pr ]lp( )8x 5x (21)
and
4d2 «/_ \/_ due Ip(r(x)) ouv oud
2 luh||"'F h|)F’ Hi)g™* g hap=— X Ul — —
fM \B(Rl){ T E M (3 D g e =5 w5 &’xl}
4d2 \/_ \/_ du” Kbl(ym ou’ u®
=-2 luh||"'F |1 h||)F’ whl)g* g hos— wPh,s———1d
f(R2)\B(R1){ \/_ ” ( ”) ( H ”) g a ax] jéaxk axl}

1 4d2 \m \/_ s Ir(x) o du’ ou’
=-2— — ||l F —II HNF (=l hll)g™ g hap X — ufh, v, (22)
Re <1+e>R>\B<R>{\/_ ( ) 179 ox; dx; 0 o 10

and
|du| IduI2 o du® dp(r(x))
2 m — 4lp)F(——)F’ Thyg— uPdo
fM \B(Rl)( B)F(——)F (——)9"hap ax ox, g
2 2 )
=2 f (m - 4ZF)F(IdL|)F’(|dL|) L D g do, (23)
(R2)\B(R1) 8 ox;

2
- oL (m — Alp)F ('d”'

|du|2 g Ju’ Ir(x) 4
Re Jp(a+e)r)\BR)

F (0 g G G
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By (18), (20), (21), (22), (23) and letting ¢ — 0, we have

B(R)\B(R,) \/_
2 oh,
)F’('dul 9|20 + 5 C]a” out 2L do, + D(Ry)

|dM|2
+ — 4lp)F
fB(R)\B(Rz>( PRS- dut 1 Jx; dx;

4> \/ﬁ \/_ ou® ar(x) ou? Jul
=2 —= [l Rl (==l ) F” uwhil) g™ g g x ulh, ds
L I G HE D5 G T i 5 S

dut duP . u dud

=l HIDF (5 o5 9%, 7 3y o

oh
”u*hH)glkg]l[zhaﬁ_i_ 0([3 C]

EW }dvg

(24)

u® 8r(x)
e % ox, u dsg,

2 2
+2 f (m — 4l )F(M)F’(ldm )7 Thag
9B(R)
where D(R;) is given by the following

4d2
D(Ry) = f {—Elluh~ 1F(‘/_
B(R)\B(R:) V1M

r(x). ou® 8uﬁ ou’ Ju®
XA =N ooz 5 ——}do,

2 2
+ f {(m - a1 )F(—"i”| )F'('d”|
B(R2)\B(R1)

44?2 m
2 [ (S i S e (2
B(R)\B(R) V1 2
|du|2 wl(r(x)))

—Zf (m — 4lp)F(—— )g’]h do,.
B(Ry)\B(Ry) 3 i ox;

Now we estimate the term on the left hand of (24). Take any point p € dB(R). It is easy to known that the
term

Vm

b BINF (==l hiDg 9" [2005 + —”C]

r(x) Bu oub }
8x ox;
%)
ou® 4’1( %) ou” Ju®
g X oWy
3 Bx]- 8xk axl

11[2h +a;l“ﬁ ]x(l—gbl(

\/_

e hlD)g™ g™ =—do,

i

du® Jr(x) y. ou? du®

Ad} Vm \m
F * -1 * 7 * ik ]l
Y, I ECG NP g g ey S G e S S

ijklapy,o

+ Z(m 4lp)F(2L

ijep

Iclul2 Idul2 du® Ir(x) iy

P ox; o

)F'(——)g"h

does not depend on the coordinate on M and N at point p and u(p). So we choose the adapted coordinate
systems on M and N such that g;;(p) = 6j, 9 (p) = 6" and hag(u(p)) = S4p. We compute at p.

42 1 \/_ \/ iy, QU I g OuY Oul
" _ % , * L ]l
Y, I I (N e S S S

i,jk1a,B,y,0
|dul? ., |duf? i, ou* Ir(x) Y.
+ijza‘ﬁ(m—4lp)F(—)P G
X 4d2 \/_ Qr(x) u® ou ou?
- —Llwh —1F y«h FI *h a
; el hI F ) ||)[Z o125 ax]]
- I  out 19r()
+ZZ )F( )[ v axiu ] axi
4

& i 1/m or( x) 814 3 u’ ‘9”
1 . , u u® 2
_Ilu hll- F(—II W INE' (==l ll) 1§] 1(;_, ) [;(Z{ ox; 8x]
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1

+(m— 4ZF)P(IdL|)F’(|dL|) Z(Z zx)2] [Z(ar(x) 2

i=1 a=1
44>
=v—%uu*hn1ﬂgnu*hnw ) XZ | [Z(Z i}
i=1 a=1 ij=1 y=1
R G | Z(Z ]
4dF \/_ ’ - - a27
= SR L e E e[ Y 7]
+(m— 4lp)F(|du|2)F 'd“|2 Z( ’;—xau“)z]%
i=1 a=1 '
4d m n a9 a N 1
TF(ill h||>P<£|| WYY 202 Y ]
i=1 a=1 ! b=l
2 m n a aa a n %
G STl 3 M
i=1 a=1 ! b =1
T N T \/— g dut )
= | WDE (- h”)[;(m 5 0]
+ on - a9 L)Y Y 2C 20T [Z( 7]
i=1 a=1
{7F(£n hn)F'(£|| ) Vi [Z(Z%%)z

i=1 a=1

:{\/—%F(T\/_Hu*hﬂ)p(i||M*h||)W[Z(h(d ) e ))2]
jdul? ., \duP

+ (m = 41 PSP (50| Zh(d( ), du(5 ))] Zhaﬁuauﬁ]%

<{ viF(£n h||>P'<£|| “hl) Ym [Z(h(du(—) du(—))z]
i,j=1
+(m—4l —'d”' —'d“'z y 2 2 ik
PF(EED P (2L Zh(d ( du( Rl Z ot uf |
a,p=1
42 1
- {\/—TinP(T‘/_uu*thP'(i||u*h||)%||u*h||z
|dul? ' Idul .
+ (m = A1) F(—)F () (duf)? [ gt

a,p=1

< max{2d, \/m - 4ZF}[F(g||u*h||)F’(g||u*hll)]%[ Y, haﬁu“uﬁ]%

a,p=1
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I FF(—II o ) [y e P

< V2 max{2dg, m — 4lp}[F(g||u*h||)F’(g||u*h|I) Z hapuuf |’

a,p=1

\/_ Idul

DIl + G — 41y F(AE )F'('d”'

\/_

F(5 I HDF (5 )ldu |2]

<Ak

Here we have used [Vr2 = 1 and the concave property of the function f(x) = x for x > 0. So the following
result holds

o Ir(x) o du’ Iu’

e enr o ) gy I O
Pox; ox; " dx o,

o E i (S
m

Il hl))g™ g" hag
i,jk1La,B,y,0

|dul* Idul2

+ ) (=4 F(CSOF (5 o)

)9 hap 5 ox; ox;

< V2max{2dr, \m - 4lp}[F(g||u*h||)F’(g||u*h||) Z haﬁuauﬁr
a,p=1

Vm Idul

N E FF(—II WD L + (o — a1 (e

)ldu |2]

Integrating this inequality over dB(R), then applying Holder’s inequality, we have

gl \/_ «/_ ot Or(x) ,  ow oud
* 1 * 4 * ik jl /3
faBR) I ECG D g g g 5 -5 i 5 S,
2 2
+ f (m - 41F)F(ML')F'(WL') ’fhaﬁ‘}” ar(x)uﬁdsg
9B(R) dx; 0x;
d d 3
<a ()[ A iy )+ o - 4P 2
B(R
M N et (25)
x [P(Tnu HIDF' (=l hu);1 hapu®uf | ds,
A L V‘ |du|2 |du|2 )
<C —LF(—|luhl))F’ whl)|luhl| + (m — 4lF)F F dul? |ds
1{LB(R)[@<2 e BIDE' (S Tl + s — A1) EC )P (o2 s,
\/_
X F [le* k) F’ [|e*h) hagu®uPds
[ PTG 3 s

where C; =2V2 max{2dr, Vm — 4lr} is a positive constant.

By (16), we have
4”12 \/_ \m K i e . Ju® ouf  Ju? dub
* 1 4 * ik jl C
f I e

du2 dul? Ohag . Ju® Juf
AUl o 1 acl C]——dvg+D(R1)

F'(—— )9” [2hap +

+ f (m—4l )F(
B(R)\B(R2)
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4d2
f —L |kl (= \/_ \/_
B(R\B(Ry) V1M

2 2
+ f (m — 4l )F(M)F’(M) i 2L Z—do, + D(R,)
(R)\B(R2)

ou® ouf  ou’ ou®

> _ —_— v
)
ox Xi 83(']' 4 &xk 83(1 g

llwBIDE' (==l g™ 9" hap——

b ox; ox; (26)
4d m * / * * du / d
= [ TR e S bl + o - ) F P (i,
(R\BRs) - VM
+ D(Rq).
By (24), (25) and (26), we have
442 m dul? d
[ TR e S + o~ 4F e ey,
(R\B(Ry) - V1M
+ D(Ry)
4 . , . dul? d 3
<af [ ] A S iy Y i + o - s,
IBR) - \m
X [LB(R)F(TIIu hihF (Tllu hll) Z hagu uﬁdsg] , (27)
a,p=1
where C, = 2C; is a positive constant.
Set
2w - [ [ FF(—n e
B(R)\B(Rz)
+(m— 4ZF)F(|dLI)F’(|dM| JduP|dv, + DRy), for R> R.
Then
dul? d
7w = | [ I S i+ (o = a1 Py (s, 8)
B(R)
Using (27) and (28), we have
1 m m - 3
Z(R) < GIZ'(R))F| f& ( )F(Tv_llu*hll)F’(Tv_llu*h||) Y hgututs,] . (29)
B(R o)
On the other hand, we have the following estimate.
Z(R) - D(Ry)
!’ m * * d 2 72 d 2
- [ [ D S i+ (o = 41 P (o,
B(R)\B(R2) (30)
Vi dul?

>2% | [—(F(—nu*hn)) + O~ A1) (FCS ) o,
B(R)\B(R2)

Since Ir > 0 and Ecpsp(”) — +00 as R — +oo, there exists an R3 > R; such that Z(R) > 0 for R3 > 0. Thus from
(29), we have

(Z(R))* < (C2)*Z'(R) f - (£|| *h||)F'(£||u “hll) Z hagu“uPds, for R > Rs.

a,p=1
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If we denote
M(R) = f (£|| “HIDF' (=5 ‘/_ () Z hogu®ufds,,
IB(R) aB=1
then for any R4 > R > R3, it follows that
R4 R4
R Z0) (C2)* Jr M(r)
Letting R4 — +o0 and noticing that Z(R) > 0, we have

S (.
ZR) (@P Jx MO

Thus

CZ
Z(R) < —2, for R>Rs. (31)
fR M(r)

Note that F(@IIu*hII)F’(‘/T'ZIIu*hII) is uniformly bounded. According to the fact that u(x) — 0 as r(x) — +oo,
we get

M(R) < Zn(R) - vol(dB(R))

where ¢ is a constant only depending on u and 7(R) is chosen in such a way that
(i) n(R) is nonincreasing on (R3, +o0) and 1(R) — 0 as R — +oo;
(i) N(R) = max,(=r Ly go1 (Haptt*uP)>.

Then by the assumption, we derive

| 1 1 1 A
fR M = c1(R) fR ool@B) " = o 32)
Hence from (31) and (32), we have
Z(R) < Cn(R)R® for R > Rs, (33)

where C = Cy(C,)*c’is a positive constant.
From (30) and (33), we obtain

|du/? NI
Egsf(u)=f® [( —4lp)(P(L)) (F(—|| h||)) ]dvg
dZ

) E(Z(R) D(Rl)”f R S) +7F(F<guu*hu>)2]dw

2
Rt = S0 [ fon= a2 ST ) oo

20
nR)  cw)
2, T RA

for R>R3=Ry. O

= 2l
= C(—5= + = )R*

By Proposition 5.1 and Proposition 5.2, the following vanishing theorem for ®gr-harmonic map is
established.
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Theorem 5.3. Let u : (M™,g) — (N",h) be a ®g p-harmonic map from a Riemannian manifold M with a pole x.
Suppose Ip > 0 and F(‘/Tﬁllu*hll)P’(@llu*hH) < 400 . Asumme that r(x) satisfies (9) and (fRJroo mdﬂ_l < CoRA
for R large enough. If u(x) — po € N as r(x) — +oo, then u is a constant map. Furthermore, we get S = 0.

By using Theorem 5.3 and Lemma 4.5, we can apply the above vanishing theorem to some concrete pinched
manifolds.

Theorem 5.4. Let u : (M",g) — (N", h) be a Ogr-harmonic map from a Riemannian manifold with a pole x.
Suppose Ir > 0, F(‘/Tﬁl|u*h||)F’(‘/Ta||u*h||) < 400 and (wa md”)_l < CR” for R large enough. Assume that the
radial curvature K, of M satisfies one of the following conditions:

(i) —a? <K —ﬁzwitha >0,B>0and (m—1)p —4dra > 0;

(ii) — (1”2)1“ <K, < (1”2)1“ withe >0,A>0,0<B<2and 1+ (m—1)(1- ) 4dp€2t > 0;

(iii) - 240 < K, < ~BE8D with A > B > 1and 1 + (m — 1)A - 4dB > 0;

(iv sz <K, < 125 with 12 € [0, 3] and 1+ (m - 1) =4 24, (1 + V1 +4a2) > 0

Ifu(x) = po € N as r(x) — +oo, where

m— 4:(11:%, if K, satisfies (i)

Ao 1+ (m—1)(1 - £) - ddpe*, if K, satisfies (i)
1+ (m—1)A —4drB, if K, satisfies (iii)
1+ (m- 1) _0dr(1+ V1+4a?),  if K, satisfies (iv)

then u is a constant map. So we have Sp = 0.

In [31], the authors give the volume growth estimates under Ricci curvature conditions. Hence, applying

the results to the following cases, the right side of ( fR+ dr)™' < CoR” can be expressed as a polynomial.

vol(aB )
Corollary 5.5. Let u : (M™,g) — (N",h) be a @gr-harmonic map from a Riemannian manifold with a pole xo.

Suppose Ip > 0 and F(\/Tﬁllu*hll)F’(\/Tﬁllu*hll) < +o0o. The radial curvature K, of M satisfies one of the following two
conditions .
(i) — (1+r21+€ <K, < (1”2)“6 withe >0,A>0,0<B<2cand1+(m—-1)(1- )—ZdFeE >m-2;

(i)~ <K, < L5 with t? € [0, 1] and 1 + CDENHD _g.q m> > (VIR _ g
If u(x) = po € N as r(x) — +oo, then u is a constant map. So we have Sp = 0.

Proof. (i) From the condition of K,, we have

(m-1)A

Ricy(x) > —(1 Ty

Yx e M.

By a direct calculation, we have

f‘x’ Ar g — A
0o 1+l T 2

Using the volume comparison theorem (cf. Corollary 2.17 in [31]), we obtain

(m-1)A m—1
vol(dB(R)) < wye = R

where w,, is the (m — 1)-volume of the unit sphere in RY, and thus

0 1 - DA o
- < - 3 .
(fR vol(&B,)dr) <(n-2wpue = R for r> Ry

(ii) It follows that

(m — 1)a?

Ricg(x) > —m,

Yx e M.
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By the volume comparison theorem (cf. Corollary 2.17 in [31]), we have

v0l(dB(R)) < CRI"DA

’ _ V) 2
where A’ = 1% 54
0 1 ,
dr)y! < CRm-DA-1 Re.
( - 20l0B) r) < for >Ry

Therefore using Theorem 4.2, the conclusion is immediately proved. O

6. Constant Dirichlet boundary-value problems

In this section, we deal with constant Dirichlet boundary-value problems for @ r-harmonic maps. As
in [14], we introduce starlike domains with C'-boundaries which generalize C!-convex domains.

Definition 6.1. A bounded domain D c (M, g) with C'-boundary JD is called starlike if there exists an interior
point xo € D such that

0
on'w aD =0,

(

where v is the inner normal to dD, and for any x € D \ {xo} U D, -2 P (x) is the unit vector tangent vector tangent to
the unique geodesic joining xo to x and pointing away from Xx,.

Theorem 6.2. Let u : (M™,g) — (N” h) be a C? map from a Riemannian manifold M with a pole xo and D C M be
a starlike domain. Assume that lp > 3 L and u| 2D is constant. If u is a ®g p-harmonic map, then u is constant on D
provided one of the following conditions is satisfied:

(i) —a? <K < ,Bzwithoz>0 B> 0and (m—1)p — 4dra > 0;

(ii) — = < K < qryess with e >0,A 20,0 < B <2eand 1+ (m—1)(1- 2) - 4dpet > 0;

(iii) — 240 < K, < ~2ED with A > B > 1and 1+ (m — 1)A — 4dB > 0;

(iv) 15 < K, < 125 with b2 € [0, 3] and 1+ (m — )22 24,1 + V1 +4a2) > 0

1+r2 = = 1+r

Proof. Set X = r%, where r = ry,. From the proof of Theorem 4.1 and Lemma 4.3, we get

1 du 442 'm
(Swsrs 5L, 2 g) = Allm — 4Zp)(1-"(| i ) + WF(F(T‘/—IIu*hII))ZL (34)
where
m— 4dF%, if K, satisfies (i)
Ao 1+ (m—1)(1 - £) - ddpe*, if K, satisfies (i)
1+ (m—1)A —4drB, if K, satisfies (iii)
1+ (m-1)E _2g,(1+ V1+4a?), if K, satisfies (iv)

Let x € dD and choose a local orthonormal frame field {eq,--- ,e,-1,v} on T:M such that {e1, -, €1}

is a orthonormal frame field on T,dD. Since u( . is constant, we get du(e;) = 0,i = 1,--- ,m -1 and
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du(a%) = <l%,v)du(v). Hence at x

2
) +7F FOP NI, g — (D), 5,00

2
= {im - 41F>(P('d”' 2 2 *h||))21<5,v>

N
2

Sou, 2, ) = r{in — atp) (A

87 » ,
—h(du( )T(II u'hl)” F(—II “hIDF' (=~
Idul

+2(m — Alp)F(——)F'(

= r{[(m — 1) (F(m ) + <F(£|| *hu)ﬁ; (35)

2
-, >[—P(£|| *hn)F'(£nu*hn)nu*hu+2<m g p(20 ) 110

\/_
2

gr{[( —4lp)(F(—))* + —F( (£|I *hll))zl

«/_ |du?

[l hIDA(du(v), du(v))du(v)

2
B aucn)

Idul2

'd”' Ydul?]

Idul &

4d?
- 4lp[—(F( [l RID)* + (m = 4l)(F(—— ))2](5,10}.

|du| F \/ﬁ
) + W(F(T

<a v)(1 = 4lp)[(m — 4lp)(F(—— Rl

I/\

Since D is starlike, by (8) and (35)

f (Souss 3Ly )0y < (36)

From (34) and (36), we have

2 442
[[10m = e 2 4 2 S Pl =0,
D

Therefore u is constanton D. [
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