
Filomat 39:17 (2025), 5765–5776
https://doi.org/10.2298/FIL2517765M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Neumann algebras
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Abstract. The purpose of this note is to establish some properties for a class of deformed trace functions for
operators in finite von Neumann algebras. Moreover, some properties for functions related to generalized
singular values are also included. As an application, we extend the results of Hansen [6] to the case of finite
von Neumann algebras.

1. Introduction

The convexity or concavity of certain trace functions for the deformed logarithmic and exponential
functions has been widely used in statistical mechanics, quantum information theory and operator theory
([5, 7, 13, 15]). Tsallis [16] generalized in 1988 the standard Bolzmann-Gibbs entropy to a non-extensive
quantity Sq depending on a parameter q. In the quantum version, the Tsallis entropy may be written in the
form

Sq(ρ) = −Trρ logq(ρ),

where the deformed logarithm logq is given by

logq x =
{

xq−1
−1

q−1 , q > 1,
log x, q = 1,

for x > 0. It has the property that Sq(ρ) → S(ρ) for q → 1, where S(ρ) = −Trρ logρ is the von Neumann
entropy. The deformed logarithm is also denoted by the p-logarithm. The range of the p-logarithm is given
by the intervals

(−(p − 1)−1,∞) for p > 1;

(−∞,−(p − 1)−1) for p < 1;
(−∞,∞) for p = 1.
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The inverse function expp (denoted by the p-exponential) is always positive and given by

expp(x) =


(x(p − 1) + 1)

1
p−1 for p > 1 and x > −(p − 1)−1;

(x(p − 1) + 1)
1

p−1 for p < 1 and x < −(p − 1)−1;
exp x for p = 1 and x ∈ R.

The p-logarithm and the p-exponential functions converge, respectively, to the logarithmic and the expo-
nential functions for p→ 1.

The collection of all n × n complex matrices is denoted by Mn(C). Recall that A ∈ Mn(C) is called
positive semi-definite if all its eigenvalues are non-negative. The collection of all positive semidefinite n×n
complex matrices is denoted byMn(C)+. In [6], Hansen studied the concavity/convexity of the following
trace function onMn(C)+:

ϕA
p,q(X) = Tr[expp(A + B∗ logp(X)B)q]. (1)

The trace function given in (1) can be regarded as a generalization of the trace function

X→ Tr exp(A + log X). (2)

The well-known concavity theorem by Lieb [9, Theorem 6] states that the map (2) for a fixed self-adjoint
matrix A, is concave in positive definite matrices. This map is the basis for the proof of strong subadditivity
of the quantum mechanical entropy [10, 15]. On the other hand, Hansen-Liang-Shi [7] and Shi-Hansen
[15] gave some generalizations of Peierls-Bogolyubov’s and Golden-Thompson’s trace inequality in terms
of the so-called deformed exponential and logarithmic functions. In particular, they used these results to
improve previously known lower bounds for the Tsallis relative entropy. More information about trace
functions for deformed exponential and logarithmic functions can be found in [6, 7, 13, 15].

A von Neumann algebraM equipped with a faithful normal finite trace τ serves as the noncommutative
analog of a bounded measurable space endowed with a finite measure. he matrix algebra and the L∞-space
are both two classical examples of von Neumann algebras. Note that the properties of a class of deformed
trace functions are very useful in the theories of statistical mechanics, quantum information theory, and
other fields. Therefore, it is highly significant to take into account the properties of a class of deformed trace
functions on a finite von Neumann algebra.

To begin with, in this paper, we will investigate the geometric properties for a class of trace functions
on finite von Neumann algebras. Some properties for functions related to generalized singular values are
also included. The main theme of the paper is to extend earlier results of Hansen [6] and Shi-Hansen [15]
to the case of finite von Neumann algebras.

This paper is organized as follows: Section 2 introduces the key notions and concepts of this work.
In section 3 we provide some variational representations of trace functions. In Section 3, we adapt the
techniques from [1, 6, 15] to extend earlier results of Hansen [6] and Shi-Hansen [15] to the case of finite
von Neumann algebras.

2. Preliminaries

In this section, we recall some notions of the theory of noncommutative integration. In what follows,
H is a separable Hilbert space over the field C, and B(H) is the ∗-algebra of all bounded linear operators
onH equipped with the uniform norm ∥ · ∥. Additionally, I represents the identity operator onH . LetM
be a ∗-subalgebra of B(H) containing the identity operator I. ThenM is called a von Neumann algebra if
M is weak* operator closed. LetM+ denote the positive part ofM. We recall that a weight onM is a map
τ :M+

→ [0,∞] satisfying

(i) τ(x + y) = τ(x) + τ(y), for all x, y ∈ M+;
(ii) τ(αx) = ατ(x) for all x ∈ M+ and α ∈ [0,∞), with the convention 0 · ∞ = 0.
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The weight τ is called faithful if τ(x∗x) = 0 implies x = 0, normal if xi ↑i x inM+ implies that 0 ≤ τ(xi) ↑i
τ(x), and tracial if τ(x∗x) = τ(xx∗) for all x ∈ M. It is also customary to say trace instead of tracial weight.
A trace τ is called finite if τ(I) < ∞. A von Neumann algebraM is called finite if the family formed of the
finite normal traces separates the points ofM. SinceH is a separable Hilbert space,M is finite if and only
if it admits a faithful normal finite trace. For details on von Neumann algebra theory, the reader is referred
to [14].

2.1. Noncommutative Lp spaces

The self-adjoint part of M, denoted by Msa, is a partially ordered vector space under the ordering
x ≥ 0(resp. x > 0) defined by ⟨xξ, ξ⟩ ≥ 0, ξ ∈ H (resp. ⟨xξ, ξ⟩ > 0, ξ ∈ H). We denote byM++ the collection
of all positive and invertible operators inM. A closed densely defined linear operator x onH with domain
D(x) is said to be affiliated withM if and only if xu = ux for any unitary operator u which belongs to the
commutant ofM. When x is affiliated withM, x is said to be τ-measurable if for every ε > 0 there exists
a projection operator e ∈ M such that e(H) ⊆ D(x) and τ(e⊥) < ε, where e⊥ = 1 − e. The collection of all
measurable operators with respect toM is denoted by L0(M), which is a unital ∗-algebra with respect to
strong sums and products, denoted simply by x + y and xy for all x, y ∈ L0(M). SinceM is finite, the set of
operators which are affiliated withM is equivalent to the set L0(M).

For 0 < p < ∞, a noncommutative Lp space Lp(M) is defined by

[Lp(M) := {x ∈ L0(M); ∥x∥p := [τ(|x|p)]
1
p < ∞}.

It is well known that Lp(M) is a Banach space under ∥ · ∥p when 1 ≤ p < ∞ and it is a quasi-Banach space
when 0 < p < 1. As usual, we set L∞(M) := M equipped with the operator norm. Since M is finite, it
follows thatM ⊆ Lp(M) andM is dense in Lp(M), 0 < p < ∞. We refer readers to the survey papers [3, 14]
for information on non-commutative Lp spaces.

2.2. Generalized singular value function

Let x ∈ L0(M) and t > 0. The generalized singular value function µ·(x) of x is defined by

µt(x) = inf{∥xe∥ : e is a projection inMwith τ(e⊥) ≤ t}.

We denote simply by µ·(x) the function t → µt(x). The generalized singular number function t → µt(x) is
decreasing right-continuous. See [3, 14] for basic properties and detailed information for µt(x).

To enhance the reader’s convenience, we provide a summary of properties for µ(·) without including
their proofs.

Proposition 2.1. ([3]) Let x, y ∈ L0(M).

(i) µ·(|x|) = µ·(x) = µ·(x∗) and µ·(αx) = |α|µ·(x) for α ∈ C.
(ii) Let f be a bounded continuous increasing function on [0,∞) with f (0) = 0. Then µ·( f (x)) = f (µ·(x)) and

τ( f (x)) =
∫ τ(I)

0 f (µt(x))dt.
(iii) If 0 ≤ x ≤ y, then µ·(x) ≤ µ·(y).

In what follows, we will keep all previous notations throughout the paper. Unless stated otherwise,M
will always denote a finite von Neumann algebra acting on a separable Hilbert space H , with a normal
faithful finite tracial state τ.
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3. Variational expressions

An important tool in our investigation is taken from convex analysis. These techniques are used in
engineering, automatic control, signal processing, resourceal location, portfolio theory, and numerous
other fields. We, in particular, use that partial minimisation of a convex function is convex. This technique
was successfully applied by Carlen and Lieb in the investigation of trace functions.

In this section, we investigate the geometric properties for a class of trace functions expressed in terms of
the deformed logarithmic and exponential functions. By employing a proof technique similar to [6, Lemma
1.2] and basic computations, we can establish this useful lemma. Therefore, the proof process will not be
elaborated here.

Lemma 3.1. LetM1 andM2 be two finite von Neumann algebras and let f :M+
1 ×M

+
2 → R be a function of two

variables. For y ∈ M+, we write

1(y) := inf
x∈M+1

f (x, y) and h(y) := sup
x∈M+2

f (x, y).

The following assertions are valid:

(i) If f (x, y) is jointly convex, then 1 is convex;
(ii) If f (x, y) is convex in the second variable, then h is convex;

(iii) If f (x, y) is jointly concave, then h is concave;
(iv) If f (x, y) is concave in the second variable, then 1 is concave.

To arrive at min-max theorems related to generalized singular, it is necessary to first employ the following
lemma.

Proposition 3.2. LetM be a finite von Neumann algebra and x, y ∈ M++. Then∫ s

0
µt(xpy1−p)dt ≤ p

∫ s

0
µt(x)dt + (1 − p)

∫ s

0
µt(y)dt, 0 ≤ p ≤ 1,

and ∫ s

0
µt(xpy1−p)dt ≥ p

∫ s

0
µt(x)dt + (1 − p)

∫ s

0
µt(y)dt, p ≤ 0, p ≥ 1.

Proof. Let 0 ≤ p ≤ 1. From [11, Theorem 2.3], we obtain∫ s

0
µt(xpy1−p)dt ≤

∫ s

0
µt(px + (1 − p)y)dt

≤

∫ s

0
µt(px)dt +

∫ s

0
µt((1 − p)y)dt

≤ p
∫ s

0
µt(x)dt + (1 − p)

∫ s

0
µt(y)dt.

For p ≥ 1, it follows from [11, Theorem 3.6] that∫ s

0
pµt(x) + (1 − p)µt(y)dt ≤

∫ s

0
µt(xpy1−p)dt.

Finally, when p < 0, then 1 − p > 1. Since x > 0, y > 0, µt(xpy1−p) = µt(y1−pxp), so we can obtain

∫ s

0
pµt(x) + (1 − p)µt(y)dt =

∫ s

0
(1 − p)µt(y) + [1 − (1 − p)]µt(x)dt ≤

∫ s

0
µt(xpy1−p)dt. (3)



N. Ma et al. / Filomat 39:17 (2025), 5765–5776 5769

Remark 3.3. From Proposition 3.2, we also get the following conclusion: Let x, y ∈ M++. Then

τ(xpy1−p) ≤ pτ(x) + (1 − p)τ(y), p ∈ [0, 1],

and

τ(xpy1−p) ≥ pτ(x) + (1 − p)τ(y), p ∈ (−∞, 0] or p ∈ [1,∞).

Now, we are ready to showcase the validity of the min-max theorems for positive invertible operators
in finite von Neumann algebras.

Lemma 3.4. For x, y ∈ M++ and s > 0, we have

∫ s

0
µt(y)dt =


sup
x>0

{∫ s

0 µt(x)dt −
∫ s

0 µt(x)dt−
∫ s

0 µt(xp y1−p)dt
1−p

}
, 0 ≤ p < 1 or 1 < p < ∞,

inf
x>0

{∫ s

0 µt(x)dt −
∫ s

0 µt(x)dt−
∫ s

0 µt(xp y1−p)dt
1−p

}
, p ∈ (−∞, 0).

Proof. For x, y ∈ M++, from Proposition 3.2 we have

∫ s

0
µt(y)dt ≥

∫ s

0
µt(x)dt −

∫ s

0 µt(x)dt −
∫ s

0 µt(xpy1−p)dt

1 − p
, 0 ≤ p < 1 or 1 < p < ∞,

and ∫ s

0
µt(y)dt ≤

∫ s

0
µt(x)dt −

∫ s

0 µt(x)dt −
∫ s

0 µt(xpy1−p)dt

1 − p
, p ∈ (−∞, 0).

For x = y, the above inequalities become equalities, and hence

∫ s

0
µt(y)dt =


sup
x>0

{∫ s

0 µt(x)dt −
∫ s

0 µt(x)dt−
∫ s

0 µt(xp y1−p)dt
1−p

}
, 0 ≤ p < 1 or 1 < p < ∞,

inf
x>0

{∫ s

0 µt(x)dt −
∫ s

0 µt(x)dt−
∫ s

0 µt(xp y1−p)dt
1−p

}
, p ∈ (−∞, 0).

Remark 3.5. From Lemma 3.4, we can obtain the following conclusion: For x, y ∈ M++, setting q = 2 − p, we have

τ(y) =


sup
x>0

{
τ(x) − τ

(
x2−q(logq x − logq y)

)}
, q ≤ 2,

inf
x>0

{
τ(x) − τ

(
x2−q(logq x − logq y)

)}
, q > 2.

For q = 1, the assertion reduces to the identity

τ(y) = sup
x>0

{
τ(x) − τ

(
x2−q(logq x − logq y)

)}
,

which entails the inequality

S(x|y) ≥ τ(x − y)

for the relative entropy S(x|y).



N. Ma et al. / Filomat 39:17 (2025), 5765–5776 5770

4. Main results

LetM be a finite von Neumann algebra and

M2(M) =
{[

a11 a12
a21 a22

]
: a11, a12, a21, a22 ∈ M

}
.

Then M2(M) is a von Neumann algebra onH ⊕H with trace tr⊗ τ. For a ∈ L0(M), it is well known that

µt

([
a 0
0 0

])
= µt(a), 0 < t < τ(I). (4)

Definition 4.1. Let b ∈ M, take a ≥ 0, and choose exponents p, s ∈ R. For x ∈ M++, we define functions Υa
p,s(x)

and Υa
p,s;t(x) as

Υa
p,s(x) := τ[(a + b∗xpb)s]

and

Υa
p,s;t(x) :=

∫ t

0
µλ[(a + b∗xpb)s]dλ.

In the matrix case, the trace functions Υp,s(x) were introduced and studied by Carlen and Lieb in [2,
Theorem 1.1]. Here we adopt a generalized and different definition from [6]. More information about trace
functions Υa

p,s(x) can be found in [1, 6].

Remark 4.2. By employing a proof technique similar to [6, Lemma 2.2] and (4), we deduce that Υa
p,s(x) and Υa

p,s;t(x)
are convex (respectively, concave) for arbitrary b ∈ M and a ≥ 0, if and only if they are convex (respectively,
concave) for arbitrary b ∈ M and a = 0. On the other hand, if p, s > 0, we can consider the maps Υa

p,s(x) on
M
+ := {x ∈ M : x ≥ 0}.

To arrive at our main conclusion, it is necessary to first employ the following lemmas. By adopting a proof
method similar to that used in [6, Proposition 3.3] and the properties of operator monotone functions(see
[5, 8]), we can prove the following useful lemma. For the sake of completeness, a full proof is provided
here.

Lemma 4.3. Let 0 ≤ a ∈ M, and let b ∈ M. We may define the operator map

ψa
p,s(x) = (a + b∗xpb)s

inM++ for exponents p and s. If −1 ≤ p ≤ 0 and −1 ≤ s ≤ 0, then x→ ψa
p,s(x) is concave onM++.

Proof. We first consider the case −1 ≤ p ≤ 0 and s = −1. Since

ψa
p,−1(x) = (a + b∗xpb)−1 = a−1/2(I + l∗xpl)−1a−1/2,

where l = ba−1/2, we may assume a = I. We may also without loss generality assume that b is invertible. We
then obtain

(I + b∗xpb)−1 =
(b∗xpb)−1

(b∗xpb)−1 + I
=

b−1x−p(b−1)∗

b−1x−p(b−1)∗ + I

by an elementary calculation. Since the map x → b−1x−p(b−1)∗ is concave and the function t → t(1 + t)−1 is
operator monotone and operator concave, we obtain that x → (I + b∗xpb)−1 is concave. That is, ψa

p,−1(x) is
concave. Since the function t→ tα is both operator monotone and operator concave for 0 ≤ α ≤ 1, it follows
that ψa

p,s(x) is concave for −1 ≤ s ≤ 0.
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Let b be a contraction operator and x ∈ M++. Then we have

b∗ logp(x)b >
−1

p − 1
b∗b ≥

−1
p − 1

for p > 1

and
b∗ logp(x)b <

−1
p − 1

b∗b ≤
−1

p − 1
for p < 1.

Therefore, b∗ logp(x)b belongs to the domain of the p-exponential. This is true even if b is not invertible since
expp(0) = 1. Therefore,

expp(a + b∗ logp(x)b)

is well defined and positive for arbitrary contraction operator b and p , 1, provided a ≥ 0 when p > 1, and
a ≤ 0 when p < 1. In both cases, we define the deformed trace functions and singular valued functions by

ϕa
p,q(x) = τ[expp(a + b∗ logp(x)b)q] (5)

and

ϕa
p,q;s(x) =

∫ s

0
µt[expp(a + b∗ logp(x)b)q]dt (6)

for arbitrary exponent q. It follows from the definitions of expp and logp that

ϕa
p,q(x) = τ([1 − b∗b + (p − 1)a + b∗xp−1b]q/(p−1)) (7)

and

ϕa
p,q;s(x) =

∫ s

0
µt([1 − b∗b + (p − 1)a + b∗xp−1b]q/(p−1))dt. (8)

Note that (p − 1)a ≥ 0 in both cases. By using Remark 4.2, we obtain the following:

Corollary 4.4. Suppose q/(p − 1) > 0. Then

(i) x → ϕa
p,q(x) is convex (respectively concave) if and only if the function x → τ(b∗xp−1b)q/(p−1) is convex

(respectively concave);
(ii) x → ϕa

p,q;s(x) is convex (respectively concave) if and only if the function x →
∫ s

0 µt(b∗xp−1b)q/(p−1)dt is convex
(respectively concave).

Remark 4.5. (i) Let 1 ≤ p ≤ 2. By Lemma 4.1 in [1], we have x→
∫ t

0 µs((b∗xpb)
1
p )ds is convex inM+.

(ii) Let 1 ≤ p ≤ 2 and q ≥ 1. By Theorem 4.1 in [1], we have x→ [τ((bxpb)
q
p )]

1
q is convex inM+.

Lemma 4.6. Let q ∈ R with q/(1 − p) > 0.

(i) If ϕa
p,q(x) is convex (respectively concave) for arbitrary contraction operator b, then so is the function ϕ−a

2−p,q(x).
(ii) If ϕa

p,q;s(x) is convex (respectively concave) for arbitrary contraction operator b, then so is the function ϕ−a
2−p,q;s(x).

Proof. We only prove case (ii). The other result can be similarly obtained. Without loss of generality, we
assume that b is an invertible operator. By using the calculation in (8), we obtain

t−qϕa
p,q,s(tx) =

∫ s

0
µλ[t1−p(1 − b∗b + (p − 1)a) + b∗xp−1b]q/(p−1)dλ (9)

for t > 0. By employing a proof technique of Lemma 3.2 in [6], we can establish this useful lemma. Therefore,
the proof process will not be elaborated here.
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Setting β = 1 + p−1
q , it follows from (7) and the same calculation in [6, Lemma 1.1] that

ϕa
p,q(x) = τ[expβ(qa + qb∗ logp(x)b)].

By replacing q with β in Remark 3.5, we obtain that

ϕa
p,q(x) =


sup
z>0

F(z, x), β ≤ 2,

inf
z>0

F(z, x), β > 2,
(10)

where F(z, x) := τ(z) − τ
(
z2−β(logβ(z) − logβ(y))

)
and y = expβ(qa + qb∗ logp(x)b). Then

F(z, x) = τ(z) − τ
(
z2−β(logβ(z) − logβ(y))

)
= τ(z) − τ

(
z2−β(

zβ−1
− 1

β − 1
− qa − qb∗

xp−1
− 1

p − 1
b
)

= τ(z) −
1

β − 1
τ
(
z − z2−β

− z2−β(p − 1)a − z2−βb∗(xp−1
− 1)b

)
=

(
1 −

1
β − 1

)
τ(z) + G(z, x),

(11)

where q/(p − 1) = 1/(β − 1) and

G(z, x) :=
1

β − 1
τ
(
z2−β(1 − b∗b + (p − 1)a) + z2−βb∗xp−1b

)
. (12)

Remark 4.7. Let b be a contraction operator and a ∈ M++. By applying Remark 3.5, the method from [15, Theorem
2.2] shows that

τ(expq(h∗ logq(a)h)) =


sup
x>0

{
τ(x) − τ(x2−q(logq x − b∗ logq(a)b))

}
, q ≤ 2,

inf
x>0

{
τ(x) − τ(x2−q(logq x − b∗ logq(a)b))

}
, q > 2.

To achieve our main result, we will use that the functions t → tp are operator concave, if and only if
0 ≤ p ≤ 1, and operator convex, if and only if −1 ≤ p ≤ 0 or 1 ≤ p ≤ 2. More information about operator
concave/convex functions can be found in [8] and references therein. We also make use of Lieb’s concavity
theorem for operators (see [1, Lemma 3.1(vi)]) stating that the trace functions

(z, x)→ τ(zpb∗xqb) (13)

are concave if p, q ≥ 0 and p + q ≤ 1. Ando’s theorem for operators (see [1, Lemma 3.1(v)] and [12, Theorem
5]) states that the trace function in (13) for arbitrary operator b, is convex for either −1 ≤ p, q ≤ 0, or for
−1 ≤ p ≤ 0 and 1 − p ≤ q ≤ 2, where obviously p and q may be interchanged in the condition.

According to [1, Lemma 3.1] and Lemma 4.3, we can generalize the inequalities in [6, Theorem 4.1] for
operators, as presented below.

Theorem 4.8. The function x → ϕa
p,q(x) has the following geometric properties depending on a and the parameters

p and q. Then

(i) ϕa
p,q(x) is concave inM++ for

0 ≤ p ≤ 1, a ≤ 0, 0 ≤ q ≤ 1

and

1 ≤ p ≤ 2, a ≥ 0, 0 ≤ q ≤ 1.



N. Ma et al. / Filomat 39:17 (2025), 5765–5776 5773

(ii) ϕa
p,q(x) is convex inM++ for

0 ≤ p ≤ 1, a ≤ 0, q ≤ 0,

1 ≤ p ≤ 2, a ≥ 0, q ≤ 0,

and

2 ≤ p ≤ 3, a ≥ 0, q ≥ 1.

Proof. The proof is analogous to the matrix case (see [6, Theorem 4.1]). However, for the sake of complete-
ness, we will provide a separate proof here. Here we only prove case (i); for case (ii), the proof is the same as
in the matrix case, by using [1, Lemma 3.1] and [12, Theorem 5]) and properties of operator concave/convex
functions.

The proof of (i) is derived from the two cases in the statement.
(1) Let 0 ≤ p < 1, a ≤ 0, and 1 − p ≤ q ≤ 1. Then

0 ≤ β = 1 + (p − 1)/q ≤ p < 1.

It follows from Equation (10)(see also Remark 3.5) that ϕa
p,q(x) = sup

z>0
F(z, x). Therefore, by Lemma 3.1, to

derive that ϕa
p,q(x) is concave, it suffices to show that G(z, x) is jointly concave or G(z, x) is concave in the

second variable. Recall that −1 ≤ p − 1 ≤ 0 and 1 − (p − 1) ≤ 2 − β ≤ 2. Then the result follows from [1,
Lemma 3.1(v)].

On the other hand, let 0 ≤ p < 1, a ≤ 0, and 0 ≤ q ≤ 1 − p, that is −1 ≤ s ≤ 0, where s = q/(p − 1). Then
the result follows from Lemma 4.3.

(2) Let 1 < p ≤ 2, a ≥ 0, and 0 < q ≤ p − 1. Then

β = 1 + (p − 1)/q ≥ 2.

By Equation (10), we have ϕa
p,q(x) = inf

z>0
F(z, x). Let 1 < p ≤ 2, a ≥ 0, and p − 1 ≤ q ≤ 1. Then

1 < p ≤ β = 1 + (p − 1)/q ≤ 2.

Thus, Equation (10) implies that ϕa
p,q(x) = sup

z>0
F(z, x). Therefore, it suffices to show that G(z, x) is jointly

concave or G(z, x) is concave in the second variable. Then the result follows from properties of operator
concave functions and [1, Lemma 3.1].

Corollary 4.9. Let b be a contraction operator and consider the map

φ(x) = τ(expq(b∗ logq(x)b))

defined inM++. The following assertions are valid:

(i). x→ φ(x) is concave for 0 ≤ q ≤ 2;

(ii). x→ φ(x) is convex for 2 < q ≤ 3.

Proof. We use the method in the proof of [15, Corollary 2.3], by using [1, Lemma 3.1] and [12, Theorem 5]),
to obtain the desired result.

Similarly, by [1, Lemma 3.1] and [12, Theorem 5]), and Remark 4.7, the same method used in the matrix
case (see [15]) shows that the following two results hold.
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Corollary 4.10. Let b be a contraction operator, and let a be a self-adjoint operator. The map

x→ τ(expq(a + b∗ logq(x)b)),

defined inM++, is concave for 1 < q ≤ 2 and convex for 2 < q ≤ 3. The map

x→ τ(expq(−a + b∗ logq(x)b)),

defined inM++, is concave for 0 ≤ q < 1.

Letting q→ 1 in Corollary 4.10, we can get:

Corollary 4.11. Let b be a contraction operator, and let a be a self-adjoint operator. The map

x→ τ(exp(a + b∗ log(x)b))

is concave inM++.

Proposition 4.12. Let b be a contraction operator.

(i) If 1 < q ≤ 2, then for x ∈ M++ and a self-adjoint operator a such that

a + b∗ logq(x)b > −
1

q − 1
,

we have the equality

τ(expq(a + b∗ logq(x)b))

=max
z>0

{
τ(z) + τ(z2−qa) − τ(z2−q(logq z − b∗ logq(x)b))

}
.

(ii) If q > 2, then for x ∈ M++ and a self-adjoint operator a such that

a + b∗ logq(x)b > −
1

q − 1
,

we have the equality

τ(expq(a + b∗ logq(x)b))

=min
z>0

{
τ(z) + τ(z2−qa) − τ(z2−q(logq z − b∗ logq(x)b))

}
.

(iii) If q < 1, then for x ∈ M++ and a self-adjoint operator a such that

a + b∗ logq(x)b < −
1

q − 1
,

we have the equality

τ(expq(a + b∗ logq(x)b))

=max
z>0

{
τ(z) + τ(z2−qa) − τ(z2−q(logq z − b∗ logq(x)b))

}
.

Proof. Under the assumptions of (i),(ii) and (iii), the expression expq(a + b∗ logq(x)b) is well defined and
positive. By setting y = expq(a + b∗ logq(x)b) in Remark 3.5 (see also Remark 4.7), we obtain (i),(ii) and
(iii).
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The following proposition was shown in a more general setting in [15, Proposition 2.8] for the matrix
case. The whole proof of [15, Proposition 2.8] works for operator case, hence, the following proposition
follows from Remark 3.5 and Lemma 3.1.

Proposition 4.13. Let b be a contraction operator, and let a be a self-adjoint operator. The map

x→ τ(expq(a + b∗ logr(x)b))

is convex inM+ for q, r ∈ [2, 3] with r ≥ q.

The convexity or concavity of certain trace functions for the deformed logarithmic and exponential
functions has been widely used in Tsallis relative entropy (see Section 3 and Section 4 in [15] for matrix
case). We won’t go into details here.

Finally, we will show the relationship between ϕa
p,q(x) and the generalized trace functions Υa

p,s(x).

Corollary 4.14. Let 0 ≤ a, x ∈ M and b ∈ M. Then

(i) Υa
p,s is concave inM++ for

−1 ≤ p ≤ 0, p−1
≤ s ≤ 0

and

0 ≤ p ≤ 1, 0 ≤ s ≤ p−1.

(ii) Υa
p,s is convex inM++ for

−1 ≤ p ≤ 0, s ≥ 0,

0 ≤ p ≤ 1, s ≤ 0,

and

1 ≤ p ≤ 2, s ≥ p−1.

Proof. For given a ≥ 0, we set L = (p − 1)−1a. Then, L ≤ 0 for p < 1 and L ≥ 0 for p > 1. By replacing a with
tp−1L in Equation 9, we obtain

t−qϕtp−1L
p,q (tx) = τ((t1−p(1 − b∗b) + (p − 1)L + b∗xp−1b)

q
p−1 )

=

∫ τ(I)

0
[µλ(t1−p(1 − b∗b) + (p − 1)L + b∗xp−1b)]

q
p−1 dλ

and s = q
p−1 . Let T := (p − 1)L + b∗xp−1b and

Tt := t1−p(1 − b∗b) + (p − 1)L + b∗xp−1b.

If s > 0, then

∥Tt − T∥Ls(M) = (
∫ τ(I)

0
[µλ(Tt − T)]sdλ)

1
s

= (
∫ τ(I)

0
[µλ(t1−p(1 − b∗b))]sdλ)

1
s

≤ t1−p
∥1 − b∗b∥s.
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It follows from [3, Theorem 3.7] that ∥Tt∥Ls(M) → ∥T∥Ls(M), that is

τ((t1−p(1 − b∗b) + (p − 1)L + b∗xp−1b)
q

p−1 )→ τ((a + b∗xp−1b)
q

p−1 ),

by letting t→ 0 in the case p < 1, and letting t→∞ in the case p > 1.
If s < 0, then 0 ≤ T−1

t ≤ T−1. From [4, Lemma 3.6] and [3, Lemma 3.4], we have µλ(T−1
t ) ↑ µλ(T−1) as

t→ 0 in the case p < 1, and t→∞ in the case p > 1. Thus, monotone convergence theorem shows that∫ τ(I)

0
µλ(T−1

t )−sdλ ↑
∫ τ(I)

0
µλ(T−1)−sdλ

as t→ 0 in the case p < 1, and t→∞ in the case p > 1. That is

∥T−1
t ∥L−s(M) ↑ ∥T−1

∥L−s(M).

Therefore,
τ((t1−p(1 − b∗b) + (p − 1)L + b∗xp−1b)

q
p−1 )→ τ((a + b∗xp−1b)

q
p−1 ).

With these choices, we realize that Υa
p−1,s(x) has the same geometric properties as ϕa

p,q(x). We may now

replace p with p+ 1 and obtain that Υa
p,s(x) has the same geometric properties as ϕa

p+1,q(x), where s = q
p . Then

the result follows from Theorem 4.8.
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