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Abstract. The total irregularity of a graph G is defined as the sum of the absolute values of the differences
of vertex degrees over all unordered pairs of vertices of G. In the present paper, the problem of determining
graphs attaining the first two smallest values of the total irregularity index among all fixed-order tetracyclic
graphs is addressed, where an n-order tetracyclic graph is a connected graph with n vertices and n + 3
edges.

1. Introduction

Consider a graph G = (V,E), where V represents the set of vertices and E represents the set of edges. The
degree of a vertex v in G is denoted by dG(v). Let V = {v1, v2, . . . , vn} and take di = dG(vi) for i = 1, 2, . . . ,n,
provided that d1 ≥ d2 ≥ · · · ≥ dn. Throughout this paper, we write the degree sequence of a graph in
nonincreasing order; that is, we write the degree sequence of G as (d1, d2, . . . , dn). The graph-theoretical
terms that we use in this paper without providing their definitions can be found in some standard books
on graph theory, for example [7].

A graph in which all vertices have the same degree is known as a regular graph. A nonregular graph
is a graph that is not regular. In the literature, there exist many graph invariants for measuring the
nonregularity of graphs. Such graph invariants are often called irregularity measures. One of the much-
studied irregularity measures is due to Albertson [4]. For a given graph G, Albertson’s irregularity measure
is defined [4] as

irr(G) =
∑
uv∈E

|dG(u) − dG(v)|.

In [4], it was shown that the star graph maximizes among all fixed-order trees. Results on irr using
the computer software, namely AutoGraphiX, can be found in [12]. The problem of determining graphs
maximizing irr among all fixed-order graphs was addressed in [2]. For some other existing results on irr,
we refer the reader to [10, 13].

2020 Mathematics Subject Classification. Primary 05C07; Secondary 05C09.
Keywords. irregularity; tetracyclic graphs; topological index; total irregularity.
Received: 27 September 2024; Revised: 19 December 2024; Accepted: 06 April 2025
Communicated by Paola Bonacini
* Corresponding author: Akbar Ali
Email addresses: hassanms5664@gmail.com (Hassan Ahmed), akhlaq.ahmad@nu.edu.pk (Akhlaq Ahmad Bhatti),

shumaila.yousaf@uog.edu.pk (Shamaila Yousuf), akbarali.maths@gmail.com (Akbar Ali)
ORCID iD: https://orcid.org/0000-0001-8160-4196 (Akbar Ali)



H. Ahmed et al. / Filomat 39:17 (2025), 6011–6018 6012

In order to overcome some of the limitations of Albertson’s irregularity, Abdo et al. [1] introduced its
following modified version for any nontrivial graph G:

irrt(G) =
∑
{u,v}⊆V

|dG(u) − dG(v)|.

The aforementioned limitations of irr include the following: If H1 and H2 are two graphs with the same
order as well as the same degree sequence, then Albertson’s irregularity measure of H1 and H2 may have
different values; however, they have the same irrt. Also, the number of distinct elements of the degree
sequence of every graph maximizing irr among all fixed-order graphs is 2 (which should be the largest
possible), see [2]; however, for the case of irrt, this number is considerably large. Finally, for a disconnected
nonregular graph H, it is possible that irr(H) = 0; however, irrt(H) = 0 if and only if H is regular. For details
on these limitations of irr and benefits of irrt, see [1].

Dimitrov and Škrekovski [8] established inequalities between irr and irrt. Most of the existing extremal
results and bounds related to irrt can be found in the recent survey paper [5].

A graph of order n is called an n-order graph. A connected n-order graph of size n + c − 1 is known
as a c-cyclic graph, where c is a nonnegative integer. If c = 0, 1, 2, 3 or 4, then the corresponding c-cyclic
graph is called a tree, unicyclic graph, bicyclic graph, tricyclic graph or tetracyclic graph, respectively. The
problems of determining graphs attaining the first three smallest values of irrt among all fixed-order (i)
trees, (ii) unicyclic graphs and (iii) bicyclic graphs, were attacked in [17]; similar problems were addressed
in [3] and [11] for tricyclic graphs and c-cyclic graphs, respectively.

In this paper, we examine the characterization of graphs that attain the two smallest values of irrt among
all fixed-order tetracyclic graphs. Additionally, we address an error in [11]. Let n, k, and c be three positive
integers such that n > 2c2

− 3c + 2 and c ≥ 2. In Theorem 2.15 of [11], it was established that if 1 ≤ k ≤ c,
then among all n-order c-cyclic graphs of maximum degree at most 4, the graphs with the following degree
sequence have the kth minimum value of irrt:

( 4, . . . , 4︸  ︷︷  ︸
k−1

, 3, . . . , 3︸  ︷︷  ︸
2(k+c−2)

, 2, . . . , 2︸  ︷︷  ︸
n−(3k+2c−5)

). (1)

Furthermore, Theorem 2.16 of [11] indicates that if 1 ≤ k ≤ 3 and c ≥ 3, then among all n-order c-cyclic
graphs, the graphs with the above degree sequence (given in (1)) also achieve the kth minimum value of
irrt.

Now, consider an n-order c-cyclic graph G of maximum degree at most 4 and minimum degree 2. For
i ∈ {1, . . . ,n−1}, let ni(G) represent the number of vertices of degree i in G. If n4(G) = k−1, then the equations

4∑
i=2

ni(G) = n and
4∑

i=1

i · ni(G) = 2(n + c − 1),

yield n3(G) = 2(c − k) and n2(G) = n − 2c + k + 1. This indicates some errors in the degree sequence of
(1). Specifically, in Theorems 2.15 and 2.16 of [11], the degree sequence in (1) has to be replaced with the
following:

( 4, . . . , 4︸  ︷︷  ︸
k−1

, 3, . . . , 3︸  ︷︷  ︸
2(c−k)

, 2, . . . , 2︸  ︷︷  ︸
n−2c+k+1

).

This correction serves as the primary motivation for the present study. Additionally, the formulation of
Theorem 2.16 in [11] for n-vertex tetracyclic graphs under the constraint n ≥ 23 further motivates this
research.

2. Results

For a given graph G(V,E), we use V(G) := V and E(G) := E. Let NG(v) := {w ∈ V(G) : wv ∈ E(G)} and
NG[v] := NG(v) ∪ {v}. We start this section with the following lemma, whose special case (Lemma 2.2) is
used frequently in the rest of the paper.
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Lemma 2.1. Let G be a graph of minimum degree δ and maximum degree ∆ such that ∆− δ ≥ 2. Let x′, x, y ∈ V(G)
be three different vertices such that dG(x) = ∆, dG(y) = δ and x′ ∈ NG(x) \NG(y). Let G′ be the graph obtained from
G by removing the edge x′x and adding the edge x′y. Then,

irrt(G) − irrt(G′) = 2|V(G) \ ({x, y} ∪ V∆ ∪ Vδ)| + 2,

where V∆ = {a ∈ V(G) \ {x} : dG(a) = ∆} and Vδ = {b ∈ V(G) \ {y} : dG(b) = δ}.

Proof. We note that dG′ (x) = dG(x) − 1, dG′ (y) = dG(y) + 1 and dG′ (v) = dG(v) for every v ∈ V(G) \ {x, y}. Since
∆ − δ ≥ 2, we have

|dG(x) − dG(y)| − |dG′ (x) − dG′ (y)| = 2

and hence

irrt(G) − irrt(G′) =
∑

v∈V(G)\{x,y}

(
∆ − dG(v) − |dG′ (x) − dG(v)|

)
+

∑
v∈V(G)\{x,y}

(
dG(v) − δ − |dG(v) − dG′ (y)|

)
+ 2

=
∑

v∈V(G)\{x,y}

(
∆ − δ − |dG′ (x) − dG(v)| − |dG(v) − dG′ (y)|

)
+ 2 (2)

For every v ∈ V∆ ∪ Vδ, it holds that

∆ − δ − |dG′ (x) − dG(v)| − |dG(v) − dG′ (y)| = 0,

and hence (2) yields

irrt(G) − irrt(G′) =
∑

v∈V(G)\({x,y}∪V∆∪Vδ)

(
∆ − δ − (∆ − dG(v) − 1) − (dG(v) − δ − 1)

)
+ 2

= 2|V(G) \ ({x, y} ∪ V∆ ∪ Vδ)| + 2

The next result is a special case of Lemma 2.1, where both the considered graphs are assumed to be
connected.

Lemma 2.2. Let G be a connected graph of minimum degree δ and maximum degree ∆ such that ∆ − δ ≥ 2. Let
x, y ∈ V(G) such that dG(x) = ∆ and dG(y) = δ. Pick x′ ∈ NG(x) \NG[y] such that the graph G′ obtained from G by
removing the edge x′x and adding the edge x′y is connected. Then,

irrt(G) − irrt(G′) = 2(|V(G)| − n∆(G) − nδ(G) + 1).

Remark 2.3. In Lemma 2.2, if there are at least two paths between x and y in G then certainly G′ is connected for
every choice of x′ ∈ NG(x) \NG[y]. If x and y are connected via exactly one path, then by condition ∆− δ ≥ 2 we can
pick x′ in such a way that it does not lie on the path connecting x and y. Therefore, in Lemma 2.2, we can always pick
x′ in such a way that G′ is connected.

Lemma 2.4. If G is an n-order tetracyclic graph of minimum degree δ such that n ≥ 7, then δ ≤ 2.

Proof. If δ ≥ 3 then by the degree-sum formula, we have 3n ≤ 2(n + 3), a contradiction.

Theorem 2.5. Let G1 be the graph minimizing irrt among all n-order tetracyclic graphs for n ≥ 7. Then, the degree
sequence of G1 is (3, 3, 3, 3, 3, 3, 2, 2, . . . , 2) and irrt(G1) = 6(n−6); particularly, the minimum and maximum degrees
of G1 are 2 and 3, respectively.

Proof. If the difference between the maximum degree and minimum degree of G1 is at least 2, then by
Lemma 2.2 there exists n-order tetracyclic graph G′ such that irrt(G1) − irrt(G′) ≥ 2, which contradicts the
minimality of irrt(G1). Hence, the difference between the maximum degree and minimum degree of G1 is
at most 1. Since n ≥ 7, the minimum degree of G1 is at most 2. Consequently, the minimum and maximum
degrees of G1 are 2 and 3, respectively. Then, n2(G1) + n3(G1) = n and 2n2(G1) + 3n3(G1) = 2(n + 3), which
yield the desired degree sequence and hence irrt(G1) = 6(n − 6).
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Figure 1: The graphs minimizing irrt among all 7-order tetracyclic graphs.

Using Theorem 2.5, we obtain all graphs that minimize irrt among all 7-order tetracyclic graphs (see
Figure 1).

Next, we focus on the second-minimum value of irrt among all n-order tetracyclic graphs.

Lemma 2.6. Let G2 be the graph attaining the second-minimum value of irrt among all n-order tetracyclic graphs
for n ≥ 7. Then, the maximum degree of G2 is at most 4.

Proof. Since n ≥ 7, by Lemma 2.4 the minimum degree of G2 is at most 2. If the maximum degree of G2 is at
least 5, then the difference between the maximum degree and minimum degree of G2 is at least 3 and hence
by applying the transformation of Lemma 2.2 a finite number of times, we obtain an n-order tetracyclic
graph G′2 of maximum degree 4 such that irrt(G2) > irrt(G′2) > irrt(G1) = 6(n− 6), which is a contradiction to
the fact that G2 has the second-minimum value of irrt among all n-order tetracyclic graphs for n ≥ 7, where
G1 is defined in Theorem 2.5.

Lemma 2.7. Let G be an n-order tetracyclic graph of maximum degree 4 and minimum degree 1 such that n ≥ 7.
Then, G attains neither the minimum value of irrt nor the second-minimum value of irrt among all n-order tetracyclic
graphs for n ≥ 7.

Proof. If n1(G) > n4(G) then by Lemmas 2.2 and 2.4, there exists an n-order tetracyclic graph G′ of maximum
degree 3 and minimum degree 1 such that irrt(G) > irrt(G′) > irrt(G1) = 6(n − 6), where G1 is given in
Theorem 2.5.

If n1(G) < n4(G) then again by Lemmas 2.2 and 2.4, there exists an n-order tetracyclic graph G′′ of
maximum degree 4 and minimum degree 2 such that irrt(G) > irrt(G′′) > irrt(G1) = 6(n − 6).

In what follows, we assume that n1(G) = n4(G). Solving the equations

2n1(G) + n2(G) + n3(G) = n and 5n1(G) + 2n2(G) + 3n3(G) = 2(n + 3)

for n2(G) and n3(G) and replacing these values in

irrt(G) = 3n1(G)n2(G) + 3n1(G)n3(G) + 3(n1(G))2 + n2(G)n3(G),

we obtain

irrt(G) = n(n − 6) + 2[n − n1(G)]n1(G) > irrt(G1) = 6(n − 6),

provided that n ≥ 7.

Lemma 2.8. Let G be an n-order tetracyclic graph of maximum degree 4 and minimum degree 2 such that n ≥ 7
and n4(G) ≥ 2. Then, G attains neither the minimum value of irrt nor the second-minimum value of irrt among all
n-order tetracyclic graphs for n ≥ 7.

Proof. Since n4(G) ≥ 2, by Lemmas 2.2 and 2.4, there exists an n-order tetracyclic graph G′ of maximum
degree 4 and minimum degree 2 such that irrt(G) > irrt(G′) > irrt(G1) = 6(n − 6), where G1 is given in
Theorem 2.5.
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Lemma 2.9. Let G be an n-order tetracyclic graph of maximum degree 3 and minimum degree 1 such that n ≥ 7
and n1(G) ≥ 2. Then, G attains neither the minimum value of irrt nor the second-minimum value of irrt among all
n-order tetracyclic graphs for n ≥ 7.

Proof. Since n1(G) ≥ 2, by Lemma 2.2, there exists an n-order tetracyclic graph G′ of maximum degree 3 and
minimum degree 1 such that irrt(G) > irrt(G′) > irrt(G1) = 6(n − 6), where G1 is given in Theorem 2.5.

Theorem 2.10. Let G2 be a graph attaining the second-minimum value of irrt among all n-order tetracyclic graphs
for n ≥ 7. Let

D1 = (4, 3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−5

) and D2 = (3, 3, 3, 3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−8

, 1).

If either n = 7 or n ≥ 13, then the degree sequence of G2 is D1. If 8 ≤ n ≤ 11, then the degree sequence of G2 is D2.
For n = 12, the degree sequence of G2 is either of the sequences D1 and D2. Also, irrt(G2) = 2(3n − 13) when either
n = 7 or n ≥ 13, and irrt(G2) = 2(4n − 25) when 8 ≤ n ≤ 12.

Proof. By Lemma 2.6, the maximum degree of G2 is at most 4.

Case 1. The maximum degree of G2 is 4.
By Lemmas 2.4 and 2.7, the minimum degree of G2 is 2. By Lemma 2.8, n4(G2) ≤ 1. However, the choice
n4(G2) = 0 yields a graph with the degree sequence

(3, 3, 3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−6

),

which corresponds to the first minimum value of irrt. Hence, n4(G2) = 1. Consequently, from the equations

n2(G2) + n3(G2) + 1 = n

and

2n2(G2) + 3n3(G2) + 4 = 2(n + 3),

we obtain n2(G2) = n − 5 and n3(G2) = 4. Therefore, irr(G2) = 2(3n − 13).

Case 2. The maximum degree of G2 is 3.
The possibility n1(G2) = 0 yields a graph with the degree sequence

(3, 3, 3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−6

),

which corresponds to the first minimum value of irrt. Hence, n1(G2) ≥ 1. Now, by Lemma 2.9, we have
n1(G2) = 1. Consequently, from the equations

1 + n2(G2) + n3(G2) = n

and

1 + 2n2(G2) + 3n3(G2) = 2(n + 3),

we obtain n2(G2) = n − 8 and n3(G2) = 7. Hence, in the present case, we must have n ≥ 8. Also,
irr(G2) = 2(4n − 25), in the present case.

Now, in the following, we compare irrt(G2) obtained in both cases:

2(3n − 13) > 2(4n − 25) for 8 ≤ n ≤ 11

2(3n − 13) = 2(4n − 25) for n = 12
and

2(3n − 13) < 2(4n − 25) for n ≥ 13.
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3. Concluding Remarks

In this section, we present two results about the graphs attaining extreme values of irrt among all fixed-
order c-cyclic graphs for 0 ≤ k ≤ 6. Both of these results follow from the existing studies; however, to the
best of authors’ knowledge, neither of these results has been derived earlier in this way, but their parts have
been proved in several different publications.

Keeping in mind Lemma 1 and Corollary 2 of [9], the discussion of Section 4 and the initial part of
Section 5 in [6], we obtain the degree sequences of graphs attaining the extreme values of irrt among all
fixed-order k-cylic graphs for 0 ≤ k ≤ 6. In the case of the maximum value of irrt for c = 4, we have to
compare irrt of the graphs J1 and J2 with the following degree sequences, respectively:

(n − 1, 4, 3, 3, 2, 1, . . . , 1︸  ︷︷  ︸
n−5

) and (n − 1, 5, 2, 2, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−6

),

where n ≥ 6. However, irrt(J1) = n(n + 5) − 40 > n(n + 5) − 42 = irrt(J2). Also, note that for c = 5, we have to
compare irrt of the graphs L1, L2 and L3 with the following degree sequences, respectively:

(n − 1, 4, 4, 3, 3, 1, . . . , 1︸  ︷︷  ︸
n−5

), (n − 1, 5, 3, 3, 2, 2 1, . . . , 1︸  ︷︷  ︸
n−6

) and (n − 1, 6, 2, 2, 2, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−7

),

where n ≥ 7. However, irrt(L1) = irrt(L2) = n(n+ 7)− 54 > n(n+ 7)− 58 = irrt(L3). Finally, for c = 6, we have
to compare irrt of the graphs O1, O2, O3, O4 and O5 with the following degree sequences, respectively:

(n − 1, 5, 4, 3, 3, 2, 1, . . . , 1︸  ︷︷  ︸
n−6

), (n − 1, 7, 2, . . . , 2︸  ︷︷  ︸
6

, 1, . . . , 1︸  ︷︷  ︸
n−8

), (n − 1, 6, 3, 3, 2, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−7

),

(n − 1, 5, 3, 3, 3, 3, 1, . . . , 1︸  ︷︷  ︸
n−6

) and (n − 1, 4, 4, 4, 4, 1, . . . , 1︸  ︷︷  ︸
n−5

),

where n ≥ 8. However,

irrt(O1) = n(n+9)−68 > irrt(O3) = irrt(O5) = n(n+9)−70 > n(n+9)−74 = irrt(O4) > n(n+9)−76 = irrt(O2).

Therefore, we have the following result:

Theorem 3.1. Among all n-order c-cyclic graphs, the graph maximizing irrt has the degree sequence

(i) (n − 1, 1, . . . , 1︸  ︷︷  ︸
n−1

) for c = 0 and n ≥ 4,

(ii) (n − 1, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−3

) for c = 1 and n ≥ 4,

(iii) (n − 1, 3, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−4

) for c = 2 and n ≥ 5,

(iv) either (n − 1, 4, 2, 2, 2, 1, . . . , 1︸  ︷︷  ︸
n−5

) or (n − 1, 3, 3, 3, 1, . . . , 1︸  ︷︷  ︸
n−4

) for c = 3 and n ≥ 5,

(v) (n − 1, 4, 3, 3, 2, 1, . . . , 1︸  ︷︷  ︸
n−5

) for c = 4 and n ≥ 6,

(vi) either (n − 1, 4, 4, 3, 3, 1, . . . , 1︸  ︷︷  ︸
n−5

) or (n − 1, 5, 3, 3, 2, 2 1, . . . , 1︸  ︷︷  ︸
n−6

) for c = 5 and n ≥ 7,
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(vii) (n − 1, 5, 4, 3, 3, 2, 1, . . . , 1︸  ︷︷  ︸
n−6

) for c = 6 and n ≥ 8.

Theorem 3.1(i), Theorem 3.1(ii), Theorem 3.1(iii) and Theorem 3.1(iv)–(vii) were proved independently
in [1], [14], [15] and [16], respectively.

Next, we have the minimal version of Theorem 3.1, which also follows from the general results of [6].

Theorem 3.2. Among all n-order c-cyclic graphs, the graph minimizing irrt has the degree sequence

(i) ( 2, . . . , 2︸  ︷︷  ︸
n−2

, 1, 1) for c = 0 and n ≥ 4,

(ii) ( 2, . . . , 2︸  ︷︷  ︸
n

) for c = 1 and n ≥ 4,

(iii) (3, 3, 2, . . . , 2︸  ︷︷  ︸
n−2

) for c = 2 and n ≥ 5,

(iv) (3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−4

) for c = 3 and n ≥ 5,

(v) (3, 3, 3, 3, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−6

) for c = 4 and n ≥ 6,

(vi) ( 3, . . . , 3︸  ︷︷  ︸
8

, 2, . . . , 2︸  ︷︷  ︸
n−8

) for c = 5 and n ≥ 8,

(vi) ( 3, . . . , 3︸  ︷︷  ︸
10

, 2, . . . , 2︸  ︷︷  ︸
n−10

) for c = 6 and n ≥ 10.

Theorem 3.2(i)–(iii) and Theorem 3.2(iv) were proved independently in [17] and [3], respectively. All
parts of Theorem 3.2 for sufficiently large n also follow from a general result (that is, Theorem 2.16) reported
in [11].
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