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The rough topology for numerical data

Ugur Yigit?

*Department of Mathematics, Istanbul Medeniyet University, 34700 Istanbul, Tiirkiye

Abstract. In this paper, we generalize the rough topology and the core to numerical data by classifying
objects in terms of the attribute values. A new approach to finding the core for numerical data is discussed.
A measurement criterion is introduced to determine whether an attribute belongs to the core. This new
method for finding the core is used for attribute reduction. It is tested and compared by using eight different
machine-learning algorithms. Also, it is discussed how this material is used to rank the importance of

attributes in data classification. Finally, the algorithms and codes for data conversion and core determination
are provided.

1. Introduction

Pawlak’s rough set theory [14] handles the approximation of sets in terms of equivalence (indiscerni-
bility) relations. The primary application of this theory is data analysis and decision-making processes. In
Pawlak’s work [15], the indiscernibility relations arise when one considers a given set of attributes. Two
objects are equivalent if their values of all attributes in the data are the same. Thivagar et al.[20] introduce
rough topology by means of rough sets and apply it to analyze real-life problems. They find the key
attributes of some diseases to decide whether a patient has a disease or not.

Several generalizations of rough set theory have been proposed to extend its applicability. These gener-
alizations are the following. Covering-based rough sets define approximations using coverings of the uni-
verse, as opposed to Pawlak’s rough sets, which are based on equivalence relations. This method has been
used in fields including data reduction and feature selection and offers greater flexibility when managing
complicated data structures [22]. By introducing near concepts, the Generalized Covering Approximation
Space model broadens the scope of rough set theory and enables more comprehensive classifications [1].
p-Basic Rough Sets present the idea of f-approximations, which modify the approximation boundaries
according to a parameter f3, enabling a more adaptable handling of uncertainty. This method has been used
in medical diagnosis, where various levels of uncertainty are taken into account [7].

Rough set theory has found significant applications in the fields of medicine and decision-making. The
theory has been applied to diagnosing heart failure, dengue fever, and other diseases using generalized
rough sets [8], [3], [4]. To manage patient data uncertainty, rough sets have been utilized extensively in
medical diagnosis. For instance, by offering more flexible approximations, f-basic rough sets have been
used to increase the precision of medical diagnosis [7]. Similarly, by capturing the underlying structure of

2020 Mathematics Subject Classification. Primary 54A05, 54H30; Secondary 68T37, 68Q87.
Keywords. Rough Sets, rough topology, core for numerical data, machine learning
Received: 23 September 2024; Accepted: 06 April 2025

Communicated by Biljana Popovié¢

Email address: ugur.yigit@medeniyet.edu.tr (Ugur Yigit)

ORCID iD: https://orcid.org/0000-0002-6173-5727 (Ugur Yigit)



U. Yigit / Filomat 39:17 (2025), 6019—-6033 6020

patient records, rough topology has been utilized to improve medical data analysis [1]. Rough sets are also
very useful in reducing data, aiming to simplify data while maintaining its key characteristics. To improve
the analysis of rheumatic fever data, for example, tritopological approximation spaces have been utilized
to reduce the dataset’s dimensionality while preserving critical information [13].

The significance of precise data analysis in handling public health emergencies has been brought to light
by the COVID-19 pandemic. COVID-19 variations have been analyzed using rough sets, which have shed
light on the impact and dissemination of many variants. In this situation, the use of virtually initial-rough
sets has been especially successful, providing a strong foundation for managing the uncertainty present in
pandemic data [5].

Rough sets have also been applied to decision-making processes in healthcare, especially in diagnosing
heart failure problems. By providing a systematic approach to handling uncertainty, rough sets enable more
accurate and reliable decision-making, which improves patient outcomes [3]. Furthermore, using initial
neighborhoods and ideals to increase diagnostic accuracy, the use of generalized rough sets in dengue fever
diagnosis has demonstrated encouraging outcomes [8].

Several applications of the theory deal with the Boolean type of data in which attributes usually take
values yes and no; or 0 and 1. A contribution of this work is to give a generalization of the rough topology
and the core to numerical data by reducing data to a usable form by using the standard deviation of
attributes. Also, this method provides a new model for attribute reduction for large-scale data processing.
The main objective of this study is to use machine learning techniques, rough sets, and topology to create
better models for handling uncertain data and to demonstrate how this theory can be used to create a better
feature selection method.

2. Preliminaries

Let U be a non-empty set of objects called the universe. A relation R on U is a subset of the cartesian
product U x U. An element (q,b) € R is generally written as aRb. A relation on U is called reflexive if aRa
for all a € U. It is called symmetric if aRb implies bRa for all a,b € U. It is called transitive if aRb and bRc
then aRc for all a,b,c € U. If R is reflexive, symmetric, and transitive, then R is said to be an equivalence
relation on U.

Let R be an equivalence relation on a set U, and let x € U. The set of all elements in U that is related to
x is called the equivalence class of x under R and is denoted by [x]z. That is, [x]g = {y € U[xRy}. The set
of all equivalence classes U/R of R in U gives a partition of U, which means that all equivalence classes are
disjoint, and the union of them is U.

Definition 2.1. [15] Let U be a non-empty finite set and R be an equivalence relation on U. An approximation space
is a pair (U, R). Let X be a subset of L.

(i) The lower approximation of X with respect to R is
Ry (X) = Uxeu{xl[x]r € X}.
(ii) The upper approximation of X with respect to R is
R*(X) = Ureulxllx]r N X # 0}.
(iii) The boundary region of X with respect to R is
Br(X) = R*(X) = Ru(X).

The set X is called a rough set with respect to R if Br(X) # 0.
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3. Rough Topology

In this section, we first introduce the definition of a topology and a basis for a topology. We secondly
present the rough topology which is given by Thivagar et al. in [20] in terms of the lower and the upper
approximations.

Definition 3.1. [11] A topology on a set U is a collection T of subsets of U satisfying the following properties:

(T1) 0, U € 7.
(T2) The union of the elements of T is in 7.
(T3) The intersection of the finite number of elements of T is in 7.

The pair (U, t) is called a topological space.

Let (U, 7) be a topological space. A basis for (U, 7) is a collection  C 7 such that for each A € 7 and each
x € A, there exists B € f such thatx € B C A.

Definition 3.2. [20] Let U be a non-empty finite set and R be an equivalence relation on U. For X c U, 1 =
{U,0, Ru(X), R*(X), Br(X)} forms a topology on U, which is called a rough topology on U with respect to X.

Lemma 3.3. [20] The set fr = {U, R« (X), Br(X)} is a basis for the rough topology tr on U with respect to X.
Example 3.4. Let U ={1,2,3,4,5} and

R={(1,1),(22),3,3),(44),55),1,2),21),35)53)}
be an equivalence relation on U. Then the set of equivalence classes of U by the equivalence relation R is U/R =
{{1,2},{3,5},{4}}. For X = {1,2,3}, R*(X) = {1,2,3,5}, Ru(X) = {1,2} and Br(X) = {3,5}). Therefore, the rough
topology tr = {U,0,{1,2},{1,2,3,5},{3, 51}. The basis for tr is fr = {U,{1,2},{3,5}}.

Definition 3.5. [20] A subset M of the set of attributes is called the core of R if By # Pr—() for every v in M. That
is, the elements of the core cannot be removed without affecting the classification power of attributes.

Example 3.6. Consider the Table 1, which is taken from Pawlak [16].

Table 1: Sample Data 1

Patient || Headache(H) | Muscular pain(M) | Temperature(T) || Flu
1 No Yes High Yes
2 Yes No High Yes
3 Yes Yes Very High Yes
4 No Yes Normal No
5 Yes No High No
6 No Yes Very High Yes

Let U = {1,2,3,4,5,6} be the set of patients, and X = {1,2,3,6} be the set of patients having flue. Let R be
an equivalence (indiscernibility) relation, in which two patients are equivalent if their values of all attributes are
the same. Then the set of equivalence classes of U by the equivalence relation R is U/R = {{1},{2,5}, {3}, {4}, {6}}.
For X = {1,2,3,6}, the upper approximation R*(X) = {1,2,3,5,6}, the lower approximation R.(X) = {1,3,6},
and Br(X) = {2,5}). Therefore the rough topology tr = {U,0,{1,3,6},{1,2,3,5,6},{2,5}}. The basis for g is
ﬁR = {u/ {1/ 3/ 6}/ {2/ 5}}
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If we remove the attribute "Headache” from the set of condition attributes, the family of equivalence classes with the
resulting set of attributes is given by U/(R—{H}) = {{1}, {2, 5}, {3, 6}, {4}}. Then the lower and upper approximations
of X with respect to R—{H} are given by (R—{H})*(X) = 1 2,3,5,6}and (R—{H})«(X)={1,3,6}, respectzvely Therefore,

=, 0, {1,3,6}, {1,2,3,5,6}, {2,5}}. The basis for this topology Tr—(ny is given by Br-my) = (U, {1,3,6},{2,5}}.
Therefore, Br = B(r—{ny), which means "Headache” is not in the Core(X).

If the attribute "Muscular pain” is omitted, then U/(R — {M})={ {1}, {2,5}, {3}, {4}, {6}}, which is the same with
U/R. Hence, Tr-imy = Tr and Br-imy) = Pr, which means “Muscular pain” is not in the Core(X).

If we remove the attribute “Temperature” from the set of condition attributes, the family of equivalence classes with
the resulting set of attributes is given by U/(R—{T}) = {{1,4, 6}, {2, 5}, {3}}. Then, the lower and upper approximations
of X with respect to R — {T} are given by (R {T }) (X) =1{1,2,3,4,5,6} and (R — {TH+(X) = {3}). Therefore,
Tr—(1) = {U,0,{3}}. The basis for this topology Tr—r)) is given by Br—ry = (U, {3}}. Therefore, Br # Bwr—iny, which
means ”Temperature” is in the Core(X).

Therefore, Core(X) = {Temperature}. If we take X = {4,5} as the set of patients not having flu, then similarly
Core(X) = {Temperature}.

Observation: We conclude that "Temperature” is the key attribute to decide whether a patient has flu or not.

4. The Rough Topology for numerical data

The rough topology and the core can be used to analyze many real-life problems like diseases, electrical
transmission lines, decision-making problems, etc. in the literature [2, 12, 18]. However, the values of
attributes are like “yes or no”; or “high, normal, very high”. In this section, we give a generalization of the
method to analyze numerical data by converting them to pertinent data utilizing standard deviations of
the attributes. We also provide algorithms and Python codes to find equivalence classes, the lower and the
upper approximations, topologies, bases, and the core.

Recall that an ordered pair (U, R) where U is a non-empty set and R is an equivalence relation defined on
U is called an approximation space. Let (U, R) be an approximation space with indiscernibility (equivalence)
relation R. Two objects are equivalent if and only if their values of all attributes are the same. However,
most of the values are different from each other in the numerical data. One needs a method for converting
numerical data into formats that help you analyze by using the rough topology and the core. We use
standard deviations of attributes to do this. We assume that two objects take the same value if they are
close to each other as near as the standard deviation of the attribute. The algorithm of the procedure is as
follows Algorithm 1:

Algorithm 1:

Step 1: Given a data table, columns of which are attributes, rows of which are objects, and entries of the
table are attribute values, pick one of the attributes.

Step 2: Take the maximum (Max) and the standard deviation (St) of the chosen attribute.

Step 3: Assign 1 to the values between (Max) and (Max — St) and discard these rows. Find the next
maximum after discarding rows assigned as 1. Assign 2 to the values between the new (Max) and
new (Max — St) and discard them. Repeat this process until every value is assigned to a new value.

Step 4: Repeat Step 2 and Step 3 for every attribute.

Step 5: Generate the new data table.

(see the acknowledgment for the link for Python codes).
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Example 4.1. Consider the Table 2, which is taken from [drvinen [9].

Table 2: Sample Data 2

Patient || Temperature(T) | Blood Pressure(BP) Hemoglobin(HB) || Results
1 39.3 103/65 125 No
2 39.1 97/60 116 No
3 39.2 109/71 132 No
4 37.1 150/96 139 Yes
5 37.3 14593 130 Yes
6 37.8 143/95 121 Yes
7 36.7 138/83 130 No

By applying the algorithm 1 to Table 2, we get the following Table 3:

Table 3: Converted Sample Data 2

Patient || Temperature(T) Blood Pressure(BP) Hemoglobin(HB) Results
1 1 2 2 No
2 1 1 3 No
3 1 2 1 No
4 2 2 1 Yes
5 2 2 2 Yes
6 2 3 3 Yes
7 3 1 2 No

Let U=1{1,2,3,4,5,6,7} be the set of patients, and X = {4,5, 6} be the set of patients having a positive result. Let R
be an equivalence (indiscernibility) relation, in which two patients are equivalent if their values of all attributes are the
same. Then the set of equivalence classes of U by the equivalence relation Ris U/R = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}. For
X = {4,5, 6}, the upper approximation R*(X) = {4,5, 6}, the lower approximation R, (X) = {4,5,6}, and Br(X) = 0.
Therefore the rough topology tr = {U, 0, {4,5, 6}}. The basis for Tz is fr = {U, {4,5, 6}}.

If we remove the attribute "Temperature” from the set of condition attributes, the family of equivalence classes
with the resulting set of attributes is given by U/(R — {T})={{1,5}{2},{3,4},{6},{7} }. Then, the lower and the
upper approximations, and boundary of X with respect to R — {T} are given by (R — {TH)*(X) = {1,3,4,5,6} and
(R={T})«(X) = {6}, and Br—i1})(X) = {1, 3,4, 5}, respectively. Therefore, 1r—i1) = {U,0,{1,3,4,5,6},{6},{1,3,4,5}}.
The basis for this topology T(r—ty) is given by Br—y = {U,{1,3,4,5},{6}}. Therefore, Br # P(r—(t}), Which means
"Temperature” is in the Core(X).

If the attribute ”Blood Pressure” is omitted, then U/(R — {BP})={ {1}, (2}, {3}, {4},{5}, {6}, {7} }, which is the same
with U/R. Hence, Tr—ppy) = Tr and Br—(sp)) = pr, which means ”Blood Pressure” is not in the Core(R).

If we remove the attribute "Hemoglobin” from the set of condition attributes, the family of equivalence classes
with the resulting set of attributes is given by U/(R — {HB})={{1,3},{2}, {4,5}, {6},{7} }. Then, the lower and upper
approximations of X with respect to R — {HB} are given by (R — {HB)*(X) = {4,5,6} and (R — {HB})+(X) =
{4,5, 6}, respectively. Hence, T(r—(up)) = Tr and Pr—(up)) = Pr, which means “Hemoglobin” is not in the Core(R).

Therefore, Core(X) = {Temperature}. If we take X = {1,2,3,7} as the set of patients having a negative result, then
similarly Core(X) = {Temperature}.

Observation: We conclude that “Temperature” is the key attribute to decide whether a patient has a positive result
or not.
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5. A topological method for big numerical data

For big numerical data, the rough topology is restrictive since the topology could be changed by only one
object (row). In other words, even if only one object (row) is in the boundary and the lower approximation
is different from the boundary or lower approximation for the equivalence relation which is omitted one
attribute, then topologies are different. As a result, most attributes are at the core of big data. However,
we can give a measurement for this change (see definition 5.2). For example, let’s consider the data with
1000 objects. If only 10 objects change the boundary and the lower approximation, these differences are
possibly insignificant, so it could be tolerated for big data. This tool also provides the order of importance
of attributes in the dataset.

Definition 5.1. Let (U, R) be an approximation space and M be the set of attributes. For v € M and X C U, the
accuracy of an attribute and the accuracy of the core with respect to X are defined respectively by

_ |Br(X)|
wr(X) = IB(r—r)(X)

IBr(X)|
X) = Supreml =—%< )
prt(X) Premi Boer ()]
Definition 5.2. Let (U, R) be an approximation space and M be the set of attributes. For r € M and X c U, the
accuracy of the boundary for r with respect to X are defined by

v(X) = Br(X) - Br_n(X)l.

Note that purr(X) = prr(U — X) and v,(X) = v,(U — X) for any r € M. Obviously, urr(X) < 1.

Remark 5.3. In essence, the variable v,(X) indicates how many rows (objects) move from the upper approximation
to the lower approximation, or vice versa, when the attribute r is ignored. In other words, it determines the number
of rows that affect how close the set X is to being a rough set. Therefore, it is a crucial variable in this method that
indicates the extent to which the attribute r influences the data’s classification. Consequently, v,(X) is a measuring
tool used to lay out insignificant objects that can be tolerated.

Remark 5.4. In machine learning, the percentage of data that can be removed from a dataset without significantly
altering the classification distribution depends on the dataset size, class balance, and the reason for removal. For
small datasets (e.g., a few thousand rows), it is recommended to remove < 5% of the data to avoid impacting the class
distribution. For large datasets (e.g., hundreds of thousands or millions of rows), a higher percentage of 5 — 20% can
often be removed, provided the removal is done in a stratified manner to preserve the class balance. When dealing with
imbalanced datasets, rows from the majority class can be removed to balance the dataset. The acceptable percentage of
removal typically ranges from 1 — 10% for outliers, 5 — 30% for missing data, and 5 — 15% for noisy or inconsistent
data, depending on the dataset and application. The key is to ensure that the removal process maintains the original
class distribution, often achieved through stratified sampling, and to evaluate the impact on model performance to
avoid degrading results.

As a result, v,(X) is a measuring tool used to lay out insignificant objects that can be tolerated. To determine
which v,(X) value is tolerable for any specific data, a certain margin of error can be selected depending on the structure
of the data, by generally accepted methods and taking into account the distribution of v,(X) values. In a dataset
consisting of 1000 rows (objects), attributes with v,(X) < 10 values can be ignored with a 1% marjin of error. Then
one can consider that an attribute v is not in the core because it could be tolerated for the data with 1000 objects. It is a
method for determining which attributes are more important than others in this classification. It also lists the relative
importance of these attributes.
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5.1. Applications

Example 5.5. The dataset was obtained from the UCI Machine Learning Repository. This dataset contains informa-
tion about wart treatment results of 90 patients using cryotherapy [6]. Seven attributes are sex, age, time, number of
warts, type, area, and result of treatment.

Table 4: Cryotherapy Treatment

Objects || Sex | Age | Time | Number of Warts | Type | Area | Results
1 1 35 |12 5 1 100 | 0
2 1 29 |7 5 1 9% |1
3 1 50 |8 1 3 132 | 0
4 1 32 | 11.75| 7 3 750 | 0
5 1 67 |925 |1 1 42 |0
6 1 41 | 8 2 2 20 |1
7 1 36 | 11 2 1 8 0
8 1 59 |35 |3 3 20 |0
9 1 20 | 45 |12 1 6 1
10 2 34 | 11253 3 150 | 0

By applying the algorithm 1 to Table 4, we get the following Table 5:

Table 5: Converted Cryotherapy Treatment

Objects || Sex | Age | Time | Number of Warts | Type | Area| Results
1 2 3 1 2 3 2 0
2 2 3 2 2 2 2 1
3 2 2 2 3 1 2 0
4 2 3 1 2 1 1 0
5 2 1 1 3 3 2 0
6 2 2 2 3 2 3 1
7 2 3 1 3 3 3 0
8 2 1 3 3 1 3 0
9 2 4 3 1 3 3 1
10 1 3 1 3 1 2 0

Let U = {1,2,3,---,88,89,90} be the set of objects, and X and Y be the set of objects having result 0 and
1, respectively. Let R be an equivalence (indiscernibility) relation, in which two objects are equivalent if their
values of all attributes are the same. If attributes which have v,(X) < 2 are eliminated, then the Core(X) =
{time, number of warts,area} (See Table 6). Similarly, Core(U — X) = Core(Y) = {time, number of warts,area}.
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Table 6: The Core of the Dataset

Column 112 |3 4 5 6
Attribute(r) || Sex| Age| Time| N.of Warts Type| Area
vi(X) 112 |21 |5 0 6

As a result, key attributes to decide the result of the treatment are time, number of warts, and area. The order of
significance of these attributes for the classification is time, area, and number of warts.

In this part, we apply 8 different machine learning algorithms, which are Support Vector Classifier (SVC),
Random Forest Classifier (RFC), Linear Regression (LR), Gradient Boosting Classifier (GBC), Extreme Gradient
Boosting (XGBC), Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), and Hybrid (HYB), to the
data by using all attributes and attributes in the core, respectively. Here, the Hybrid algorithm is the algorithm that
is created based on whether 4 out of 7 algorithms predict correctly or not. Then, the results are compared for each
method and each class. Looking at average classification accuracy, we get better results by using the core.

Machine learning algorithms are used by default setting. It is carried out without any optimizations or parameters
using a random selection procedure. We split the data set so that 80% is used to train the model and 20% is used to
test with a fixed random selection. We consider running the ML algorithms multiple times, comparing the average
result, and then reporting metrics.

The bar chart Figure 1 illustrates the accuracy rates of several machine learning algorithms based on two sets of
features: ”Core Attributes” and "All Attributes.” Across the majority of algorithms, using the “"Core Attributes”
yields a higher accuracy compared to ”All Attributes,” with notable examples including the SVC (0.556 vs 0.500)
and HYB (0.889 vs 0.722) models. However, in the case of the REC algorithm, the difference in accuracy between the
two feature sets is marginal (0.833 vs 0.778), suggesting that adding more attributes did not significantly improve or
harm its performance. For other algorithms such as LR, GBC, XGBC, and LDA, the ”Core Attributes” consistently
outperform ”All Attributes” with a difference of about 0.1 in some instances, suggesting the core features contribute
more meaningfully to the predictive power of these models. Overall, the ”"Core Attributes” feature set appears to
perform better across most models, which may indicate a more focused and optimized feature selection. However,
certain models like LDA and GNB show lower overall performance compared to others.

! ! ! !
0.889 0.889 0.889 0.889 -
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. 0.7] |
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N | ]
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B Core Attributes 10 All Attributes

Figure 1: Comparison of Core Attributes and All Attributes for ML Algorithms
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The following Table 7 demonstrates the classification outcomes of the eight ML algorithms.

Table 7: ML Algorithm Results

Method Use all attributes Use the core

svc Accuracy:0.556 Accuracy:0.5
Precision:0.529 Precision:0.5
Recall:1 Recall:1
F1:0.692 F1:0.667

RFC Accuracy:0.778 Accuracy:0.889
Precision:0.727 Precision:1
Recall:0.889 Recall:0.778
F1:0.8 F1:0.875

LR Accuracy:0.778 Accuracy:0.889
Precision:0.857 Precision:1
Recall:0.667 Recall:0.778
F1:0.75 F1:0.875

GBC Accuracy:0.778 Accuracy:0.833
Precision:0.727 Precision:0.8
Recall:0.889 Recall:0.889
F1:0.8 F1:0.842

XGBC Accuracy:0.778 Accuracy:0.889
Precision:0.727 Precision:1
Recall:0.889 Recall:0.778
F1:0.8 F1:0.875

GNB Accuracy:0.667 Accuracy:0.778
Precision:0.636 Precision:0.778
Recall:0.778 Recall:0.778
F1.0.7 F1.0.778

LDA Accuracy:0.667 Accuracy:0.889
Precision:0.667 Precision:1
Recall:0.667 Recall:0.778
F1:0.667 F1:0.875

HYB Accuracy:0.722 Accuracy:0.889
Precision:0.667 Precision:1
Recall:0.889 Recall:0.778
F1:0.762 F1:0.875

6027

Recall that the class-wise distribution of a classification model’s predicted performance is called a confusion matrix.
A table used to assess a model’s performance in classification tasks is called a 2 X 2 confusion matrix. It consists
of four cells: False Positives (FP), where the model predicts a positive class for a negative instance; False Negatives
(FN), where it predicts a negative class for a positive instance; True Positives (TP), where the model predicts the
positive class correctly; and True Negatives (TN), where it predicts the negative class correctly. This matrix aids in
the computation of important metrics such as F1-score, recall, accuracy, and precision. The confusion matrices we
generated for the hybrid algorithm (which achieves the highest accuracy with Core attributes) employing all of the

features and the features in the core are shown below in Figures 3 and 2, respectively.
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Figure 2: Confusion Matrix for the Hybrid Algorithm (The Core)
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Figure 3: Confusion Matrix for the Hybrid Algorithm (All Attributes)
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5.1.1. Comparison with PCA

The algorithm introduced, which we call as topological dimension reduction (TDR) is essentially a
dimensionality reduction technique. Unlike other methods in this area, it maintains the original data set’s
properties without actually erasing any data. The user can also select the number of dimensions to eliminate,
since it indicates the qualities” degree of importance. We also shared cases where the entire data set was
used during comparisons. However, our main rival in this area is Principal Component Analysis (PCA),
the most well-known dimensionality reduction algorithm. As seen in Figure 4, we generally performed
better than PCA but not SVC. It functions remarkably fast even though it is totally developed in Python.

The figure 4 compares the accuracy rates of different machine learning (ML) algorithms using Core
Attributes (blue bars) and Principal Component Analysis (PCA) (green bars). The results indicate that Core
Attributes consistently outperform PCA across all models, but no SVC. The highest accuracy of 0.889 is
observed in LR, XGBC, LDA, and HYB when using Core Attributes, while PCA generally results in lower
accuracy, often around 0.5. The only exceptions where PCA performs moderately well are GBC (0.667)
and LDA (0.667). Notably, models like RFC and GNB show significant drops in accuracy when using
PCA compared to Core Attributes. This suggests that Core Attributes retain more valuable information for
classification than PCA, which may discard critical features during dimensionality reduction.

| | | |
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Figure 4: Comparison of Core Attributes and PCA for ML Algorithms

5.2. An Application to Dataset with Categorical Decision Attribute

It can also be applied to data with that a decision attribute takes more than two values. One can get
better classification results by using the core rather than using all attributes by applying machine learning
algorithms to most numerical data. Also, with v,(X), in the classification, the most important attributes and
their importance ranking in deciding which class an object is in can be given.

Let U be the set of objects, and Xi, X5, -+ , X, be the set of objects having result 1,2, - -, n, respectively.
Let R be an equivalence (indiscernibility) relation, in which two objects are equivalent if their values of all
attributes are the same. Then, we have Core(X;) = Core(U — X;) foralli=1,2,--- ,n. However, Core(U — X;)
does not need to equal to Core(U — X;) for all 1 < 7, j < n. Having said that, the most important attributes



and their relative weights in determining the class an object belongs to can be determined using v,(X;) in

the classification process foralli=1,2,--- ,n.

Example 5.6. The dataset was obtained from the UCI Machine Learning Repository about measurements of geomet-
rical properties of three different types of wheat kernels: Kama, Rosa, and Canadian, 70 objects each [19]. In the data,

seven attributes of wheat kernels were measured:

A: area,
B: perimeter,
C: compactness,

D: length of kernel,

E: width of kernel,

F: asymmetry coefficient,
G: length of kernel groove,
Result: kernel type (Kama=1, Rosa=2, Canadian=3).

Table 8: Wheat Kernel Data
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Objects || A B C D E F G Results
1 15.26 | 14.84 | 0.871 | 5.763 | 3.312 | 2.221 | 5.22 1
2 14.88 | 14.57 | 0.8811 | 5.554 | 3.333 | 1.018 | 4.956 || 1
3 14.29 | 14.09 | 0.905 | 5.291 | 3.337 | 2.699 | 4.825 || 1
4 13.84 | 13.94 | 0.8955 | 5.324 | 3.379 | 2.259 | 4.805 || 1
5 16.14 | 14.99 | 0.9034 | 5.658 | 3.562 | 1.355 | 5.175 || 1
71 17.63 | 15.98 | 0.8673 | 6.191 | 3.561 | 4.076 | 6.06 || 2
72 16.84 | 15.67 | 0.8623 | 5.998 | 3.484 | 4.675 | 5.877 || 2
73 17.26 | 15.73 | 0.8763 | 5.978 | 3.594 | 4.539 | 5.791 || 2
74 19.11 | 16.26 | 0.9081 | 6.154 | 3.93 | 2.936 | 6.079 || 2
75 16.82 | 15.51 | 0.8786 | 6.017 | 3.486 | 4.004 | 5.841 || 2
141 13.07 | 13.92 | 0.848 | 5472 | 2.994 | 5.304 | 5395 || 3
142 13.32 | 13.94 | 0.8613 | 5.541 | 3.073 | 7.035 | 5.44 || 3
143 13.34 | 13.95 | 0.862 | 5389 | 3.074 | 5.995 | 5.307 || 3
144 12.22 | 13.32 | 0.8652 | 5.224 | 2.967 | 5.469 | 5.221 || 3
145 11.82 | 13.4 | 0.8274 | 5314 | 2.777 | 4471 | 5178 || 3

By applying the algorithm 1 to the Table 8, we get the following Table 9:
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Table 9: Converted Wheat Kernel Data

Objects || A B C D E F G Results
1 2 2 2 3 2 4 3 1
2 3 3 2 3 2 5 4 1
3 3 3 1 4 2 4 4 1
4 3 3 1 4 2 4 4 1
5 2 2 1 3 2 5 3 1
71 2 1 3 2 2 3 1 2
72 2 2 3 2 2 3 2 2
73 2 2 2 2 2 3 2 2
74 1 1 1 2 1 4 1 2
75 2 2 2 2 2 3 2 2
141 3 3 3 3 3 2 3 3
142 3 3 3 3 3 1 3 3
143 3 3 3 3 3 2 3 3
144 3 3 3 4 3 2 3 3
145 4 3 4 4 4 3 3 3

Let U ={1,2,3,---,208,209, 210} be the set of objects, and X={1, 2, 3, ---, 68, 69, 70}, Y={71,72,73, ---, 138,
139, 140} and Z={141, 142, 143, - - -, 208, 209, 210} be the set of objects having result 1, 2, and 3, respectively. Let R
be an equivalence (indiscernibility) relation, in which two objects are equivalent if their values of all attributes are the
same.

Table 10: The Core of Dataset

Column 1 2 3 4 5 6 7
Attribute®) | A B C D E F G
1(X) 0 1 25 1 11 67 55
v,(Y) 0 0 4 1 0 23 52
v(Z) 0 1 21 0 11 44 3

As a consequence, firstly, Core(X) = {C, E, F, G}. The order of importance of the attributes for the objects classified
as in X is F,G,C,E. Secondly, Core(Y) = {C, F, G}. The order of importance of the attributes for the objects classified
asin Y is G,E,C. Lastly, Core(Z) = {C,E, F, G}. The order of importance of the attributes for the objects classified as
in Z is F,C, E, G. Finally, key attributes to decide the type of seeds are C,E, F, and G columns.

6. Conclusion and Future Directions

In this work, we give the rough topology and core for numerical data. By using the core, one can also
get better results by using fewer attributes (attributes in the core) for machine learning algorithms. As a
result, the rough topology is a useful model for attribute reductions for numerical data. This method could
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be applied to big numerical data for future selection problems in future research. We will use this method
to make predictions of qualities such as maintenance cost overruns, work accidents, and the severity of
construction quality failures for datasets.

Another project is to apply the rough topology to solve the missing values problem in incomplete
numerical information tables. The rough topological method for numerical data could be given like
Salama’s work for Boolean Type of data [17, 21].

The method constructed in this article can be generalized by combining with or applying techniques
such as covering approximation spaces, initial-rough sets, f-based rough sets, and generalized rough sets
as another future project.

Finally, this new rough topological method can be given for expansions of rough sets in incomplete
information systems by taking tolerance relations rather than indiscernibility relations to apply missing
value problems for numerical data [10, 21].
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