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Abstract. In this paper, we suggest the modified Szász-Chlodovsky operators. Also, we establish some
results in the weighted space of continuous functions defined on R+. Moreover, the Voronovskaja type
theorem and the rate of convergence are provided in detailed proofs. Furthermore, we substantiate some
shape preserving properties of the Szász-Chlodovsky operators for instance the monotonicity and the
convexity. Lastly, we associate this modified operator with its classical counter part to display that the
modified one has better properties.

1. Introduction

Approximation theory remains among of the important branches of mathematical analysis which scru-
tinizes the approximation to a given function which is obscure with more useful and simpler computable
functions. Generally, the three significant situations should be well known in an approximation problem.
These includes the function f , the space to which the function to be approximated belongs and to determine
how near this approximation is to the function f . Ever since at the end of the 19th century, several mathe-
maticians have introduced distinct kinds of operators aiming to evaluate simpler functions to estimate this
logic. Weierstrass in 1885 [24] developed a theorem substantiating the occurence of polynomials that con-
verge to a continuous function in a closed and bounded domain. Gupta et al. [15] studied semi-exponential
type Gauss-Weierstrass operators and proved some results. The central moments of these operators are
constant functions. Furthermore, Bernstein in 1912 [10] extended this theorem via polynomials called the
Bernstein polynomials, which were introduced by himself on [0, 1]. Because of its significant features and
plain construction remains the reason why Bernstein polynomials are extensively utilized. Many fields for
example computer aided geometric design, probability theory, approximation theory, and number theory
use the knowledge of Bernstein polynomials. One can find some others recent work in [14].
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During 1937, Bernstein’s student Chlodovsky [13] had shifted polynomials from [0, 1] to [0, bm](bm →∞)
by attaining a new change of the Bernstein polynomials.

For further information, for x ≥ 0 and m ≥ 1, Chlodovsky developed the following Bernstein type
operators termed Bernstein-Chlodovsky operators:

Bm( f (x)) =
m∑

r=0

Pr,m

( x
bm

)
f
( r

m

)
(1)

where f indicates a function explained on [0,∞) and bounded on each finite interval
[0, bm] ⊂ [0,∞) at a specific rate, and

Pr,m

( x
bm

)
=

(
m
r

) ( x
bm

)r (
1 −

x
bm

)m−r
(2)

where (bm)∞m=1 denotes a positive increasing sequence of reals with the following properties:

lim
m→∞

bm = ∞, lim
m→∞

bm

m
= 0 (3)

I. Chlodovsky in 1937 [13], developed these polynomials in generalizations of the Bernstein polynomials
(Bm f )(x), for the case (bm = 1), m ≥ 1, which estimate the functions f on [0, 1].

By means of a function f which satisfy certain general assumptions, we deliver a similar modification of
the Szász-Mirakyan operator, as in (1) for Bernstein-Chlodowsky operator. Keep in mind that the Bernstein
operators operate on functions stated on [0, 1], compared to the classical Szász-Mirakyan operator which
are stated for functions on the unbounded interval [0,∞).
The Szász-Mirakyan operator was developed in [23] as a generality of the Bernstein operators, with appro-
priate functions f constructed on the infinite interval
R+ = [0,∞):

Sm( f (x)) = e−mx
∞∑

r=0

f
( r

m

) (mx)r

r!
. (4)

Notice that, the Szász-Mirakyan operators are modified in order to define the operators known as Szász-
Chlodovsky operators, which are given below,

S∗m( f (x)) = e
−mx
bm

∞∑
r=0

f
(

rbm

m

) (mx
bm

)r 1
r!
. (5)

An explicit expression for S∗m(tm; x) for m = 0, 1, 2 is given by direct calculations as follows:

S∗m(1; x) = 1 (6)

S∗m(t; x) = x (7)

S∗m(t2; x) = x2 +
bm

m
x. (8)

Recently some important modifications of Szász and other operators have been studied in [3–9, 18, 19,
21, 22]. The existing paper aims to investigate the convergence features of the modified Szász-Chlodowsky
operators on weighted spaces when the convergence interval extends as m → ∞, to acquire asymptotic
formula for the S∗m( f ) utilizing Taylor’s theorem, to provide quantitative type theorems in order to acquire
the degree of the weighted convergence by employing weighted modulus of continuity, to derive a certain
shape preserving properties of modified operators for instance the monotonicity and the convexity. Finally,
we compare this modified operator with classical Szász-Mirakyan operators in order to show that the mod-
ified one has superior properties.
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2. Basic notations and preliminary results

Throughout this paper, R indicates the set of all real numbers, R+ indicates the set of all positive real
numbers,N denotes the set of all natural numbers, Z will stand for the set of all integers, ∀ will mean for
all, ∃will stand for there exist(s), ∈will stand for the member of,

Definition 2.1. Weighted function space
Suppose that Ψ (x) = 1 + x2 represents a weight function and also let BΨ (R+) represents the space [4], determined by

BΨ (R+) = { f : R+ → R
∣∣∣ | f (x)| ≤ N fΨ (x), x ≥ 0}

with N f denoting any constant depending on f . BΨ (R+) stands for a normed space having the norm

∥ f ∥Ψ = sup
x∈R+

| f (x)|
Ψ (x)

.

CΨ (R+) stands for the subspaces of all continuous functions in BΨ (R+),

Cr
Ψ (R+) indicates the subspaces of all functions f ∈ CΨ (R+) with lim

m→∞

f (x)
Ψ (x)

= τ f , where τ f is any constant depending

on f .

Moreover, suppose UΨ (R+) is the space of functions f ∈ CΨ (R+) so that
f (x)
Ψ (x)

is uniformly continuous. It can be

clearly seen that
Cr
Ψ (R+) ⊂ UΨ (R+) ⊂ CΨ (R+) ⊂ BΨ (R+).

Lemma 2.2. [4] The linear positive operator Hm where m ≥ 1, shift from CΨ (R+) to BΨ (R+) if and only in the event
that the inequality

|Hm(Ψ ; x)| ≤ JmΨ (x), x ≥ 0, m ≥ 1,

maintains, where Jm denotes any positive constant.

Theorem 2.3. [4] Assume that the sequence of linear positive operator (Hm)m≥1 taking CΨ (R+) to BΨ (R+) and
fulfilling the prerequisites

lim
m→∞

∥Hm(tw; x) − xw
∥Ψ = 0, w = 0, 1, 2

then for every function f ∈ Cr
Ψ (R+)

lim
m→∞

∥Hm f − f ∥Ψ = 0.

Remark 2.4. As observed from the equations (6), (8) and in Lemma 2.2, S∗m are the positive linear operators operating
from CΨ (R+) into BΨ (R+).

We have the following for the generalized Szász–Chlodovsky operators:

Theorem 2.5. [16] Assume that {bm} represents a sequence with lim
m→∞

bm = ∞ and {S∗m} represents the sequence of
linear positive operator acting from CΨ,[0,bm](R+) into BΨ,[0,bm](R+). If for w = 0, 1, 2

lim
m→∞

∥S∗m(tw; x) − xw
∥Ψ,[0,bm] = 0

then for every function f ∈ Cr
Ψ,[0,bm](R

+)

lim
m→∞

∥S∗m f − f ∥Ψ,[0,bm] = 0

where BΨ,[0,bm](R+), CΨ,[0,bm](R+) and Cr
Ψ,[0,bm](R

+) indicates the similar way as BΨ (R+), CΨ (R+) and Cr
Ψ (R+)

respectively, however, the functions have been taken on [0, bm] rather than the positive real axis R+ and the norm is
regarded as:

∥ f ∥Ψ,[0,bm] = sup
0≤x≤bm

| f (x)|
Ψ (x)

.
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Definition 2.6. Weighted modulus of continuity
Since it is more comfortable for us to take the supremum on
|Ψ (x)−Ψ (t)| ≤ σ instead of |x− t| ≤ σ, we employ the weighted modulus of continuity provided in [1]. It is described
as follow:

ωΨ ( f ; σ) = ωΨ ( f ; σ)R+ = sup
x,t∈R+,|Ψ (x)−Ψ (t)|≤σ

| f (x) − f (t)|
Ψ (t) +Ψ (x)

(9)

for every f ∈ CΨ (R+) and for each σ > 0.

The function ωΨ ( f ; σ) is called weighted modulus of continuity. It is clearly observed that ωΨ ( f ; 0) = 0 for each
f ∈ CΨ (R+). Also, the function ωΨ ( f ; σ) denotes a non-negative non-decreasing with respect to σ for f ∈ CΨ (R+).
In this case, we focus on the spaces Cr

Ψ (R+), UΨ (R+) , CΨ (R+) and BΨ (R+) with assuming that Ψ (0) = 1 and
infx≥0Ψ

′

(x) ≥ 1. In these circumstances, we observe that
|t − x| ≤ |Ψ (t) −Ψ (x)|, for each t, x ∈ R+.

There are certain characteristics of the weighted modulus of continuity, ωΨ , that are comparable to those of the
classically defined modulus of continuity. The following summarizes few of the basic characteristics of ωΨ ( f ; σ):

Lemma 2.7. [17] Assume that f ∈ Cr
Ψ (R+),

(i) ωΨ ( f ; σ) is monotonically increasing function of σ, σ ≥ 0.

(ii) For every f ∈ Cr
Ψ (R+), lim

σ→0
ωΨ ( f ; σ) = 0.

(iii) For every positive value of α

ωm( f ;ασ) ≤ 2(1 + α)(1 + σ2)ωΨ ( f ; σ). (10)

Using the inequality (2.7) and definition of ωΨ ( f ; σ) we obtain

| f (x) − f (t)| ≤ 2
(
1 +
|x − t|
σ

)
(1 + σ2)ωΨ ( f ; σ)(1 + x2)(1 + (t − x)2) (11)

for each f ∈ Cr
Ψ (R+) and t, x ∈ [0,∞).

Lemma 2.8. [4] lim
σ→0
ωΨ ( f ; σ) = 0 for each f ∈ UΨ (R+).

Theorem 2.9. [4] Assume that Hm : CΨ (R+)→ BΨ (R+) denotes a sequence of linear operators with

∥Hm(t0; x) − x0
∥Ψ 0 = 1m (12)

∥Hm(t; x) − x∥
Ψ

1
2
= hm (13)

∥Hm(t2; x) − x2
∥Ψ = im (14)

∥Hm(t3; x) − x3
∥
Ψ

3
2
= jm (15)

where 1m, hm, im, jm tends to zero only if m→∞.
Now,

∥Hm( f ) − f ∥
Ψ

3
2
≤ (7 + 41m + 2im)ωΨ ( f ; σm) + ∥ f ∥Ψ1m

for all f ∈ CΨ (R+), where

σm = 2
√

(1m + 2hm + im)(1 + 1m) + 1m + 3hm + 3im + jm.
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3. Main Results

In the existing section, we introduce the main results of the study based on the weighted space of
continuous functions defined on the interval [0,∞), for example convergence properties, Voronovskaja
type theorem, shape preserving properties and the rate of convergence for the modified Szász-Chlodovsky
operators.

3.1. Convergence properties on weighted spaces
In the present subsection we develop the convergence properties of modified Szász-Chlodovsky opera-

tors. This is accomplished via the subsequent theorems.

Theorem 3.1. For every function f ∈ Cr
Ψ (R+),

lim
m→∞

∥S∗m( f ) − f ∥Ψ = 0.

Proof. Utilizing Theorem 2.2 we observe that it is enough to prove the following three conditions as follows:

lim
m→∞

∥S∗m(tw; x) − xw
∥Ψ = 0, w = 0, 1, 2. (16)

From equations (6) and (7) it is clearly seen that, ∥S∗m(1; x) − 1∥Ψ = 0 and
∥S∗m(t; x) − x∥Ψ = 0.

Therefore the requirements (16) are satisfied for w = 0, 1. Moreover, utilizing the property (8) we obtain

∥S∗m(t2; x) − x2
∥Ψ = sup

x∈R+

x
(1 + x2)m

≤
1
m
. (17)

This implies that the requirement (16) also holds for w = 2 and by using Theorem 2.2 the proof ends here.

Theorem 3.2. If for all f ∈ CΨ (R+), then

∥S∗m( f ) − f ∥
Ψ

3
2
≤

(
7 +

2
m

)
ωΨ

(
f ;

2
√

m
+

7
m

)
.

Proof. Utilizing Theorem 2.9, we will evaluate the sequences 1m, hm, im, and jm. From (6) and (7) it is clear
that

∥S∗m(t0; x) − x0
∥Ψ 0 = 1m = 0

and
∥S∗m(t; x) − x∥

Ψ
1
2
= hm = 0

Also from (17), we know that

im = ∥S∗m(t2; x) − x2
∥Ψ ≤

1
m
.

Since

S∗m(t3; x) = x3 + 3
bm

m
x2 +

b2
m

m2 x

, we can write
jm = ∥S∗m(t3; x) − x3

∥
Ψ

3
2

= sup
x∈R+

{
3x2

(1 + x2)
3
2

1
m
+

x

(1 + x2)
3
2

1
m2

}
≤

4
m
.

Hence, the conditions ( 12) to (15) are fulfilled. Furthermore, from the Theorem 2.9 we obtain

∥S∗m( f ) − f ∥
Ψ

3
2
≤

(
7 +

2
m

)
ωΨ

(
f ;

2
√

m
+

7
m

)
.
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Remark 3.3. Using Lemma 2.8 and the Theorem 3.2, it yields

lim
m→∞

∥S∗m( f ) − f ∥
Ψ

3
2
= 0

for every f ∈ UΨ (R+).

Theorem 3.4. For every f ∈ Cr
Ψ (R+), the following inequality

sup
x≥0

|S∗m( f ; x) − f (x)|
(1 + x2)3 ≤ J1ωΨ

 f ;

√
bm

m


is fulfilled for a sufficiently large m, with J1 being any constant independent of bm.

Proof. Using (11), we have

|S∗m( f ; x) − f (x)| ≤ 2(1 + σ2
m)ωΨ ( f ; σm)(1 + x2)e

−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

×

1 +
|
rbm
m − x|
σm

 1 +
(

rbm

m
− x

)2
≤ 4ωΨ ( f ; σm)(1 + x2)

{
1 +

1
σm

e
−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

∣∣∣∣∣ rbm

m
− x

∣∣∣∣∣
+ e

−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

(
rbm

m
− x

)2

+
1
σm

e
−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

∣∣∣∣∣ rbm

m
− x

∣∣∣∣∣ ( rbm

m
− x

)2 }
for every σm > 0.

Utilizing the Cauchy-Schwartz inequality, it yields

|S∗m( f ; x) − f (x)| ≤ 4ωΨ ( f ; σm)(1 + x2)
(
1 +

2
σm

√
R1 + R1 +

1
σm

R2

)
(18)

where,

R1 = e
−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

(
rbm

m
− x

)2

and

R2 = e
−mx
bm

∞∑
r=0

(mx
bm

)r 1
r!

(
rbm

m
− x

)4

.

Employing an easily understood calculation, we acquire that

S∗m(t3; x) = x3 + 3
bm

m
x2 +

b2
m

m2 x (19)

and

S∗m(t4; x) = x4 + 6
bm

m
x3 + 7

b2
m

m2 x2 +
b3

m

m3 x. (20)
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From (6), (7), (8), (19) and (20), we obtain

R1 = S∗m((t − x)2; x) =
bm

m
x (21)

and

R2 = S∗m((t − x)4; x) = −5
bm

m
x3 + 3

b2
m

m2 x2 +
b3

m

m3 x. (22)

Using condition (3) in (21) and (22), we can write

R1 = O

(
bm

m

)
(x)

and

R2 = O

(
bm

m

)
(x3 + x2 + x)

Substituting these inequalities into (18), it gives

|S∗m( f ; x) − f (x)| ≤ 4ωΨ ( f ; σm)(1 + x2)
{
1 +

2
σm

√
O

(
bm

m

)
(x) + O

(
bm

m

)
(x)

+
1
σm
O

(
bm

m

)
(x3 + x2 + x)

}
.

Choosing σm =

√
bm

m
, whenever m′s are large enough, we get

sup
x≥0

|S∗m( f ; x) − f (x)|
(1 + x2)3 ≤ J1ωΨ

 f ;

√
bm

m

 ,
where J1 is a constant that exists independently of bm.

3.2. A Voronovskaya type theorem
In this subsection, the pointwise convergence of the Szász-Chlodovsky operator is provided. To present

the convergence, we develop a Voronovskaya type theorem by utilizing the method introduced of [11].

Theorem 3.5. Let f ∈ CΨ (R+), x ∈ R+. Assume that f has the first and second derivative at x. Provided that the
second derivative of f is bounded on R+, then we acquire the following

lim
m→∞

m(S∗m( f ; x) − f (x)) =
1
2

bmx f ′′(x).

Proof. Utilizing Taylor’s expansion for the function f at point x ∈ R+, ∃ η located between t and x so that

f (t) = f (x) + f ′(x)(t − x) +
1
2

f ′′(x)(t − x)2 + λx(t)(t − x)2, (23)

λx(t) =
f ′′(η) − f ′′(x)

2
. (24)

Notice that, the assumption on f along with the definition (24) guaranteed that,

|λx(t)| ≤ N, ∀t,
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and it converge to zero whenever t→ x, notice that N > 0 is any constant.

Apply the operator (5) to the above inequality, we obtain

S∗m( f ; x) − f (x) = f ′(x)S∗m((t − x); x) +
1
2

f ′′(x)S∗m((t − x)2; x) + S∗m(λx(t)(t − x)2; x).

Utilizing (6), (7) and (8), it leads to
lim

m→∞
mS∗m((t − x); x) = 0.

lim
m→∞

mS∗m((t − x)2; x) = bmx.

and thus
lim

m→∞
m(S∗m( f ; x) − f (x)) =

1
2

bmx f ′′(x) + lim
m→∞

mS∗m(λx(t)(t − x)2; x).

We now calculate the final term on the RHS of the equality above as follows:
Let ε > 0 and choose α > 0 so that, |λx(t)| < ε for |x − t| < α. Again it is clearly observed by the condition
Ψ (0) = 1, infx∈R+ Ψ ′(x) ≥ 1 that |Ψ (x) −Ψ (t)| = Ψ ′(ξ)|x − t| ≥ |x − t|.

Therefore, if |x − t| < α, then, |λx(t)(t − x)2
| < ε(t − x)2, while if |x − t| ≥ α, then because |λx(t)| ≤ N, we

obtain,

|λx(t)(t − x)2
| ≤

N
α2 (t − x)4.

Consequently, we are able to write

S∗m(λx(t)(t − x)2; x) < εS∗m((t − x)2; x) +
N
α2 S∗m((t − x)4; x).

Direct computations demonstrate that

S∗m((t − x)4; x) = O
( 1

m2

)
,

and we terminate
lim

m→∞
mS∗m(λx(t)(t − x)2; x) = 0.

Therefore, the proof of the theorem completes here.

3.3. The shape preserving properties of S∗m( f )

This subsection investigates the distinctive features of the Szász-Chlodovsky operator in the circum-
stance that the real valued function f (x), stated on the unbounded interval [0,∞), is increasing (decreasing)
or convex. Stated differently, the shape preserving properties of the Szász-Chlodovsky operators are
demonstrated by verifying that S∗m( f ) maintains the convexity [2, 12, 20] .
Before we provide other characteristics of S∗m( f ), we first infer a few features of the functions given by

Pm,r(x) = e
−mx
bm

(mx
bm

)r 1
r!
, x ∈ [0,∞), m ∈N, r ≥ 0.

Lemma 3.6. [4] If x ∈ [0,∞), m ∈N, r ≥ 0, then the following identities holds

(i) P′m,r(x) = m
( x

bm

)′ (
Pm,r−1(x) − Pm,r(x)

)
,

(ii)
( x

bm

)
P′m,r(x) =

( x
bm

)′
Pm,r(x)

(
r −

mx
bm

)
, where Pm,−1(x) = 0.
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To compare S∗m( f ) by f (x), we want the symmetric forms of divided difference for the function f . Suppose
that x0, x1, ..., xm denotes the distinct points in the domain of f .
Denote

f (x0, x1, ..., xm) =
m∑

j=0

f (x j)∏m
i, j(x j − xi)

where, j remains fixed while i taking all the values starting from 0 up to m, with j excluded.

Now we suggest an illustration of the modified Szász-Chlodovsky operator S∗m( f ) by means of the
divided differences for the function f .

Theorem 3.7. For every f ∈ CΨ (R+), m ∈N and x ∈ [0,∞), so that
x

bm
,

r
m

,

r = 0, 1, ..., then the following identity maintains:

S∗m( f ; x) − f (x) =
x

mbm

∞∑
r=0

f
[

x
bm
,

rbm

m
,

(r + 1)bm

m

]
Pm,r(x)

Proof. Since S∗m(1; x) = 1,we obtain,

S∗m( f ; x) − f (x) =
∞∑

r=0

(
f
(

rbm

m

)
− f (x)

)
Pm,r(x)

=

∞∑
r=0

(
rbm

m
−

x
bm

)
f
[

x
bm
,

rbm

m

]
Pm,r(x).

Utilizing Lemma 3.6 (i) and (ii), it yields

S∗m( f ; x) − f (x) =
x

mbm

(
bm

x

)′ ∞∑
r=0

P′m,r(x) f
[

x
bm
,

rbm

m

]
=

x
bm

∞∑
r=0

f
[

x
bm
,

rbm

m

] (
Pm,r−1(x) − Pm,r(x)

)
=

x
bm

∞∑
r=0

(
f
[

x
bm
,

(r + 1)bm

m

]
− f

[
x

bm
,

rbm

m

])
Pm,r(x).

By recalling the divided difference concept, we have

f
[

x
bm
,

(r + 1)bm

m

]
− f

[
x

bm
,

rbm

m

]
=

1
m

f
[

x
bm
,

rbm

m
,

(r + 1)bm

m

]
So that

S∗m( f ; x) − f (x) =
x

mbm

∞∑
r=0

f
[

x
bm
,

rbm

m
,

(r + 1)bm

m

]
Pm,r(x).

Consequently, from Theorem 3.7, we obtain the following Corollary.

Corollary 3.8. If the function f (x) is convex on the interval [0,∞), then we have

S∗m( f ; x) ≥ f (x)

for x ∈ [0,∞) and ∀m ≥ 0 so that x
bm
, r

m , (r = 0, 1, 2, ...). This leads to the next theorem.
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Theorem 3.9. Suppose that f (x) is a convex function on the unbounded interval [0,∞), then we have

S∗m( f ; x) ≥ S∗m+1( f ; x)

∀m ≥ 0 and 0 ≤ x < ∞. Moreover, if the same function f is linear then
S∗m( f ; x) = S∗m+1( f ; x).

Proof. Firstly, notice that

S∗m( f ; x) − S∗m+1( f ; x) = e−(m+1) x
bm ×

[ e−
mx
bm

e−(m+1) x
bm

∞∑
r=0

f
(

rbm

m

) (mx
bm

)r 1
r!

−

∞∑
r=0

f
(

rbm

m + 1

) (
(m + 1)x

bm

)r 1
r!

]
.

Consequently, we obtain

S∗m( f ; x) − S∗m+1( f ; x) = e−(m+1) x
bm

[
e

x
bm

∞∑
r=0

f
(

rbm

m

) (mx
bm

)r 1
r!

−

∞∑
r=0

f
(

rbm

m + 1

) (
(m + 1)

x
bm

)r 1
r!

]
.

(25)

Furthermore, if we employ Cauchy rule for multiplication for the two series, it gives

e
x

bm

∞∑
r=0

f
(

rbm

n

) (mx
bm

)r 1
r!
=

∞∑
r=0

( x
bm

)r 1
r!

∞∑
r=0

f
(

rbm

m

) (mx
bm

)r 1
r!

=

∞∑
r=0

r∑
w=0

f
(w

m

) ( x
bm

)r
mw

w!(r − w)!
,

so that when joined to (25), it yields,

S∗m( f ; x) − S∗m+1( f ; x) = e−(m+1) x
bm

∞∑
r=0

( r∑
w=0

f
(w

m

) mw

w!(r − w)!

− f
(

rbm

m + 1

) (
(m + 1)r

r!

) ) ( x
bm

)r
.

(26)

It will be adequate to demonstrate that the inequality

f
(

rbm

m + 1

)
≤

r!
(m + 1)r

r∑
w=0

f
(w

m

) mw

w!(r − w)!
. (27)

holds. Let λw =
r!

(m + 1)r
mw

w!(r − w)!
and xw =

w
m

for w ∈ [0, r]. We can write

r∑
w=0

λwxw =
r!

(m + 1)r

r∑
w=0

mw

w!(r − w)!
w
m

=
r!

(m + 1)r

r∑
w=1

mw−1

(w − 1)!(r − w)!

=
r

(m + 1)r

r−1∑
w=0

(
r − 1

w

)
mw

=
r

m + 1
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and,
r∑

w=0

λw = 1.

Notice that f (x) is convex as given, So,the inequality (27) could be verified via the above equalities. Then,
utilizing (26), we acquire

S∗m( f ; x) ≥ S∗m+1( f ; x)

∀m ≥ 0 and for x ∈ [0,∞)

Moreover, if f is linear then we can write:

f
(

rbm

m + 1

)
=

r!
(m + 1)r

r∑
w=0

f
(w

m

) mw

w!(r − w)!
.

Hence, this finishes the proof of the theorem.

3.4. The rate of convergence
This subsection compares the rates of convergence of the Szász-Chlodovsky operator and the classical

Szász-Mirakyan operators in terms of the degree of estimation it is observed that the modified operators
(Szász-Chlodovsky operator) has atleast a good estimatimation in comparison with the classically defined
Szász-Mirakyan operators Sm( f (x)) for a particular interval.
For this reason, let us start by summarizing the rates of convergence of both the modified operators and
its corresponding classical. Let f be a continuous function defined on the interval [0,∞), again let ωΨ ( f ; σ)
denote a standard modulus of continuity. So, the rates of convergence of these two operators are defined
as:
∥Sm( f (x)) − f (x)∥ ≤ 2ωΨ ( f ; σ∗) and ∥S∗m( f (x)) − f (x)∥ ≤ 2ωΨ ( f ; σ),

with σ∗ =
√

x
m

and σ =
√

x
mbm

respectively.

Let us now provide the following theorem in order to verify that the modified operator (Szász-Chlodovsky
operator) have better rate of convergence in comparison with the classical Szász-Mirakyan operator.

Theorem 3.10. Let C[0,∞) be the class of continuous functions, the rate of convergence of the Szász-Chlodovsky
operator is better compared with the classical Szász-Mirakyan operator because the inequality

σ∗ ≥ σ,

holds true ∀x ∈ [0,∞).

Proof. Let f ∈ C[0,∞. So, to display that the Szász-Chlodovsky operator has better rate of convergence than
its classical correspondence, we want to be capable to display that the subsequent inequality also holds
true ∀x ∈ [0,∞): √

x
m
≥

√
x

mbm
.

For this reason, we introduce a function which is

Ω(x) =

√
x
m
−

√
x

mbm
.

If we can be able to illustrate that Ω(x) is positive, then our claim will be verified as correct.

∀x ∈ [0,∞) , m ∈N, it is clearly that
√

x
m

is greater than
√

x
mbm

for the case

(bm)∞m=1 = {1, 2, 3, ...}. It is clearly seen that Ω(x) does not change the sign on [0,∞). Therefore, under this
circumstance it can be generalized that the function Ω(x) is a positive. Hence, the proof is completed.
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4. Conclusion

In the existing paper, the modified Szász-Chlodovsky operators are developed and their estimation
properties are presented as well. Moreover, some shape-preserving properties for instance the convexity
and the monotonicity of the Szász-Chlodovsky operators denoted by S∗m( f (x)) are scrutinized. Furthermore,
the asymptotic formula of operators are established by considering the Voronovskaya type theorem. Fi-
nally, the modified Szász-Chlodovsky operators and the classical Szász-Mirakyan operators are compared
to validate the theoretical results.
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