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Berger measures for the Schur product of weighted shifts
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Abstract. In this paper we present a concrete Berger measure for the Schur product of weighted shifts.
This measure will be seen as a convolution of their Berger measures. This is related to the p-th power
problem for measures. For n ∈N, the n-th power of a Berger measure is a convolution of all same measures
and this case was solved partially by the author of this paper. We will extend this problem to a convolution
of any Berger measures. We investigate a convolution of mutually distinct measures and then we discuss
any combination of Berger measures, and any two more general weighted shifts. Since a Berger measure is
closely related to subnormal weighted shifts, our result is helpful for the study of subnormality and add to
the very small list of subnormal weighted shifts for which Berger measure is known concretely.

1. Introduction and preliminaries

LetH be an infinite dimensional complex Hilbert space and letB(H) be an algebra of all bounded linear
operators onH . A bounded operator T ∈ B(H) is said to be normal if TT∗ = T∗T, hyponormal if TT∗−T∗T ≥ 0
and subnormal if it has a normal extension of T, i.e., T = N|H for some normal operator N on a Hilbert space
K includingH . Now we give an equivalent condition for subnormality, which is called the Bram-Halmos’
criterion ([7],[16],[8, III.1.9]):

T ∈ B(H) is subnormal if and only if Mn(T) ≥ 0 for all n ∈N,

where an (n + 1) × (n + 1) operator matrix Mn(T) is denoted by

Mn(T) :=
[
T∗ jTi

]n

i, j=0
=


I T∗ · · · T∗n

T T∗T · · · T∗nT
...

...
. . .

...
Tn T∗Tn

· · · T∗nTn

 , n ∈N.

For each n ∈N, an operator T ∈ B(H) is said to be n-hyponormal if Mn(T) ≥ 0, i.e.,

T is subnormal ⇐⇒ T is n-hyponormal for all n ∈N.

2020 Mathematics Subject Classification. Primary 47B37, 47B20, 47A57; Secondary 28C05, 47-08.
Keywords. subnormal, weighted shifts, moment problem, Berger measure, Schur product.
Received: 04 October 2024; Revised: 03 March 2025; Accepted: 17 March 2025
Communicated by In Sung Hwang
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education (NRF-2020R1I1A1A01068230).
Email address: seunghwan@kentech.ac.kr (Seunghwan Baek)
ORCID iD: https://orcid.org/0009-0006-3972-7778 (Seunghwan Baek)



S. Baek / Filomat 39:17 (2025), 6047–6058 6048

It is easy to know that 1-hyponormality is equivalent to hyponormality, so we have following implications;

subnormal =⇒ · · · =⇒ n-hyponormal =⇒ · · · =⇒ 2-hyponormal =⇒ hyponormal.

Recall that a weighted shift Wα with a weight sequence α = {αk}
∞

k=0 is defined by

Wα(ek) = αkek+1 for all k ∈N0 :=N ∪ {0},

where {ek}
∞

k=0 is the canonical orthonormal basis for ℓ2. It is easy to see that Wα can never be normal, and
that Wα is hyponormal if and only if αn ≤ αn+1 for all n ∈ N0. For a weight sequence α = {αk}

∞

k=0, formally
we define the moment sequence γ ≡ γ(α) = {γk}

∞

k=0 ≡ {γk(α)}∞k=0 of α (or Wα) by

γk ≡ γk(α) =
{

1, k = 0,
α2

0 · · ·α
2
k−1, k ∈N.

For the sequence γ, we denote a Hankel matrix of γ by

Hn,k(γ) :=
[
γk+i+ j

]n

i, j=0
=


γk γk+1 · · · γk+n
γk+1 γk+2 · · · γk+n+1
...

...
. . .

...
γk+n γk+n+1 · · · γk+2n

 , for n, k ∈N0.

From [10, Theorem 4], we can obtain that an equivalent condition for the subnormality of weighted shifts
as follows:

Wα is subnormal if and only if Hn,k(γ) ≥ 0 for all k ∈N0 and n ∈N.

Recall that another equivalent condition for the subnormality of weighted shifts as follows:

Theorem 1.1 ([8], [15], Berger’s Theorem). Let Wα be a weighted shift with a weight sequence α and γ = {γk}
∞

k=0
be a moment sequence of α. Then Wα is subnormal if and only if there exists a probability Borel measure µ (called the
Berger measure) on

[
0, ∥Wα∥

2
]

with ∥Wα∥
2
∈ suppµ such that

γk =

∫
[0,∥Wα∥2]

tkdµ (t) , k ∈N0.

From the Berger’s theorem, we can see that there is a relationship between the subnormality of weighted
shifts and the moment problem. By using the moment problems, we can understand the subnormality.

For two sequences α = {αn}
∞

n=0 and β = {βn}
∞

n=0, α ◦ β := {αnβn}
∞

n=0 is called the Schur product of α and β.
Similarly, for two matrices A = [ai j] and B = [bi j] of the same size, the matrix A ◦ B := [ai jbi j] is called the
Schur product of A and B. Then we can see

Wα ◦Wβ =Wα◦β.

It follows from [12, Theorem 2.3, Corollary 2.4] that if Wα and Wβ are n-hyponormal (subnormal, respec-
tively), then Wα◦β is n-hyponormal (subnormal, respectively). For moment sequences γ(α) and γ(β) of α
and β, respectively, we can see

γ(α ◦ β) = γ(α) ◦ γ(β) =
{
γn(α)γn(β)

}∞
n=0 . (1.1)

In this paper we consider the moment problem for the Schur product of weighted shifts and we are interested
in what the Berger measure for the Schur product is, and how such measure is obtained.

If µ and ν are probability measures on R+ := {x ∈ R : x ≥ 0}, then µ ∗ ν is called the convolution of µ and
ν and is defined by, for all Borel set E ⊂ R+,

(µ ∗ ν)(E) := (µ × ν)
(
p−1(E)

)
,
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where p(s, t) = st for s, t ≥ 0 (see [17]). Then µ ∗ ν is well-defined probability measure onR+. By the Fubini’s
theorem, we have(∫

tndµ
) (∫

tndν
)
=

"
sntndµ(s)dν(t)

=

"
(st)nd

(
(µ × ν) ◦ p−1

)
(st)

=

∫
und(µ ∗ ν)(u).

Then we can see that the Berger measure of Wα◦β is the convolution of the Berger measures of Wα and Wβ.
This is our goal for this paper:

Given 2 or more Berger measures, what is their convolution?

We now introduce problems about convolutions of measures. In [11], Curto and Exner introduce the square
and square root problems for measure as follows:

Problem 1.2 (Square and square root problems for measure). Let µ and ν be positive probability Borel
measures on R+. Suppose

µ = ν ∗ ν.

Then µ is called the square of ν and ν is called the square root of µ.

(i) Given ν, find µ.
(ii) Given µ, find ν if it exists.

As a consequence, the square and square root problems can be combined to extend generally as follows:

Problem 1.3 (The p-th power problem for measure). Suppose p > 0. Let ν be a positive probability Borel
measure with supp ν ⊆ R+. Is there a positive Borel measure µ satisfying∫

tndµ(t) =
(∫

tndν(t)
)p

(1.2)

for all n ∈N0? If so, find such measure µ.

If two probability Borel measures µ and ν are satisfying (1.2), µ is called the p-th power of ν and ν is called
the p-th power root of µ. The equation (1.2) can be rewritten in terms of measures as µ = ν∗p (see [18]1)). For
p > 0 and a sequence α = {αn}

∞

n=0, we denote by αp :=
{
αp

n

}∞
n=0

. Then the p-th power of the Berger measure
of Wα is the Berger measure of Wαp if it exists. We now introduce a class of weighted shifts whose Berger
measure is infinitely divisible in the classical sense.

Definition 1.4 ([5]). Let α be a weight sequence. The associated weighted shift Wα is called moment infinitely
divisible (MID) if Wαp is subnormal for all p > 0.

It is easy to see from the Berger’s theorem that every MID-shift has the Berger measure and its p-th
powers for all p > 0.

To study the operator theory, many operator theorists use weighted shifts, especially, they use the

Bergman weight sequence
{√

n+1
n+2

}∞
n=0

. This is because the moment sequence of the Bergman sequence is

1)The authors in [18] consider p as an integer greater than 1, but we extend to positive real numbers.



S. Baek / Filomat 39:17 (2025), 6047–6058 6050{
1

n+1

}∞
n=0

and its Hankel determinant can be obtained easily. In this paper we will use more generalized
Bergman weight sequences, which is defined by

α =


√

an + b
cn + d


∞

n=0

,

where a, b, c, d > 0 and ad > bc. In [13] Curto-Poon-Yoon defined a new class of generalized Bergman shifts,
whose weight sequence is such α. They denote S(a, b, c, d) for the weighted shift Wα. In [6] the authors
named it the homographic shift. This is our main model in this paper. We can see some properties from [13],
[9], [14] and [4]:

1◦ ([13, Theorem 2.7]) S(a, b, c, d) is subnormal.
2◦ ([9, Theorem 2.4]) The Berger measure of S(a, b, c, d) is

dµ(t) =
Γ
(

d
c

)
Γ
(

b
a

)
Γ
(

d
c −

b
a

) ( c
a

) b
a

t
b
a−1

(
1 −

c
a

t
) d

c −
b
a−1

dt (1.3)

with suppµ =
[
0, a

c

]
, where Γ is the classical gamma function.

3◦ ([14, Theorem 3.4]) S(a, b, c, d) is MID.
4◦ ([4, Theorem 2.1]) If µ is the Berger measure of the shift S(1, q, 1, q+ 1) and p > 0, then its p-th power is

(dµ(t))p = d(µ∗p)(t) =
qp

Γ(p)
tq−1 (− ln t)p−1 dt (1.4)

with suppµ = [0, 1].
5◦ ([4, Corollary 3.3]) If µ j is the Berger measure of S(1, q, 1, q + j − 1) and j = 2, 3, . . ., then its measure is

dµ j(t) =
Γ(q + j − 1)
Γ(q)Γ( j − 1)

tq−1(1 − t) j−2dt =
q(q + 1) · · · (q + j − 2)

( j − 2)!

j−2∑
i=0

(−1)i
(

j − 2
i

)
ti+q−1dt (1.5)

with suppµ = [0, 1], where
(n

k
)

denotes the usual binomial coefficient and its square measure, for
j = 2, 3, 4, can be obtain as follows:

(i)
(
dµ2(t)

)2 = (qtq−1dt)2 = −q2tq−1 ln tdt,
(ii)

(
dµ3(t)

)2 = q2(q + 1)2tq−1 [2(t − 1) − (t + 1) ln t] dt,
(iii)

(
dµ4(t)

)2 =
q2(q+1)2(q+2)2

4 tq−1
[
3(t2
− 1) − (t2 + 4t + 1) ln t

]
dt.

6◦ ([4, Theorem 4.2]) If µ is the Berger measure of S(1, q, 1, q + 2), then its square root measure is√
dµ(t) =

√
q(q + 1)tq− 1

2

∞∑
m=0

(ln t)2m

16m(m!)2 dt

with suppµ = [0, 1].

The above properties are related to Berger measures of homographic shifts. We also studied properties for
Berger measures of the Schur product of specific homographic shifts. The equation (1.4) with a positive
integer p shows the Berger measure for the p-th Schur power of a homographic shift. On the other hand,
we consider the Schur product of mutually distinct homographic shifts in this paper.

This paper is organized as follows. In Section 2, we present a concrete Berger measure of the Schur
product of finitely many second Agler-type shifts (the definition is shown in Section 3), which are mutually
distinct. Furthermore, we give the result for the mixed case which is the Schur product of weighted shifts,
where some shifts have the same weight sequence and the others are mutually distinct. In Section 3, we
give the concrete Berger measure of any two generalized Agler-type shifts.
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2. Berger measures of Schur products

In this section we will find the Berger measures for the Schur product of finitely many generalized
Bergman shifts. Firstly, we consider Schur product of two shifts. Let α and β be weight sequences
associated to weighted shifts Wα ≡ S(1, q1, 1, q1 + 1) and Wβ ≡ S(1, q2, 1, q2 + 1), respectively. Then we can
see easily that the Schur product of α and β is

α ◦ β =


√

(n + q1)(n + q2)
(n + q1 + 1)(n + q2 + 1)


∞

n=0

,

and its associated weighted shift Wα◦β is subnormal. Now we find the Berger measure for Wα◦β. Actually
the case of q1 = q2 is the square problem which is same as (1.4) with p = 2, so we assume that q1 , q2.

Lemma 2.1. Suppose q1 and q2 are positive real numbers. Let α and β be weight sequences associated to weighted
shifts Wα ≡ S(1, q1, 1, q1 + 1) and Wβ ≡ S(1, q2, 1, q2 + 1), respectively. If q1 , q2, then the Berger measure µ of Wα◦β

is given by

dµ(t) =
q1q2

q2 − q1

(
tq1−1

− tq2−1
)

dt

with suppµ = [0, 1].

Proof. For the reader’s convenience, we give an elementary proof. Let γn(α), γn(β) and γn(α◦β) be moments
for Wα, Wβ and Wα◦β, respectively. It follows from (1.1) and (1.3) that

γn(α ◦ β) = γn(α)γn(β) =
∫ 1

0
tnq1tq1−1dt

∫ 1

0
snq2sq2−1ds

= q1q2

∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 dtds

= q1q2

∫ 1

0

∫ s

0
un+q1−1sq2−q1−1duds (substituting u = ts)

= q1q2

∫ 1

0

∫ 1

u
un+q1−1sq2−q1−1dsdu

=

∫ 1

0
un

(
q1q2

q2 − q1
uq1−1 (

1 − uq2−q1
))

du.

Hence, dµ(t) = q1q2

q2−q1
tq1−1 (1 − tq2−q1 ) dt.

This lemma is related to the Aluthge transform. A operator T ∈ B(H) can be represented as the
polar decomposition T = U|T|, where |T| = (T∗T)

1
2 and U is a partial isometry with ker U = ker T and

ker U∗ = ker T∗. Then the Aluthge transform of T is defined by T̃ = |T|
1
2 U|T|

1
2 [2]. It is well-known that the

Aluthge transforms of weighted shifts are also weighted shifts. For a weight sequence α = {αn}
∞

n=0, the

weight sequence of W̃α is
{√
αnαn+1

}∞
n=0

, n ∈N. See the following example.

Example 2.2. In Lemma 2.1, if q1 = q and q2 = q + 1, then Wα◦β = W̃α2 and its Berger measure µ is

dµ = q(q + 1)tq−1(1 − t)dt.

Since S(1, q, 1, q + 2) =Wα◦β, we can also obtain same result from (1.5) with j = 3.

To obtain the Berger measure for the Schur product of finitely many generalized Bergman shifts, we
need the following notation and lemma.
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Notation 2.3. For a sequence x = {xn}
∞

n=1 and i, ℓ ∈N, we set

Px(i, ℓ) :=
∏

1≤ j≤ℓ
j,i

(x j − xi).

Lemma 2.4. For any sequence x = {xn}
∞

n=1 of mutually distinct real numbers, it holds that

k∑
i=1

1
Px(i, k)

= 0, for all k ≥ 2.

Proof. For k = 2, it holds that

1
Px(1, 2)

+
1

Px(2, 2)
=

1
x2 − x1

+
1

x1 − x2
= 0,

for any sequence x = {xn}
∞

n=1 of mutually distinct real numbers.
To use the induction, we suppose that the sum of the first m terms is 0 for any sequence of mutually

distinct real numbers (i.e., the statement holds for k = m.) and we now will show that

m+1∑
i=1

1
Px(i,m + 1)

= 0,

for any sequence x = {xn}
∞

n=1 of mutually distinct real numbers. By assumption, we have

m∑
i=1

1
Px(i,m)

= 0.

Observe that

m∑
i=1

1
Px(i,m)

=

m+1∑
i=1

xm+1 − xi

Px(i,m + 1)
= xm+1

m+1∑
i=1

1
Px(i,m + 1)

−

m+1∑
i=1

xi

Px(i,m + 1)
,

it follows that

xm+1

m+1∑
i=1

1
Px(i,m + 1)

=

m+1∑
i=1

xi

Px(i,m + 1)
. (2.1)

Let y = {xn+1}
∞

n=1. Since y is also a sequence of mutually distinct real numbers,

m∑
i=1

1
Py(i,m)

= 0,

by assumption. Observe that

m∑
i=1

1
Py(i,m)

=

m∑
i=1

x1 − xi+1

(x1 − xi+1)Py(i,m)

=

m∑
i=0

x1 − xi+1

Px(i + 1,m + 1)

=

m+1∑
i=1

x1 − xi

Px(i,m + 1)
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= x1

m+1∑
i=1

1
Px(i,m + 1)

−

m+1∑
i=1

xi

Px(i,m + 1)
,

it follows that

x1

m+1∑
i=1

1
Px(i,m + 1)

=

m+1∑
i=1

xi

Px(i,m + 1)
. (2.2)

From (2.1) and (2.2), we have

(xm+1 − x1)
m+1∑
i=1

1
Px(i,m + 1)

= 0.

Hence,
∑m+1

i=1
1

Px(i,m+1) = 0, which completes the proof by the induction.

We are ready to see our main result; finding the Berger measure for the Schur product of finitely many
generalized Bergman shifts.

Theorem 2.5. Suppose ℓ ≥ 2. Let σ = {qn}
∞

n=1 be a sequence of mutually distinct positive real numbers and let α(i)

be a weight sequence associated to weighted shift Wα(i) ≡ S(1, qi, 1, qi + 1) for i = 1, 2, . . . , ℓ. Let α = α(1)
◦ · · · ◦ α(ℓ)

be a Schur product of α(i)’s. Then a Berger measure µ of Wα is given by

dµ(t) = q1 · · · qℓ
ℓ∑

i=1

tqi−1

Pσ(i, ℓ)
dt

and suppµ = [0, 1].

Proof. Without loss of generality, we assume that 0 < q1 < q2 < q3 < · · · . Let γn(α(i)) be the moment of α(i)

and µi be the associated Berger measure for Wα(i) . Then we can see that

γn(α(i)) =
qi

n + qi
=

∫
[0,1]

tndµi(t) =
∫ 1

0
tn

(
qitqi−1

)
dt

and the moment γn(α(1)
◦ · · · ◦ α(ℓ)) of α is obtained as

γn(α(1)
◦ · · · ◦ α(ℓ)) =

ℓ∏
i=1

γn(α(i)) =
ℓ∏

i=1

∫
[0,1]

tndµi(t) =
ℓ∏

i=1

∫ 1

0
tn

(
qitqi−1

)
dt.

Considering dµ = d(µ1 ∗ · · · ∗ µℓ), we will use the induction in ℓ ≥ 2. Firstly,

d(µ1 ∗ µ2)(t) =
q1q2

q2 − q1

(
tq2−1

− tq1−1
)

dt

and supp(µ1 ∗ µ2) = [0, 1] by Lemma 2.1. Secondly, we suppose that

d(µ1 ∗ · · · ∗ µk)(t) = q1 · · · qk

k∑
i=1

tqi−1

Pσ(i, k)
dt,

and supp(µ1 ∗ · · · ∗ µk) = [0, 1]. Then we obtain the moment γn(α(1)
◦ · · · ◦ α(k+1)) of the Schur product

α(1)
◦ · · · ◦ α(k+1) by

γn(α(1)
◦ · · · ◦ α(k+1)) = γn(α(1)

◦ · · · ◦ α(k))γn(α(k+1))
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=

∫
[0,1]

tnd(µ1 ∗ · · · ∗ µk)(t)
∫

[0,1]
sndµk+1(s)

=

∫ 1

0
tnq1 · · · qk

k∑
i=1

tqi−1

Pσ(i, k)
dt

∫ 1

0
qk+1sn+qk+1−1ds

=

∫ 1

0

∫ 1

0
(ts)nq1 · · · qk+1

k∑
i=1

(ts)qi−1sqk+1−qi

Pσ(i, k)
dtds

=

∫ 1

0

∫ s

0
unq1 · · · qk+1

k∑
i=1

uqi−1sqk+1−qi−1

Pσ(i, k)
duds (substituting u = ts)

=

∫ 1

0

∫ 1

u
unq1 · · · qk+1

k∑
i=1

uqi−1sqk+1−qi−1

Pσ(i, k)
dsdu

=

∫ 1

0
unq1 · · · qk+1

k∑
i=1

uqi−1
− uqk+1−1

(qk+1 − qi)Pσ(i, k)
du

=

∫ 1

0
unq1 · · · qk+1

 k∑
i=1

uqi−1

Pσ(i, k + 1)
−

k∑
i=1

uqk+1−1

Pσ(i, k + 1)

 du

=

∫ 1

0
unq1 · · · qk+1

 k+1∑
i=1

uqi−1

Pσ(i, k + 1)

 du;

note that the last equality holds by lemma 2.4. Hence, the proof is complete by the induction.

This theorem shows a Berger measure for mutually distinct weighted shifts, and a case where all shifts
have the same weight is n-th power problem, which was solved in (1.4) ([4]). Now some questions have arisen;
in Lemma 2.1, if q2 approaches q1, dose the convolution of their measures converges to square measure? If
so, is it true for the convolution of finitely many measures, generally? The answer is affirmative as follows.

Proposition 2.6. Under the hypothesis in Theorem 2.5, it holds that for xℓ = (q1, . . . , qℓ) and qℓ = (q, . . . , q) in Rℓ,

lim
xℓ→qℓ

q1 · · · qℓ
ℓ∑

i=1

tqi−1

Pσ(i, ℓ)
dt =

qℓ

(ℓ − 1)!
tq−1 (− ln t)ℓ−1 dt

with suppµ = [0, 1], which is the ℓ-th power of Berger measure of S(1, q, 1, q + 1).

Proof. For each k ∈N, let Fk(t; xk) =
∑k

i=1
tqi−1

Pσ(i,k) and Gk(t; q) = tq−1

(k−1)! (− ln t)k−1. Then

lim
(q1,q2)→(q,q)

F2(t; q1, q2) = lim
(q1,q2)→(q,q)

tq1−1
− tq2−1

q2 − q1

= lim
(q1,q2)→(q,q)

tq1−1(1 − tq2−q1 )
q2 − q1

= G2(t; q),

which shows the case of ℓ = 2. Suppose that lim
xk→qk

Fk(t; xk)dt = Gk(t; q)dt. By the proof of Theorem 2.5, we

have

lim
xk+1→qk+1

∫ 1

0
tnFk+1dt = lim

xk+1→qk+1

(∫ 1

0
tnFkdt

∫ 1

0
sn+qk+1−1ds

)
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=

∫ 1

0
tnGkdt

∫ 1

0
sn+q−1ds

=
1

(k − 1)!

∫ 1

0

∫ 1

0
(ts)n+q−1(− ln t)k−1dsdt

=
1

(k − 1)!

∫ 1

0

∫ t

0
un+q−2(− ln t)k−1 u

t
dudt (substituting u = ts)

=
1

(k − 1)!

∫ 1

0

∫ 1

u
un+q−2(− ln t)k−1 u

t
dtdu

=
1

(k − 1)!

∫ 1

0

∫
− ln u

0
un+q−1vk−1dvdu (substituting v = − ln t)

=

∫ 1

0
unGk+1(u; q)du,

which completes the proof by the induction.

By using this proposition, we can obtain mixed cases, which mean that qi’s are neither mutually distinct
nor all the same. See the following example.

Example 2.7. Consider three weighted shifts S(1, qi, 1, qi + 1), i = 1, 2, 3. If qi’s are mutually distinct, the
Berger measure of their Schur product is

dµ(t) = q1q2q3

(
tq1−1

(q2 − q1)(q3 − q1)
+

tq2−1

(q1 − q2)(q3 − q2)
+

tq3−1

(q1 − q3)(q2 − q3)

)
dt

with suppµ = [0, 1]. If q3 approaches q2, we have

lim
q3→q2

tq1−1

(q2 − q1)(q3 − q1)
=

tq1−1

(q2 − q1)2 ,

and

lim
q3→q2

(
tq2−1

(q1 − q2)(q3 − q2)
+

tq3−1

(q1 − q3)(q2 − q3)

)
= lim

q3→q2

(q1 − q3)tq2−1
− (q1 − q2)tq3−1

(q1 − q2)(q1 − q3)(q3 − q2)

= lim
q3→q2

q2tq3−1
− q3tq2−1 + q1(tq2−1

− tq3−1)
(q1 − q2)(q1 − q3)(q3 − q2)

=
q2

2

(q1 − q2)2 lim
q3→q2

tq3−1

q3
−

tq2−1

q2

q3 − q2
−

q1

(q1 − q2)2 lim
q3→q2

tq3−1
− tq2−1

q3 − q2

=
1

(q1 − q2)2 tq2−1(q2 ln t − 1) −
q1

(q1 − q2)2 tq2−1 ln t.

It follows that

lim
q3→q2

dµ(t) =
q1q2

2

(q2 − q1)2

(
tq1−1

− tq2−1 + tq2−1(q2 − q1) ln t
)

dt

on [0, 1], which is the Berger measure for a weight sequence
√

(n+q1)(n+q2)2

(n+q1+1)(n+q2+1)2 by Proposition 2.6. In

particular, if q1 = 1 and q2 = 2, a weight sequence
√

(n+1)(n+2)
(n+3)2 corresponds to the Berger measure dµ(t) =

4 (1 − t + t ln t) dt with suppµ = [0, 1].
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Consider S(a, b, c, d) with d
c −

b
a = 1, whose weights are given by

αn =

√
a(n + q)

c(n + q + 1)
, n = 0, 1, 2, . . . .

Now we discuss the Berger measure of the Schur product of weighted shifts, whose type is given above.

Lemma 2.8 ([3], [9]). Let α = {αn}
∞

n=0 be a weight sequence and Wα be a associated subnormal weighted shift with
∥Wα∥ = 1. Suppose µ is the Berger measure of Wα. Then for k > 0, Wkα is subnormal and its Berger measure ν is
given by dν(t) = dµ

(
t

k2

)
with supp ν ⊂

[
0, k2

]
, where kα := {kαn}

∞

n=0.

Lemma 2.8 is an elementary computational property which seems to be well-known. By using this
lemma, we can obtain a more general result as follows.

Theorem 2.9. Suppose ℓ ≥ 2. Let σ = {qn}
∞

n=1 be a sequence of mutually distinct positive real numbers and let α(i)

be a weight sequence associated to weighted shift Wα(i) ≡ S(a, aqi, c, cqi + c) for i = 1, 2, . . . , ℓ. Let α = α(1)
◦ · · · ◦ α(ℓ)

be a Schur product of α(i)’s. Then the Berger measure µ of Wα is given by

dµ(t) = q1 · · · qℓ
ℓ∑

i=1

( c
a

)ℓqi tqi−1

Pσ(i, ℓ)
dt

and suppµ =
[
0,

(
a
c

)ℓ]
. Moreover, if q1, . . . , qℓ approach q, then

lim
q1,...,qℓ→q

dµ(t) =
( c

a

)ℓq qℓ

(ℓ − 1)!
tq−1

(
− ln

( c
a

)ℓ
t
)ℓ−1

dt,

which is the ℓ-th power of the Berger measure of S(a, aq, c, cq + c).

3. The j-th Agler-type shifts

For j = 2, 3, . . ., the j-th Agler shift is the weighted shift with weight
√

n+1
n+ j [1]. In this section we discuss

generalized Agler shifts. For j = 2, 3, 4, . . ., consider S(a, b, c, d) with d
c −

b
a = j − 1. Then its weights form of

αn =

√
a(n + q)

c(n + q + j − 1)
, n = 0, 1, 2, . . . .

These weighted shifts are called j-th Agler-type (weighted) shifts [4]. Theorem 2.9 shows a result for the
second Agler-type shifts. We now discuss the Berger measure of Schur product of the third Agler-type
shifts. By (1.5), the property 5◦(ii) in Section 1 and Lemma 2.8, we can obtain the following corollary.

Corollary 3.1. Let Wα ≡ S(a, aq, c, c(q + 2)). Then the Berger measure µ of Wα is given by

dµ(t) = q(q + 1)
( c

a

)q
tq−1

(
1 −

c
a

t
)

dt

with suppµ =
[
0, a

c

]
and the Berger measure µ ∗ µ of Wα2 is given by

d(µ ∗ µ)(t) = (dµ(t))2 = q2(q + 1)2
( c

a

)2q
tq−1

[
2
(( c

a

)2
t − 1

)
−

(( c
a

)2
t + 1

)
ln

( c
a

)2
t
]

dt

with suppµ =
[
0,

(
a
c

)2
]
.
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The above corollary presents the square of the Berger measure for the second Agler-type shifts. The
following theorem is related to convolutions of the Berger measures for two different second Agler-type
shifts.

Theorem 3.2. Let q1 ≤ q2 be positive real numbers and let Wα ≡ S(1, q1, 1, q1+2) and Wβ ≡ S(1, q2, 1, q2+2). Then
the Berger measure of Wα◦β is

dµ(t) =


q2

1(q1 + 1)2tq−1 [2 (t − 1) − (t + 1) ln t] dt, q2 = q1,
q1(q1+1)2(q1+2)

2 tq1−1
(
1 − t2 + 2t ln t

)
dt, q2 = q1 + 1,

q1q2(q1 + 1)(q2 + 1)
(q2−q1+1)(tq2−1

−tq1 )−(q2−q1−1)(tq2−tq1−1)
(q2−q1−1)(q2−q1)(q2−q1+1) dt, otherwise,

with suppµ = [0, 1]. Moreover, for q2 , q1, q1 + 1, if q2 approaches q1 (resp. q1 + 1), then dµ(t) converges to the
Berger measure for the case q1 = q2 (resp. q2 = q1 + 1).

Proof. From Corollary 3.1 with a = c = 1, the case of q1 = q2 was proved. Now we assume q1 < q2. By (1.3),
the n-th moment of α ◦ β is

γn(α ◦ β) = q1q2(q1 + 1)(q2 + 1)
∫ 1

0
tn+q1−1(1 − t)dt

∫ 1

0
sn+q2−1(1 − s)ds

= q1q2(q1 + 1)(q2 + 1)
∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 (1 − t − s + ts)dtds.

By using the idea of the proof of Lemma 2.1, we have∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 dtds =

∫ 1

0
un uq1−1

− uq2−1

q2 − q1
du,∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 (−t)dtds =


∫ 1

0 un uq2−1
−uq1

q2−q1−1 du, q2 , q1 + 1,∫ 1

0 un (uq1 ln u) du, q2 = q1 + 1,∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 (−s)dtds =

∫ 1

0
un uq2 − uq1−1

q2 − q1 + 1
du,∫ 1

0

∫ 1

0
(ts)n+q1−1sq2−q1 (ts)dtds =

∫ 1

0
un uq1 − uq2

q2 − q1
du.

By direct computation, we have, for q2 , q1 + 1,

γn(α ◦ β) = q1q2(q1 + 1)(q2 + 1)
∫ 1

0
un

(q2 − q1 + 1)
(
uq2−1

− uq1
)
− (q2 − q1 − 1)

(
uq2 − uq1−1

)
(q2 − q1 − 1)(q2 − q1)(q2 − q1 + 1)

du,

and for q2 = q1 + 1,

γn(α ◦ β) = q1(q1 + 1)2(q1 + 2)
∫ 1

0
un+q1−1 1 − u2 + 2u ln u

2
du.

This is as desired. The convergence of measure, as q2 → q1, q1 + 1, holds by simple computation.

By Lemma 2.8, we can obtain a general version for the third Agler-type shifts S(a, aq, c, c(q + 2)).
Consider the Schur product of two j-th Agler-type shifts ( j ≥ 4); S(1, q1, 1, q1+ j−1) and S(1, q2, 1, q2+ j−1).

By (1.5), their Berger measures are dµ1(t) = (q1+ j−2)!
(q1−1)!( j−2)! t

q1−1(1 − t) j−2dt and dµ2(t) = (q2+ j−2)!
(q2−1)!( j−2)! t

q2−1(1 − t) j−2dt,
respectively. If q1 = q2 =: q, we can obtain the Berger measure of Schur square of j-th Agler-type shift by [4,
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Corollary 3.3]; for j = 4, the Berger measures are shown in the property 5◦(iii) in Section 1. Without loss of
generality, we assume that q1 < q2. Then the n-th moment of Schur product is

γn =

∫ 1

0

∫ 1

0
Ktn+q1−1sn+q2−1(1 − t) j−2(1 − s) j−2dtds

= K
∫ 1

0

∫ 1

0
tn+q1−1sn+q2−1(1 − t − s + ts) j−2dtds

= K
∫ 1

0

∫ 1

0

∑
k1+···+k4= j−2

k1,...,k4≥0

( j − 2)!
k1!k2!k3!k4!

(−1)k2+k3 tn+p1−1sn+p2−1dtds,

where K = (q1+ j−2)!
(q1−1)!( j−2)!

(q2+ j−2)!
(q2−1)!( j−2)! , p1 = q1 + k2 + k4 and p2 = q2 + k3 + k4, and then p1, p2 > 0. As you can

see, since the moment is a sum of finite terms, it suffices to find the Berger measure if we can express∫ 1

0

∫ 1

0 tn+p1−1sn+p2−1dtds as a single integral. By the idea of the proof in Theorem 3.2, we have∫ 1

0

∫ 1

0
tn+p1−1sn+p2−1dtds =


∫ 1

0 un+p1−1(− ln u)du, p1 = p2,∫ 1

0 un up1−1
−up2−1

p2−p1
du, p1 , p2.

(3.1)

By using (3.1), we can obtain the n-th moment of the Schur product two distinct j-th Agler-type shifts and
its Berger measure.

In [4], for p > 0, the p-th power measure for the second Agler-type shifts S(1, q, 1, q + 1) is given but it is
difficult to find the p-th power measures for the j-th Agler-type shifts S(1, q, 1, q+ j− 1), j ≥ 3. We conclude
this section with an interesting open problem:

Problem 3.3. Let j ≥ 3 be a positive integer.

(i) Find the p-th power of Berger measure of the specific j-th Agler shift for p > 0.
(ii) Find the Berger measure for the Schur product of mutually n distinct j-th Agler shifts for n ≥ 3.
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