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Abstract. Let X be a topological space, Y a uniform space and I an admissible ideal on the set N of
natural numbers. In this paper, we mainly study the conditions that be added to pointwise I-convergence
of a sequence of (continuous) functions in YX to preserve the continuity of the I-limit function. Ideal
versions of weak exhaustiveness, semi-exhaustiveness, semi-uniform convergence, α-convergence and
semi-α convergence of sequences of functions are introduced. Their relationships are clarified. Assume
that a sequence of functions { fn}n∈N pointwise I-converges to f , we prove that:

(a) f is continuous if and only if the sequence { fn}n∈N is weakly I-exhaustive.
(b) If the sequence { fn}n∈N is semi-I-exhaustive, then f is continuous.
(c) If the sequence { fn}n∈N semi-uniformly I-converges to f and fn is continuous for every n ∈ N, then

f is continuous.
(d) If I is “good” and X is first countable, then { fn}n∈N is I-α convergent to f if and only if { fn}n∈N is

I-exhaustive.
(e) If the sequence { fn}n∈N semi-I-α converges to f , then f is continuous.

1. Introduction

It is well known that the pointwise limit of a sequence of continuous functions is not necessarily a
continuous function. So one of the central questions in analysis is what precisely must be added to pointwise
convergence of a sequence of continuous functions to preserve the continuity of the limit function. In 1841,
Weierstrass gave a sufficient condition called uniform convergence which yields the continuity of the limit
function. After that, Dini [16], Arzelà [2], Bartel [5] and Alexandroff [1] et al. further studied this problem.

The notion of α-convergence (also known as continuous convergence) had been known at the beginning
of the 20th century. One of the interesting facts about α-convergence (proved by Stoilov [35]) is that it
preserves the continuity of the limit function of sequences of functions in metric spaces. In 1993, Ewert [19]
introduced almost uniform convergence of sequences of functions, which preserves the continuity of the
pointwise limit of a sequence of continuous functions and is weaker than uniform convergence.
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In 2008, Gregoriades and Papanastassiou [23] introduced the concepts of exhaustiveness and weak
exhaustiveness of a sequence of functions in metric spaces. These notions view the convergence of a
sequence of functions in terms of properties of the sequence and not of properties of functions as single
members. Particularly, a necessary and sufficient condition for the continuity of the pointwise limit of a
sequence of functions (not necessarily continuous) was given by the notion of weak exhaustiveness.

Recently, Papanastassiou [32] introduced semi-exhaustiveness, semi-uniform convergence and semi-
α convergence of sequences of functions in metric spaces, which are strictly weaker than exhaustiveness,
almost uniform convergence and α-convergence, respectively. He proved that: (1) If a sequence of functions
is semi-exhaustive and pointwise convergent, then the limit function is continuous; (2) If a sequence of
functions is semi-α convergent, then the limit function is continuous.

Statistical convergence is a generalization of usual convergence, which was first proposed by Zygmund
in the first edition of his monograph [44] in 1935, and formally introduced by Fast [20] and Steinhaus [34]
independently in 1951. Statistical convergence has wide applications in different fields of mathematics, see
[4, 6, 7, 9, 15, 18, 21, 22, 25, 28, 33, 36] etc. Based on the relevant concepts of statistical convergence, Caserta
and Kocinač [8] defined statistical versions of exhaustiveness, weak exhaustiveness and α-convergence of
sequences of functions in metric spaces. Particularly, they obtained some results about the continuity of the
statistical pointwise limit of a sequence of functions.

The idea of statistical convergence had been extended to I-convergence by Kostyrko et al. in [26] with
the help of ideals. I-convergence includes ordinary convergence and statistical convergence when I is
the ideal of all finite subsets of the set of natural numbers and all subsets of the set of natural numbers of
natural density zero, respectively. P. Das [13, p.78] said that “This approach is much more general as most
of the known convergence methods become special cases, but many questions regarding this convergence
still remain open as most results involving statistical convergence where the density function has been used
explicitly cannot be obtained for general ideals. So one of the most interesting areas of investigation is the
determination of those ideals for which these properties can be established.” Over the last 20 years, a lot of
work has been done on I-convergence and associated topics, it has turned out to be one of the most active
research areas in Topology and Analysis, for more details see [3, 10–12, 14, 24, 27, 29, 31, 37–43] etc.

Ideal versions of exhaustiveness, weak exhaustiveness and α-convergence (of a sequence of functions)
were given by Papachristodoulos et al. in [31]. They found that for an I-convergence of sequence
of functions in metric spaces, the I-limit function is continuous if and only if the sequence is weakly
I-exhaustive. Megaritis in [30] introduced ideal versions of uniform convergence and almost uniform
convergence of nets of functions from a topological space to a uniform space. Megaritis proved that
uniform I-convergence and almost uniform I-convergence preserve the continuity of the I-limit function
of a sequence of continuous functions. He also defined the notion of I-equicontinuous family of functions
on which pointwise and uniform I-convergence coincide on compact sets, and gave a necessary and
sufficient condition for a net of continuous functions from a compact space to a uniform space pointwise
I-converges to a continuous function.

Let X be a topological space and Y a uniform space. In this paper, we mainly study the conditions
that must be added to pointwise I-convergence of a sequence of (continuous) functions in YX to preserve
the continuity of the I-limit function. Ideal versions of weak exhaustiveness, semi-exhaustiveness, semi-
uniform convergence, α-convergence and semi-α convergence of sequences of functions are introduced.
Their relations are studied in detail. The results we obtained generalize the related results in the literature.
The paper is organized as follows.

In Section 3, we introduce the notion of weakI-exhaustiveness and semi-I-exhaustiveness of sequences
of functions. Some examples are constructed to clarify their relations. We prove that: (a) TheI-limit function
of a pointwise I-convergence of sequence of functions is continuous if and only if the sequence { fn}n∈N is
weaklyI-exhaustive. (b) If a sequence { fn}n∈N pointwiseI-converges to f and { fn}n∈N is semi-I-exhaustive,
then f is continuous.

In Section 4, we define the semi-uniform I-convergence of sequences of functions. The relations of
uniform convergence, almost uniform convergence, semi-uniform convergence and their ideal versions are
clarified. We prove that: if a sequence of continuous functions { fn}n∈N semi-uniformly I-converges to f ,
then f is continuous. Also, the connections among uniform I-convergence, almost uniform I-convergence
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and I-exhaustiveness are studied.
In Section 5, I-α convergence and semi-I-α convergence of sequences of functions are considered. We

show that: (a) If I is “good” and X is first countable, then a sequence of functions { fn}n∈N is I-α convergent
to f if and only if { fn}n∈N is I-exhaustive and pointwise I-convergent to f . (b) If a sequence of functions
{ fn}n∈N semi-I-α converges to f , then f is continuous. (c) The following (1)-(3) are equivalent: (1) The
sequence { fn}n∈N is semi-I-exhaustive and { fn}n∈N pointwise I-converges to f . (2) The sequence { fn}n∈N
semi-I-α converges to f . (3) The sequence { fn}n∈N semi-uniformly I-converges to f and the function f is
continuous.

2. Preliminaries

Throughout the paper, N denotes the set of all positive integers, X denotes a topological space and Y
a uniform space with the uniformly U , unless stated otherwise. YX (resp. C(X,Y)) denotes the set of all
mapping (resp. all continuous functions) from X to Y. The sequence of functions { fn}n∈N always defined in
YX. Readers may consult [17] for notation and terminology not given here.

Definition 2.1. ([26]) Let I be a family of non-empty subsets onN, I is said to be an ideal if:
(1) A,B ∈ I implies A ∪ B ∈ I;
(2) A ∈ I, B ⊆ A implies B ∈ I.

An ideal is said to be non-trivial if I , {∅} and N < I. A non-trivial ideal I is called admissible if
I ⊇ {{n} : n ∈N}. Clearly, every non-trivial ideal I defines a dual filter F (I) = {A ⊆N :N \ A ∈ I} onN.

In this paper, I denotes an admissible ideal onN unless stated otherwise.

Definition 2.2. ([26]) Let X be a topological space. A sequence {xn}n∈N in X is said to be I-convergent to a
point x ∈ X if for each neighborhood U of x, we have the set {n ∈ N : xn < U} ∈ I. In this case we write

I-lim xn = x or xn
I
→ x.

If I is the class I f of all finite subsets ofN, then I f is an admissible ideal and I f -convergence coincides
with the usual convergence of a sequence; if Id is the class of all A ⊆ N with d(A) = 0, where d(A) denotes
the asymptotic density of the set A, then Id is an admissible ideal and Id-convergence coincides with the
statistical convergence.

Definition 2.3. ([17]) A uniformity on a set X is a collection U of subsets of X × X satisfying the following
properties:

(1) If V ∈ U ,V ⊆W, then W ∈ U .
(2) If V ∈ U , then V−1

∈ U , where V−1 = {(x, y) : (y, x) ∈ V}.
(3) If V1,V2 ∈ U , then V1 ∩ V2 ∈ U .
(4) For every V ∈ U there exists W ∈ U such that 2W =W +W ⊆ U , where W +W = {(x, z): there exists

y ∈ X, such that (x, y) ∈W, (y, z) ∈W}.
(5)
⋂

U∈U
U =△, where △= {(x, x) : x ∈ X}.

A uniform space is a pair (X,U ) consisting of a set X and a uniformity U on the set X. The elements of U
are called entourages. An entourage V is called symmetric if V−1 = V. For every V ∈ U and (x, y) ∈ X × X,
if (x, y) ∈ V, we say that the distance between x and y is less than V and we write |x − y| < V; otherwise we
write |x − y| ≥ V.

For every U ∈ U and x0 ∈ X, the set U[x0] = {x ∈ X : |x0 − x| < U} is called the ball with centre x0 and radius
U, or briefly the U-ball about x0.

A mapping f from a topological space X to a uniform space (Y,U ) is called continuous at x0 if for
every U ∈ U there exists an open neighborhood Ox0 of x0 such that f (Ox0 ) ⊆ U[ f (x0)] or equivalently
| f (x0) − f (x)| < U, for each x ∈ Ox0 . The mapping f is called continuous if it is continuous at each point of X.
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Definition 2.4. ([30]) Let { fn}n∈N be a sequence of functions from a non-empty set X to a uniform space
(Y,U ). The sequence { fn}n∈N is said to pointwise I-converge to f on X if for each x ∈ X and U ∈ U , the set
{n ∈N : | f (x) − fn(x)| ≥ U} ∈ I or equivalently for each x ∈ X and U ∈ U , there exists a set A ∈ I, such that

for every n < A we have | f (x) − fn(x)| < U. In this case we write fn
I
→ f and f is called the I-limit function

of { fn}n∈N.

Definition 2.5. Let (X, d), (Y, ρ) be metric spaces, { fn}n∈N be a sequence of functions in YX and f ∈ YX.
(1) The sequence { fn}n∈N is said to α-converge ([23]) to f if for every x ∈ X and for every sequence {xn}n∈N

of points of X converging to x, the sequence { fn(xn)}n∈N converges to f (x).
(2) The sequence { fn}n∈N is said to be exhaustive ([23]) if for each x ∈ X and ε > 0, there exists δ > 0 and

n0 ∈N such that for each y ∈ S(x, δ) and n ≥ n0 we have ρ( fn(y), fn(x)) < ε.
(3) The sequence { fn}n∈N is said to be weakly exhaustive ([23]) if for each x ∈ X and ε > 0 there exists δ > 0

such that for each y ∈ S(x, δ) there exists ny ∈N such that for every n ≥ ny we have ρ( fn(y), fn(x)) < ε.
(4) The sequence { fn}n∈N is said to converge almost uniformly to f ([19]) on X if for each x ∈ X and ε > 0,

there exists δ > 0 and n0 ∈N such that ρ( fn(y), f (y)) < ε for each y ∈ S(x, δ) and n ≥ n0.
(5) The sequence { fn}n∈N is said to semi-α converge to f at x if
(5a) fn(x)→ f (x);
(5b) for each ε > 0 there exists δ = δ(ε, x) > 0 such that for every n ∈ N there exists m ∈ N, m ≥ n such

that ρ( fm(y), f (x)) < ε for each y ∈ S(x, δ).
The sequence { fn}n∈N is said to be semi-α convergent ([32]) if it is semi-α convergent at each x ∈ X. A sequence
of functions { fn}n∈N is said to have the semi-α property with respect to f if { fn}n∈N satisfies the condition (5b).

Definition 2.6. ([32]) Let X be a topological space, (Y, ρ) be a metric space, x ∈ X, { fn}n∈N be a sequence of
functions in YX and f ∈ YX. The sequence { fn}n∈N is said to be semi-uniformly convergent to f at x if

(1) fn(x)→ f (x);
(2) for each ε > 0 there exists a neighborhood O of x such that for every n ∈N there exists m ∈N,m ≥ n

such that ρ( fm(y), f (y)) < ε for each y ∈ O.
The sequence { fn}n∈N is said to be semi-uniformly convergent if it is semi-uniformly convergent at each x ∈ X.

The notions in Definitions 2.5 and 2.6 can be extended to sequences of functions from topological spaces
to uniform spaces.

Definition 2.7. ([30]) Let X be a topological space, (Y,U ) be a uniform space, { fn}n∈N be a sequence of
functions in YX and f ∈ YX.

(1) The sequence { fn}n∈N is said to I-converge uniformly to f on X if for every U ∈ U there exists A ∈ F (I)
such that for every n ∈ A and x ∈ X we have | fn(x) − f (x)| < U.

(2) The sequence { fn}n∈N is said to I-converge almost uniformly to f on X if for each x ∈ X and U ∈ U
there exists A ∈ F (I) and an open neighborhood Ox of x such that for every n ∈ A and y ∈ Ox we have
| fn(y) − f (y)| < U.

(3) The sequence { fn}n∈N is said to beI-exhaustive at x ∈ X if for every U ∈ U , there exists a neighborhood
O of x and a set M ∈ F (I) such that | fn(y) − fn(x)| < U for every n ∈ M and y ∈ O. The sequence { fn}n∈N is
said to be I-exhaustive if it is I-exhaustive at each x ∈ X.

Remark 2.8. (1) The notions in Definition 2.7 can be defined in general forms [30], we state here only for
sequences of functions.

(2) In [30], the author called I-exhaustiveness (of a sequence of functions) as I-equicontinuity, it is the
same as the notion of I-exhaustiveness defined in [31]. Thus, we also use the notion of I-exhaustiveness.

3. I -exhaustive, weakly I -exhaustive and semi-I -exhaustive sequences of functions

In the first part of this section, we define ideal version of weak exhaustiveness of sequences of functions
with values in uniform spaces. Many examples are constructed to clarify the relations among exhaus-
tiveness, weak exhaustiveness and their ideal versions. We mainly prove that the pointwise I-limit of a
sequence of functions is continuous if and only if the sequence is weakly I-exhaustive.
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Definition 3.1. A sequence of functions { fn}n∈N is said to be weakly I-exhaustive at x ∈ X if for every U ∈ U ,
there exists a neighborhood O of x such that for each y ∈ O there is a set My ∈ F (I) such that | fn(y)− fn(x)| < U
for every n ∈My. The sequence { fn}n∈N is said to be weakly I-exhaustive if it is weakly I-exhaustive at each
x ∈ X.

Obviously, each I-exhaustive sequence of functions is weakly I-exhaustive. However, there exists a
weakly I-exhaustive sequence of functions which is not I-exhaustive for any ideal I.

Example 3.2. There is a weakly I-exhaustive sequence of functions which is not I-exhaustive.

Proof. Consider the sequence of functions { fn}n∈N in RR defined as follows:

fn(x) =


1/4n, if x ≤ 0;
n, if x = 1/n;

1/n, if x > 0, x , 1/n.

Obviously, { fn}n∈N pointwise converges to f ≡ 0. By [23, Theorem 4.2.3], { fn}n∈N is weakly exhaustive, and
then it is weakly I-exhaustive. However, taking x0 = 0 and ε = 1/4. For each δ > 0 and A ∈ F (I), since the
set A is infinite, there exists n0 ∈ A such that 1/n0 < δ. Taking y0 = 1/n0, then | fn0 (y0)− fn0 (0)| = n0 − 1/4n0 ≥

1/4. It follows that { fn}n∈N is not I-exhaustive at x0 = 0.

An exhaustive sequence of functions is I-exhaustive, and a weakly exhaustive sequence of functions is
weakly I-exhaustive, but the converse is not true for any I , I f . Actually, we have the following example.

Example 3.3. If I , I f , there is an I-exhaustive sequence of functions which is not weakly exhaustive.

Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =


1, if n < A;
1, if n ∈ A, x < 0;
1/n, if n ∈ A, x ≥ 0.

For each x ∈ R and ε > 0, let M = N \ A ∈ F (I). Choose a neighborhood O of x, then we have
| fn(y) − fn(x)| = 0 < ε for every n ∈ M and y ∈ O. It follows that the sequence { fn}n∈N is I-exhaustive.
However, the sequence { fn}n∈N is not weakly exhaustive at x0 = 0. Indeed, taking ε = 1/2, for each δ > 0,
pick y0 ∈ (−δ, 0). Since the set A is infinite, for every n ∈ N, there exists n0 ∈ A with n0 > n such that
| fn0 (y0) − fn0 (0)| = |1 − 1/n0| ≥ 1/2. It shows that { fn}n∈N is not weakly exhaustive at x0 = 0. Therefore, the
sequence { fn}n∈N is not weakly exhaustive.

Since every exhaustive sequence of functions is weakly exhaustive and every I-exhaustive sequence of
functions is weakly I-exhaustive, Example 3.3 shows that if I , I f , there is an I-exhaustive sequence of
functions which is not exhaustive, and there is a weakly I-exhaustive sequence of functions which is not
weakly exhaustive.

The following theorem is one of the main results in this section.

Theorem 3.4. If fn
I
→ f ∈ YX, then f is continuous if and only if the sequence { fn}n∈N is weakly I-exhaustive.

Proof. (⇒) For every U ∈ U , there exists a symmetric entourage V ∈ U such that 3V ⊆ U. For each x ∈ X,
from the continuity of f at x there exists a neighborhood O of x such that

| f (y) − f (x)| < V (i)

for each y ∈ O. Since { fn}n∈N pointwise I-converges to f , it follows that there exists an Ay ∈ F (I) such that
for every n ∈ Ay we have

| fn(y) − f (y)| < V, | fn(x) − f (x)| < V. (ii)
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Thus, for every n ∈ Ay, it follows from (i) and (ii) that

| fn(y) − fn(x)| < 3V ⊆ U,

which implies that { fn}n∈N is weakly I-exhaustive at x. Therefore, { fn}n∈N is weakly I-exhaustive.
(⇐) For every U ∈ U , there exists a symmetric entourage V ∈ U such that 3V ⊆ U. For each x ∈ X,

since { fn}n∈N is weakly I-exhaustive at x, there is a neighborhood O of x such that for each y ∈ O there is a
set My ∈ F (I) such that

| fn(y) − fn(x)| < V (iii)

for every n ∈My. Since { fn}n∈N pointwise I-converges to f , it follows that there is a set Ay ∈ F (I) such that

| fn(y) − f (y)| < V, | fn(x) − f (x)| < V (iv)

for every n ∈ Ay. Taking an arbitrary n ∈ Ay ∩My, from (iii) and (iv), it follows that

| f (y) − f (x)| < 3V ⊆ U,

which shows that f is continuous at x, and then f is continuous.

Since an I-exhaustive sequence of functions is weakly I-exhaustive, the following corollary can be
obtained directly from Theorem 3.4.

Corollary 3.5. If fn
I
→ f ∈ YX and { fn}n∈N is I-exhaustive, then f is continuous.

Example 3.2 shows that there is a sequence of functions { fn}n∈N, which is not I-exhaustive, pointwise
I-convergent to a continuous function.

In the rest of this section, we will consider ideal version of semi-exhaustiveness of sequences of functions.
In [32], the author considered the semi-exhaustiveness of sequences of functions in metric spaces. Similarly,
we can define the semi-exhaustiveness of sequences of functions from a topological space X to a uniform
space (Y,U ).

Definition 3.6. A sequence of functions { fn}n∈N is said to be semi-exhaustive at x ∈ X if for every U ∈ U ,
there exists a neighborhood O of x such that for every n ∈ N there exists m ∈ N, m > n such that for each
y ∈ O we have | fm(y) − fm(x)| < U. The sequence { fn}n∈N is said to be semi-exhaustive if it is semi-exhaustive
at each x ∈ X.

According to definitions, an I-exhaustive sequence of functions is semi-exhaustive, but the converse
is not true. In [32], the author gave an example showing that there exists a semi-exhaustive sequence of
functions which is not exhaustive, but we can check that Example 3.3 in [32] is exhaustive at each point.
Thus, we construct the following example.

Example 3.7. There is a semi-exhaustive sequence of functions which is not weakly exhaustive.

Proof. Consider the sequence of functions { fn}n∈N in RR defined as follows:

fn(x) =


1, if n is odd;
1, if n is even and x < 0;
1/n, if n is even and x ≥ 0.

For each x ∈ R and ε > 0, taking an arbitrary neighborhood O of x. For every n ∈N there exists m > n with
m is odd such that | fm(y)− fm(x)| = 0 < ε for all y ∈ O. It shows that { fn}n∈N is semi-exhaustive. However, the
sequence { fn}n∈N is not weakly exhaustive at x0 = 0. Indeed, taking ε = 1/2, for each δ > 0, pick y0 ∈ (−δ, 0).
For every n ∈N, there is n0 > n with n0 is even such that | fn0 (y0) − fn0 (0)| = 1 − 1/n0 ≥ 1/2.

Example 3.8. If I , I f , there is a semi-exhaustive sequence of functions which is not weakly I-exhaustive.
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Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =


1, if n ∈ A;
1, if n < A, x < 0;
1/n, if n < A, x ≥ 0.

For each x ∈ R and ε > 0, taking an arbitrary neighborhood O of x. For every n ∈ N, since the set A is
infinite, there is m ∈ A with m > n such that | fm(y) − fm(x)| < ε for each y ∈ O. It follows that { fn}n∈N is
semi-exhaustive. However, taking ε = 1/2, for each δ > 0, pick y0 ∈ (−δ, 0). For every M ∈ F (I), since the
set B = M ∩ (N \ A) ∈ F (I) is infinite, there is n0 ∈ B such that | fn0 (y0) − fn0 (0)| = 1 − 1/n0 ≥ 1/2. It follows
that the sequence { fn}n∈N is not weakly I-exhaustive at x0 = 0.

Let (X, d) and (Y, ρ) be metric spaces, if the sequence { fn}n∈N is semi-exhaustive at x ∈ X and point-
wise convergent to f , then f is continuous at x [32, Proposition 4.3]. When I , I f , let { fn}n∈N be the
sequence of functions in Example 3.8. Then { fn}n∈N is semi-exhaustive and pointwise I-convergent to

f (x) =
{

1, x < 0;
0, x ≥ 0. This shows that semi-exhaustiveness is too weak to preserve the continuity of the

I-limit ofI-convergence. Thus we define ideal version of semi-exhaustiveness (of a sequence of functions).

Definition 3.9. A sequence of functions { fn}n∈N is said to be semi-I-exhaustive at x ∈ X if for every U ∈ U ,
there exists a neighborhood O of x such that for every A ∈ F (I) there exists m ∈ A such that for each y ∈ O
we have | fm(y)− fm(x)| < U. The sequence { fn}n∈N is said to be semi-I-exhaustive if it is semi-I-exhaustive at
each x ∈ X.

We can check that semi-I-exhaustiveness implies semi-exhaustiveness, and semi-I-exhaustiveness co-
incides with semi-exhaustiveness whenever I = I f . However, there exists a semi-exhaustive sequence of
functions which is not semi-I-exhaustive for any I , I f .

Example 3.10. If I , I f , there is a semi-exhaustive sequence of functions which is not semi-I-exhaustive.

Proof. Consider the sequence of functions { fn}n∈N defined in Example 3.8, then the sequence { fn}n∈N is
semi-exhaustive. However, it is not semi-I-exhaustive at x0 = 0. Indeed, taking ε = 1/2, then for each
δ > 0, put M = (N \ A) ∩ {n ∈ N : n > 1} ∈ F (I). For every n ∈ M, there exists y0 ∈ (−δ, 0) such that
| fn(y0) − fn(0)| = 1 − 1/n ≥ 1/2. It follows that the sequence { fn}n∈N is not semi-I-exhaustive at x0 = 0.

According to the definition of I-exhaustiveness, an I-exhaustive sequence of functions is semi-I-
exhaustive. A natural question is whether a semi-I-exhaustive sequence of functions is I-exhaustive? We
will give a complete answer to this question.

Using Zorn’s lemma, we can show that in the family of all ideal ofN, there exists a maximal ideal (with
respect to inclusion).

Lemma 3.11. [13] Let I0 be an ideal onN. Then I0 is a maximal ideal if and only if (A ∈ I0)∨ (N \A ∈ I0) holds
for each A ⊆N.

Example 3.12. If I is not a maximal ideal, there exists a semi-I-exhaustive sequence of functions which is
not weakly I-exhaustive.

Proof. Since I is not maximal, by Lemma 3.11, there exists an infinite set M ⊆ N such that M < I and
N \M < I. Consider the sequence of functions { fn}n∈N in RR defined as follows:

fn(x) =


1, if n ∈M;
0, if n <M, x = 0;
1, if n <M, x , 0.
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For each x ∈ R and ε > 0, taking an arbitrary neighborhood O of x. For every A ∈ F (I), since the set
M < I, there is m ∈ A ∩ M such that | fm(y) − fm(x)| = 0 < ε for each y ∈ O. It follows that { fn}n∈N is
semi-I-exhaustive. However, taking ε = 1/2, then for each δ > 0, pick y0 ∈ S(0, δ) \ {0}. For every A ∈ F (I),
since the setN \M < I, there exists n0 ∈ A∩ (N \M) such that| fn0 (y0) − fn0 (0)| = 1 ≥ 1/2. It follows that the
sequence { fn}n∈N is not weakly I-exhaustive at x0 = 0.

When I is a maximal ideal, we have the following result.

Theorem 3.13. Let I be a maximal ideal on N. If a sequence of functions { fn}n∈N is semi-I-exhaustive, then it is
also I-exhaustive.

Proof. Since { fn}n∈N is semi-I-exhaustive, for each x ∈ X and U ∈ U , there exists a neighborhood O of x
such that for every A ∈ F (I) there exists m ∈ A such that for each y ∈ O we have | fm(y) − fm(x)| < U. Let

M = {n ∈N : | fn(y) − fn(x)| < U for each y ∈ O},

then | fn(y) − fn(x)| < U for each n ∈M and y ∈ O. We claim that M ∈ F (I). Suppose that M < F (I), since I
is maximal, this means thatN\M ∈ F (I). Therefore, there exists m ∈N\M such that | fm(y)− fm(x)| < U for
all y ∈ O. By the construction of M, we can conclude that m ∈ M, which is a contradiction. Hence, { fn}n∈N
is I-exhaustive at x, and then { fn}n∈N is I-exhaustive.

The following theorem is the other main result in this section.

Theorem 3.14. If fn
I
→ f ∈ YX and { fn}n∈N is semi-I-exhaustive, then f is continuous.

Proof. For every U ∈ U there exists a symmetric entourage V ∈ U such that 3V ⊆ U. For each x ∈ X, since
{ fn}n∈N is semi-I-exhaustive at x, there exists a neighborhood O of x such that for every A ∈ F (I) there is
m ∈ A such that for each y ∈ O we have

| fm(y) − fm(x)| < V.

By assumption, { fn}n∈N pointwise I-converges to f , then for each y ∈ O there exists Ay ∈ F (I) such that

| fn(y) − f (y)| < V, | fn(x) − f (x)| < V

for every n ∈ Ay. Thus, for each y ∈ O, there exists m ∈ A ∩ Ay such that

| fm(y) − fm(x)| < V, | fm(y) − f (y)| < V, | fm(x) − f (x)| < V.

It follows that | f (y) − f (x)| < 3V ⊆ U, which implies that f is continuous at x. Thus f is continuous.

The following example shows that if a sequence of functions { fn}n∈N pointwise I-converges to a contin-
uous function, then the sequence is not necessarily semi-I-exhaustive.

Example 3.15. There is a sequence of functions which is pointwise I-convergent to a continuous function
but the sequence is not semi-exhaustive.

Proof. Consider the sequence of functions { fn}n∈N defined in Example 3.2. Let f (x) = 0 for each x ∈ R. It
is easy to check that the sequence { fn}n∈N pointwise I-converges to f . Taking ε = 1/4. For each δ > 0
there exists n0 ∈ N such that 1/n0 < δ. Then for every n > n0 there exists y0 = 1/n < 1/n0 < δ such that
| fn(y0) − fn(0)| = |n − 1/4n| ≥ 1/4. It follows that the sequence { fn}n∈N is not semi-exhaustive at x0 = 0.

Since a semi-I-exhaustive sequence of functions is semi-exhaustive, it follows that the sequence { fn}n∈N
defined in Example 3.15 is not semi-I-exhaustive.

The following figure shows the main relations between all types of exhaustiveness (of a sequence of
functions) discussed in this section. The symbol M denotes the family of all maximal ideal on N. The
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arrows connecting to “ f is continuous ” in this figure need the sequences of functions pointwiseI-converges
to f .
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4. Uniform I -convergence, Almost uniform I -convergence and semi-uniform I -convergence

In the first part of this section, we further study the notions of uniform convergence, almost uniform
convergence and their ideal versions, which were introduced in [30]. Some examples are constructed to
clarify their relations. The connections among uniform I-convergence, almost uniform I-convergence and
I-exhaustiveness are also studied.

Obviously, a uniform convergence of sequence of functions is uniform I-convergence, and an almost
uniform convergence of sequence of functions is almost uniform I-convergence, but the converse is not
true for any I , I f . Actually, we have the following example.

Example 4.1. If I , I f , there is a uniformly I-convergent sequence of functions which is not almost
uniformly convergent.

Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =

 1, if n ∈ A;
x

1 + n2x2 , if n < A.

Let f (x) = 0 for every x ∈ R, then

| fn(x) − f (x)| ≤
|x|

1 + n2x2 ≤
1

2n

for each x ∈ R and n < A. For each ε > 0, taking n0 = [
1
2ε

] + 1. Then

| fn(x) − f (x)| ≤
1

2n
< ε
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for each x ∈ R and n ∈ M = (N \ A) ∩ {n ∈ N : n > n0}. Since M ∈ F (I), it follows that { fn}n∈N I-converges
uniformly to f . However, { fn}n∈N does not converge to f , thus { fn}n∈N does not almost uniform converge to
f .

Uniform I-convergence of a sequence of functions implies almost uniform I-convergence, but the
converse is not true for any ideal I.

Example 4.2. There is an almost uniformly I-convergent sequence of functions which is not uniformly
I-convergent.

Proof. Let X = (0, 1). Consider the sequence of functions { fn}n∈N in RX defined as follows:

fn(x) =
1

nx
, for every n ∈N.

Let f (x) = 0 for each x ∈ X and take ε = 1. For every A ∈ F (I), pick n0 ∈ A and x0 = 1/(n0 + 1) ∈ (0, 1). Then

| fn0 (x0) − f (x0)| = |
n0 + 1

n0
| = 1 +

1
n0
> 1.

It follows that { fn}n∈N does not I-converge uniformly to f .
On the other hand, for each x ∈ (0, 1) and ε > 0, there exists a neighborhood Ox of x and a, b ∈ (0, 1) with

a < b such that Ox ⊆ (a, b) ⊆ (0, 1). Thus

| fn(y) − f (y)| =
1

ny
<

1
na

for each y ∈ Ox. Pick n0 = [
1
aε

]+ 1 and A = {n ∈N : n > n0}, then | fn(y)− f (y)| =
1

ny
< ε for each y ∈ Ox and

n ∈ A. Therefore, { fn}n∈N I-converges almost uniformly to f .

The following theorem shows the connection among I-exhaustiveness, uniform I-convergence and
almost uniform I-convergence.

Theorem 4.3. Let { fn}n∈N be a sequence of functions in YX and f ∈ YX, then the following are equivalent:

(1) fn
I
→ f and the sequence { fn}n∈N is I-exhaustive.

(2) The sequence { fn}n∈N I-converges almost uniformly to f and f is continuous.
If X is compact, then (1) and (2) are equivalent also to:
(3) The sequence { fn}n∈N I-converges uniformly to f .

Proof. (1)⇒ (2) and (2)⇔ (3) see [30, Theorems 5.3 and 6.2], we prove (2)⇒ (1).

(2)⇒ (1) It is obvious that (2) implies fn
I
→ f , hence we only need to prove that { fn}n∈N is I-exhaustive.

For every U ∈ U there exists a symmetric entourage V ∈ U such that 3V ⊆ U. Since { fn}n∈N I-converges
almost uniformly to f , for each x ∈ X there is a neighborhood Px of x and A1 ∈ F (I) such that

| fn(y) − f (y)| < V (v)

for every n ∈ A1 and y ∈ Px. By the continuity of f , there exists a neighborhood Qx of x such that

| f (y) − f (x)| < V (vi)

for each y ∈ Qx. Since fn
I
→ f , there exists A2 ∈ F (I) such that

| fn(x) − f (x)| < V (vii)

for every n ∈ A2. Let Ox = Px ∩Qx and A = A1 ∩ A2, it follows from (v)-(vii) that

| fn(y) − fn(x)| < 3V ⊆ U

for each y ∈ Ox and n ∈ A. Thus { fn}n∈N is I-exhaustive at x. Therefore, the sequence { fn}n∈N is I-
exhaustive.
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The author in [32] introduced the concept of semi-uniform convergence. He pointed out that the notion
of semi-uniform convergence lies between almost uniform and simple uniform convergence. Thus it is
natural to consider the properties of ideal version of semi-uniform convergence, which is the main topic in
the rest of this section.

Definition 4.4. A sequence of functions { fn}n∈N is said to semi-uniformly I-converge to f at x if

(1) fn(x) I→ f (x);
(2) for every U ∈ U there exists a neighborhood O of x such that for every A ∈ F (I) there exists m ∈ A

such that | fm(y) − f (y)| < U for all y ∈ O.
The sequence { fn}n∈N is said to semi-uniformly I-converge if it semi-uniformly I-converges at each x ∈ X.

From the definitions of semi-uniform I-convergence and semi-uniform convergence, it is easy to check
that when I = I f , semi-uniform I-convergence coincides with semi-uniform convergence. However, they
are very different whenever I , I f .

Example 4.5. If I , I f , there is a semi-uniformly convergent sequence of functions which is not semi-
uniformly I-convergent.

Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =


1/n, if n ∈ A;
0, if n < A, x ∈ (−∞,−1/n] ∪ [0,+∞);
2nx + 2, if n < A, x ∈ (−1/n,−1/2n];
−2nx, if n < A, x ∈ (−1/2n, 0).

Let f (x) = 0 for each x ∈ R. Then the sequence { fn}n∈N pointwise converges to f , which means that it is
pointwise I-convergent to f . For each x ∈ R and ε > 0, taking an arbitrary neighborhood O of x. For every
n ∈N, since the set A is infinite, there exists m ∈ A with m ≥ n such that | fm(y) − f (y)| = |1/m − 0| < ε for all
y ∈ O. Thus, { fn}n∈N is semi-uniformly convergent to f .

However, { fn}n∈N does not semi-uniformly I-converge to f at x0 = 0. Indeed, taking ε = 1/2, then for
each δ > 0 there exists n0 ∈ N such that 1/2n < δ for every n ≥ n0. For every n ∈ M = (N \ A) ∩ {n ∈
N : n ≥ n0} ∈ F (I), pick y = −1/2n ∈ (−δ, δ), then | fn(y) − f (y)| = 1 > 1/2. It follows that { fn}n∈N does not
semi-uniformly I-converge to f at x0 = 0.

Example 4.6. If I , I f , there is a semi-uniformly I-convergent sequence of functions which is not semi-
uniformly convergent.

Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =
{

1, if n ∈ A;
1/n, if n < A.

Let f (x) = 0 for each x ∈ R, then the sequence { fn}n∈N pointwise I-converges to f . For each x ∈ R and ε > 0,
taking an arbitrary neighborhood O of x. Then there exists n0 ∈ N such that 1/n < ε for every n ≥ n0. For
every M ∈ F (I), since M1 = M ∩ (N \ A) ∩ {n ∈ N : n ≥ n0} , ∅, pick m ∈ M1, thus | fm(y) − f (y)| = 1/n < ε
for each y ∈ O. It follows that the sequence { fn}n∈N semi-uniformly I-converges to f . However, since
the set A is infinite, the sequence { fn}n∈N does not pointwise converge to f . Thus it is not semi-uniformly
convergent.

Next we will show that semi-uniform I-convergence preserves the continuity of the pointwise I-limit
of a sequence of continuous functions.

Theorem 4.7. Let { fn}n∈N be a sequence of functions in C(X,Y) and f ∈ YX. If { fn}n∈N semi-uniformly I-converges
to f , then f is continuous.
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Proof. For every U ∈ U there is a symmetric entourage V ∈ U such that 3V ⊆ U. For each x ∈ X, since
{ fn}n∈N semi-uniformly I-converges to f at x, there exists a neighborhood O1 of x such that for every
A ∈ F (I) there exists m ∈ A such that for each y ∈ O1 we have

| fm(y) − f (y)| < V.

As the sequence { fn}n∈N pointwise I-converges to f at x, there is A′ ∈ F (I) such that | fn(x) − f (x)| < V for
every n ∈ A′. Thus there is m ∈ A ∩ A′ such that

| fm(y) − f (y)| < V, | fm(x) − f (x)| < V. (viii)

By the continuity of fm, there exists a neighborhood O2 of x, such that

| fm(y) − fm(x)| < V (ix)

for each y ∈ O2. Let O = O1 ∩O2, then for each y ∈ O, from (viii) and (ix) we have

| f (y) − f (x)| < 3V ⊆ U.

Hence f is continuous at x, and then f is continuous.

The condition { fn}n∈N in C(X,Y) is necessary in Theorem 4.7.

Example 4.8. There is a sequence of functions { fn}n∈N semi-uniformly I-converging to a function f , which
is not continuous.

Proof. Consider the sequence of functions { fn}n∈N in RR defined as follows:

fn(x) =
{

1, if x = 0;
1/n, if x , 0.

Let f (x) =
{

1, x = 0;
0, x , 0. It is obvious that { fn}n∈N pointwise converges to f , which also means that { fn}n∈N

pointwise I-converges to f . For each x ∈ X, ε > 0, δ > 0 and A ∈ F (I), since A is infinite, there exists m ∈ A
such that 1/m < ε. Then for each y ∈ S(x, δ), if y = 0, we have | fm(y) − f (y)| = |1 − 1| = 0 < ε; if y , 0, we
have | fm(y) − f (y)| = 1/m < ε. It follows that { fn}n∈N semi-uniformly I-converges to f . However, f is not
continuous.

If a sequence of functions { fn}n∈N is pointwise I-convergent to a continuous function, the sequence may
not be semi-uniformly I-convergent.

Example 4.9. There is a sequence of continuous functions, which is pointwiseI-convergent to a continuous
function, but the sequence is not semi-uniformly I-convergent.

Proof. Let X = [0, 1]. Consider the sequence of functions { fn}n∈N in RX defined as follows:

fn(x) =
nx

1 + n2x2 .

Obviously the sequence { fn}n∈N pointwise I-converges to f ≡ 0. Take ε = 1/2. For each neighborhood O
of x0 = 0, there exists n0 ∈ N such that 1/n ∈ O for every n > n0. Put A = {n ∈ N : n > n0} ∈ F (I). Then
for every n ∈ A there is y0 = 1/n ∈ O such that | fn(y0) − f (y0)| = 1/2 ≥ ε. It follows that { fn}n∈N does not
semi-uniformly I-converge to f at x0 = 0.

An almost uniform I-convergence of sequence of functions is semi-uniform I-convergence, but the
converse is not true when I is not a maximal ideal.
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Example 4.10. IfI is not maximal, there exists a semi-uniformlyI-convergent sequence of functions which
is not almost uniformly I-convergent.

Proof. Since I is not a maximal ideal, by Lemma 3.11, there exists an infinite set M ⊆ N such that M < I
andN \M < I. Consider the sequence of functions { fn}n∈N in RR defined as follows:

fn(x) =


1/n, if n ∈M;
0, if n <M, x ∈ (−∞,−1/n] ∪ [0,+∞);
2nx + 2, if n <M, x ∈ (−1/n,−1/2n];
−2nx, if n <M, x ∈ (−1/2n, 0).

Let f (x) = 0 for each x ∈ R. It is obvious that { fn}n∈N pointwise converges to f , then it pointwiseI-converges
to f . For each x ∈ R and ε > 0, taking an arbitrary neighborhood O of x. For every A ∈ F (I), since M < I,
A ∩M is infinite. Therefore, there exists m ∈ A ∩M such that | fm(y) − f (y)| = |1/m − 0| < ε for each y ∈ O.
Thus, { fn}n∈N semi-uniformly I-converges to f .

However, { fn}n∈N does not almost uniformly I-converge to f at x0 = 0. Indeed, taking ε = 1/2, then for
each δ > 0, there exists n0 ∈ N such that for every n ≥ n0 we have 1/2n < δ. For every A ∈ F (I), since
N \M < I, there exists m ∈ A ∩ (N \M) ∩ {n ∈ N : n ≥ n0}. Pick y0 = −1/2m ∈ (−δ, δ), then we have
| fm(y0) − f (y0)| = 1 > 1/2. It follows that { fn}n∈N does not almost uniformly I-converge to f at x0 = 0.

However, when I is a maximal ideal, a semi-uniform I-convergent sequence of functions is almost
uniform I-convergent. The proof is similar to Theorem 3.13, so we omit it.

Theorem 4.11. For each maximal ideal I, semi-uniform I-convergence implies almost uniform I-convergence.

The following figure shows the relations among all types of uniform convergence discussed in this
section. The symbol M denotes the family of all maximal ideal on N. The arrows connecting to “ f
is continuous ” in this figure means that the sequence of continuous functions pointwise I-converges
to f . The symbols u-c, u-I-c, a-u-c, a-u-I-c, s-u-c and s-u-I-c denote uniform convergence, uniform I-
convergence, almost uniform convergence, almost uniform I-convergence, semi-uniform convergence and
semi-uniform I-convergence, respectively.
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5. I -α convergence and semi-I -α convergence of sequences of functions

In this section, we define ideal versions of α-convergence and semi-α convergence of sequences of
functions. We will show that: (a) If I is “good” and X is first countable, then a sequence of functions
{ fn}n∈N is I-α convergent to f ∈ YX if and only if { fn}n∈N is I-exhaustive and pointwise I-convergent to f .
(b) semi-I-α convergence preserves the continuity of the pointwise I-limit. In addition, the connections
among semi-I-exhaustiveness, semi-uniform I-convergence and semi-I-α convergence are given.

We begin with the notion of I-α convergence.

Definition 5.1. A sequence of functions { fn}n∈N is said to I-α converge to f , if for every x ∈ X and for every
sequence {xn}n∈N in X I-converging to x, the sequence { fn(xn)}n∈N I-converges to f (x).

In [23], the authors show that in metric spaces, a sequence of functions { fn}n∈N is α-convergent to f if
and only if { fn}n∈N is exhaustive and pointwise convergent to f . Ideal versions of their relation in metric
spaces was given in [31]. We extend these results to sequences of functions from a topological space to a
uniform space.

Proposition 5.2. If an I-exhaustive sequence of functions { fn}n∈N is pointwise I-convergent to f , then { fn}n∈N is
I-α convergent to f .

Proof. For each U ∈ U , there exists a symmetric entourage V ∈ U such that 2V ⊆ U. Suppose that

xn
I
→ x0. Since the sequence of functions { fn}n∈N pointwise I-converges to f at x0, there is A1 ∈ F (I)

such that | fn(x0) − f (x0)| < V for each n ∈ A1. On the other hand, since the sequence of functions { fn}n∈N
is I-exhaustive at x0, there exists a neighborhood O of x0 and A2 ∈ F (I) such that | fn(x) − fn(x0)| < V for

each x ∈ O and n ∈ A2. By hypothesis, xn
I
→ x0, there exists A3 ∈ F (I) such that xn ∈ O for each n ∈ A3.

Hence, for every n ∈ A1 ∩ A2 ∩ A3 we have | fn(xn) − fn(x0)| < V and | fn(x0) − f (x0)| < V. It follows that
| fn(xn) − f (x0)| < 2V ⊆ U. Thus, { fn}n∈N is I-α convergent to f at x0, and then it is I-α convergent to f .

Definition 5.3. ([31]) An ideal I is said to be “good”, if for every sequence {An}n∈N of sets such that An < I,
there exists a sequence {Bn}n∈N of pairwise disjoint sets such that Bn ⊆ An, Bn ∈ I and

⋃
∞

n=1 Bn < I.

It was shown in [31] that I f is a “good” ideal and the ideal defined in [26, Example 3.1 (g)] is also a
“good” ideal. However, Id is not a “good” ideal.

Theorem 5.4. Let X be a first countable space and I be a “good” ideal. Then a sequence of functions { fn}n∈N is I-α
convergent to f ∈ YX if and only if { fn}n∈N is I-exhaustive and pointwise I-convergent to f .

Proof. (⇐) Follows from Proposition 5.2.
(⇒) Since the sequence of functions { fn}n∈N I-α converges to f , it is pointwise I-convergent to f . Next

we show that { fn}n∈N is I-exhaustive.
If { fn}n∈N is not I-exhaustive, then there exists x0 ∈ X and U ∈ U such that for every neighborhood

O of x0 and every A ∈ I, there exists x ∈ O and n ∈ N \ A such that | fn(x) − fn(x0)| ≥ U. Since X
is first countable, there is a neighborhood base {Vk}k∈N of x0 satisfies Vk+1 ⊆ Vk for every k ∈ N. Let
Ak = {n ∈ N : | fn(x) − fn(x0)| ≥ U for some x ∈ Vk} for each k ∈ N. If Ak ∈ I, then there exists n ∈ N \ Ak
and x ∈ Vk such that | fn(x) − fn(x0)| ≥ U, which contradicts to the definition of Ak. Thus Ak < I for each
k ∈N. Since I is a “good” ideal, there exists a countable sequence {Bk}k∈N of pairwise disjoint sets such that
Bk ⊆ Ak, Bk ∈ I for each k ∈N and

⋃
∞

k=1 Bk < I.
Consider the sequence {yn}n∈N as follows: yn = x0 if n <

⋃
∞

k=1 Bk; otherwise, if n ∈ Bk, pick an yn ∈ Vk
such that | fn(yn) − fn(x0)| ≥ U. Let Vk be given, if k = 1, then {n ∈ N : yn < V1} = ∅ ∈ I; if k ≥ 2, then

{n ∈N : yn < Vk} ⊆
⋃k−1

k=1 Bk ∈ I. It follows that yn
I
→ x0.

Choosing a symmetric entourage V ∈ U such that 2V ⊆ U. Since yn
I
→ x0 and { fn}n∈N I-α converges to

f at x0, we have D1 = {n ∈ N : | fn(yn) − f (x0)| ≥ V} ∈ I and D2 = {n ∈ N : | fn(x0) − f (x0)| ≥ V} ∈ I. Clearly,
{n ∈N : | fn(yn)− fn(x0)| ≥ U} ⊆ D1∪D2, which implies that {n ∈N : | fn(yn)− fn(x0)| ≥ U} ∈ I. However, since⋃
∞

k=1 Bk ⊆ {n ∈ N : | fn(yn) − fn(x0)| ≥ U} and
⋃
∞

k=1 Bk < I, it follows that {n ∈ N : | fn(yn) − fn(x0)| ≥ U} < I,
which is a contradiction. Hence the sequence of functions { fn}n∈N is I-exhaustive.



L. Zhong, Z. Tang / Filomat 39:17 (2025), 6059–6077 6073

It is worth noticing that from [31, Theorem 2.10 and Example 2.12], Theorem 5.4 is not true for Id.
In the rest of the paper, we consider ideal version of semi-α convergence of sequences of functions.
Let (X, d) and (Y, ρ) be metric spaces. Papanastassiou proved that if a sequence of functions { fn}n∈N in YX

is pointwise convergent to f and satisfies semi-α property with respect to f at x ∈ X, then f is continuous
at x [32, Proposition 4.3]. One may consider that we could define semi-I-α convergence by changing

fn → f to fn
I
→ f . However, the following example shows that it fails to preserve the continuity of the

pointwise I-limit function in this case, that is the semi-α property is too weak to preserve the continuity of
the pointwise I-limit of I-convergence.

Example 5.5. If I , I f , there is a sequence of functions which is pointwise I-convergent to a function f
and satisfies the semi-α property with respect to f , but f is not continuous.

Proof. Since I , I f , there exists an infinite set A ∈ I. Consider the sequence of functions { fn}n∈N in RR

defined as follows:

fn(x) =


1, if n ∈ A;
1, if n < A, x = 0;
1/n, if n < A, x , 0.

Let f (x) =
{

1, x = 0;
0, x , 0. It is clear that { fn}n∈N pointwise I-converges to f . Next we show that { fn}n∈N

satisfies the semi-α property with respect to f . For each x ∈ X, if x = 0, fix arbitrarily ε > 0 and take δ = 1.
For every n ∈N, since the set A is infinite, there exists m ∈ A with m ≥ n such that | fm(y)− f (0)| = |1−1| = 0 < ε
whenever y ∈ (−1, 1). If x , 0, for each ε > 0, there is a neighborhood O of x such that 0 < O. For every
n ∈ N, since the set N \ A is infinite, there is m ∈ N \ A such that | fm(y) − f (x)| = 1/m < ε for each y ∈ O.
It follows that { fn}n∈N satisfies the semi-α property with respect to f . Obviously, f is not continuous at
x = 0.

For this reason, we define ideal version of semi-α convergence of sequences of functions as follow.

Definition 5.6. A sequence of functions { fn}n∈N is said to semi-I-α converge to f at x if

(1) fn(x) I→ f (x);
(2) for every U ∈ U there exists a neighborhood O of x such that for every A ∈ F (I) there exists m ∈ A

such that | fm(y) − f (x)| < U for all y ∈ O.
The sequence { fn}n∈N is said to be semi-I-α convergent if it is semi-I-α convergent at each x ∈ X. A sequence
of functions { fn}n∈N is said to have the semi-I-α property with respect to f if it satisfies the condition (2).

It is clear that semi-I-α convergence coincides with semi-α convergence whenever I = I f .

Theorem 5.7. If a sequence of functions { fn}n∈N semi-I-α converges to f ∈ YX, then f is continuous.

Proof. For every U ∈ U there exists a symmetric entourage V ∈ U such that 2V ⊆ U. For each x ∈ X, since
the sequence { fn}n∈N satisfies the semi-I-α property at x with respect to f , there exists a neighborhood O of
x such that for every A ∈ F (I) there is m ∈ A such that

| fm(y) − f (x)| < V

for each y ∈ O. Since { fn}n∈N pointwise I-converges to f , there exists Ay ∈ F (I) such that

| fn(y) − f (y)| < V

for every n ∈ Ay. Then, for each y ∈ O, there is m ∈ A ∩ Ay such that

| fm(y) − f (x)| < V, | fm(y) − f (y)| < V.

Thus, | f (y) − f (x)| < 2V ⊆ U. It follows that f is continuous at x, then f is continuous.
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Theorem 5.8. Let { fn}n∈N be a sequence of functions in YX and f ∈ YX, then the following are equivalent:

(1) The sequence { fn}n∈N is semi-I-exhaustive and fn
I
→ f .

(2) The sequence { fn}n∈N semi-I-α converges to f .
(3) The sequence { fn}n∈N semi-uniformly I-converges to f and the function f is continuous.

Proof. (1) ⇒ (2) For every U ∈ U there exists a symmetric entourage V ∈ U such that 2V ⊆ U. For
each x ∈ X, since { fn}n∈N is semi-I-exhaustive at x, there exists a neighborhood O of x such that for every
A ∈ F (I) there is m ∈ A such that

| fm(y) − fm(x)| < V.

for each y ∈ O. By assumption, { fn}n∈N pointwise I-converges to f , then there exists A′ ∈ F (I) such that

| fn(x) − f (x)| < V

for every n ∈ A′. Hence, for every A ∈ F (I), since A ∩ A′ ∈ F (I), there is m ∈ A ∩ A′ such that

| fm(y) − fm(x)| < V, | fm(x) − f (x)| < V

for all y ∈ O. It follows that | fm(y)− f (x)| < 2V ⊆ U. Therefore, the sequence { fn}n∈N is semi-I-α convergent
to f at x, and then it is semi-I-α convergent to f .

(2) ⇒ (3) From Theorem 5.7 and the definition of semi-I-α convergence, it is obvious that (1) implies

that fn
I
→ f and f is continuous. For every U ∈ U there exists a symmetric entourage V ∈ U such that

2V ⊆ U. For each x ∈ X, since { fn}n∈N satisfies semi-I-α property at x with respect to f , there exists a
neighborhood O1 of x such that for every A ∈ F (I) there exists m ∈ A such that

| fm(y) − f (x)| < V (x)

for each y ∈ O1. By the continuity of f , there exists a neighborhood O2 of x such that

| f (y) − f (x)| < V (xi)

for each y ∈ O2. Let O = O1 ∩O2, then for all y ∈ O, from (x) and (xi) we have

| fm(y) − f (y)| < 2V ⊆ U.

It follows that the sequence is semi-uniformlyI-convergent to f at x, then it is semi-uniformlyI-convergent
to f .

(3)⇒ (1) It is obvious that (3) implies that fn
I
→ f . For every U ∈ U there exists a symmetric entourage

V ∈ U such that 3V ⊆ U. For each x ∈ X, since { fn}n∈N semi-uniformly I-converges to f , there exists a
neighborhood O1 of x such that for every A ∈ F (I) there exists m ∈ A such that

| fm(y) − f (y)| < V (xii)

for each y ∈ O1. By the continuity of f , there exists a neighborhood O2 of x such that

| f (y) − f (x)| < V (xiii)

for each y ∈ O2. It follows from (xii) and (xiii) that

| fm(x) − f (x)| < V, | fm(y) − f (y)| < V, | f (y) − f (x)| < V

for all y ∈ O = O1 ∩ O2. Therefore, | fm(y) − fm(x)| < 3V ⊆ U for each y ∈ O. Thus the sequence is
semi-I-exhaustive at x, so it is semi-I-exhaustive.

From Theorem 5.4 and 5.8, we have the following corollary.
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Corollary 5.9. Let X be first countable and I be a “good” ideal, the following statements hold: (1) I-α convergence
implies semi-I-α convergence.

(2) If a sequence of functions { fn}n∈N is I-α convergent to f , then f is continuous.

From Theorem 3.13, 5.8 and Proposition 5.2, we have the following corollary.

Corollary 5.10. If I is a maximal ideal, then semi-I-α convergence implies I-α convergence.

Remark 5.11. (a) Example 4.5, Example 4.6 and Theorem 5.8 also shows that: (1) if a sequence of functions
{ fn}n∈N pointwise I-converges to a continuous function, then the sequence is not necessarily semi-I-α
convergent; (2) semi-I-α convergence and semi-α convergence are different whenever I , I f .

(b) Example 4.10 and Theorem 5.8 also shows that ifI is not a maximal ideal, then there exists a semi-I-α
convergent sequence of functions which is not I-α convergent (Considering {xn}n∈N = {−

1
2n }n∈N).

The following figure shows the relations among I-α convergence, semi-I-α convergence, semi-I-
exhaustiveness, semi-uniform I-convergence and the continuity of the I-limit function of pointwise I-
convergence. The symbolM denotes the family of all maximal ideal onN.

I-α convergence

I is “good”

X is first countable

I <M
@@

semi-I-α convergence

semi-uniform I-convergence

{ fn} ⊆ C(X,Y)

f is continuous

( fn
I
→ f )

semi-I-exhaustive

6

?

6

?

-
�

-
�

@@
Remark 5.11

( fn
I
→ f )

Figure. 3

6. Conclusions

Let X be a topological space, Y a uniform space and I an admissible ideal on the set N of natural
numbers. In this paper, we mainly study the conditions that be added to pointwise I-convergence of a
sequence of (continuous) functions in YX to preserve the continuity of the I-limit function.

In Section 3, ideal versions of exhaustiveness, weak exhaustiveness and semi-exhaustiveness (of a
sequence of functions) are studied. Some examples are constructed to clarify the relations of the related
concepts. We mainly prove that:

(a) If fn
I
→ f ∈ YX, then f is continuous if and only if the sequence { fn}n∈N is weakly I-exhaustive.

(b) If fn
I
→ f ∈ YX and { fn}n∈N is semi-I-exhaustive, then f is continuous.

The relations between all types of exhaustiveness (of a sequence of functions) and the continuity of the
I-limit functions can be shown as Figure 1.

In Section 4, ideal versions of uniform convergence, almost uniform convergence and semi-uniform
convergence (of a sequence of functions) are considered. Based on the existing literature, we further study
the properties of uniform I-convergence and almost uniform I-convergence. Also, ideal version of semi-
uniform convergence is introduced and studied. We mainly show that: If { fn}n∈N is a sequence of functions
in C(X,Y), f ∈ YX and { fn}n∈N semi-uniformly I-converges to f , then f is continuous.
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The relations among all types of uniform convergence (of a sequence of functions) discussed in this
section can be shown as Figure 2.

In Section 5, ideal versions of α-convergence and semi-α-convergence are introduced and studied. We
mainly obtain the following sufficient conditions that preserve the continuity of the pointwise I-limit of
{ fn}n∈N:

(a) If { fn}n∈N semi-I-α converges to f ∈ YX, then f is continuous.
(b) If X is first countable,I is a “good” ideal and { fn}n∈N isI-α convergent to f ∈ YX, then f is continuous.
The relations among I-α convergence, semi-I-α convergence, semi-uniform I-convergence, semi-I-

exhaustiveness and the continuity of the I-limit function of pointwise I-convergence can be shown as
Figure 3.
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[1] P. S. Alexandroff, Einführung in die Mengenlehre und die Theorie der reellen Funktionen, Deutscher Verlag der Wissenschaften, Berlin,
1956 (translated from the 1948 Russian edition).
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