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ω∗-d-spaces, C-sobriety and duality of countably directed complete
posets

Liping Zhanga, Xiangnan Zhoua,∗, Qingguo Lia

aSchool of Mathematics, Hunan University, Changsha 410082, P.R. China

Abstract. C-sobriety characterizes the P-spaces which are determined by their open sets lattices. In this
paper, on the one hand, we obtain the equivalent definitions of countably sober, ω∗-well-filtered and ω∗-d-
spaces, and prove that a first countable P-space X is countably sober if and only if it is an ω∗-d-space. On
the other hand, we establish a topological duality for countably directed complete posets via C-sobriety.

1. Introduction

Sobriety, well-filteredness and monotone convergence are three of the most important and extensively
studied topological properties in non-Huasdorff topology and domain theory. Sobriety has been used in
the characterization of the spaces which are determined by their open sets lattices. In the past few years, the
research on sober spaces, well-filtered spaces and d-spaces has got some new breakthrough (see [9, 18]). To
investigate various countability properties of these three spaces, Yang and Shi introduced a new topological
property called c-sobriety, which is a weaker condition than sobriety and generalizes the concept of sober
spaces [19]. Yang and Xi proved that c-sobriety can characterize the P-spaces which are determined by
their open sets lattices in [20]. Xu, Shen, Xi and Zhao introduced the concepts of ω-well-filtered spaces,
ω∗-well-filtered spaces and ω∗-d-spaces [18], and obtained some interesting results. For instance, a first
countable T0-space X is sober iff it is an ω-well-filtered d-space. In [21], Yang, Luo and Ye proved that a
locally compact P-space X is countably sober if and only if it is ω∗-well-filtered. It is a natural question
whether there are some links between c-sober spaces andω∗-d-spaces. One of our purposes is to investigate
this question and give the equivalent definitions of c-sober spaces, ω∗-well-filtered spaces and ω∗-d-spaces.

As we all know, the research on topological duality of ordered structures goes back to Stone’s famous
work [13, 14] on the topological duality of Boolean algebras and distributive lattices. The tool of prime
ideal plays an important role in establishing topological duality for Boolean algebras. The dual space
of a Boolean algebra is obtained by endowing the set of prime ideals with the Hull-Kernel topology.
Stone explored the dual equivalence between the category with Boolean algebras as objects and Boolean
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lattice homomorphisms as morphisms and the category whose objects are Stone spaces (compact and
totally disconnected spaces) and whose morphisms are the continuous mappings. In 1938, he developed a
topological duality of distributive lattices relying on the same technology. In [12], Priestley built a duality for
bounded distributive lattices taking advantage of ordered topological spaces. She showed that the category
of bounded distributive lattices and lattice homomorphisms is dually equivalent to that of Priestley spaces
(compact and totally order-disconnected spaces) with continuous mappings. Based on the work of Stone
and Priestley, the theory of topological duality for lattices and other order structures has been widely
developed. For example, in [11], Moshier and Jipsen developed topological dualities for meet-semilattices
with a top element and bounded lattices. Later, González and Jansana generalized the duality given by
Moshier and Jipsen for bounded lattices to posets [4]. They got the dual space of a poset by endowing the
set of all filters with Scott topology, the dual spaces are abstractly characterized as the sober spaces which
have the set of the compact open filters (w.r.t. the specialization order) as a base. Moreover, they built a
dual equivalence between the category of posets with the maps that are order-preserving and satisfy that
the inverse image of a filter is a filter and the category whose objects are the sober spaces with compact
open filters as a base and whose morphisms are the continuous functions with the property that the inverse
image of a compact open filter is a compact open filter.

Inspired by the work in [4], in this paper, we will use the countably sober spaces to establish a topological
duality for a kind of special posets, named countably directed complete posets. A fundamental concept to
build our duality is the notion of countably down-directed filters of a countably directed complete poset,
where a countably down-directed filter F of a poset is an up-set with the property that every countable
family of elements of F has a lower bound in F. We obtain the dual space of a countably directed complete
poset by endowing the set of all countably down-directed filters with σ-Scott topology and establish a
topological duality for countably directed complete posets. In addition, a duality for dcpos can be obtained
by deleting the countability conditions in our duality.

The remaining parts of this paper are organized as follows. Section 2 recalls some basic concepts and
results used in this paper. In Section 3, we investigate the equivalent definitions of countably sober spaces,
ω∗-well-filtered spaces and ω∗-d-spaces by choosing different Θ, and prove that a first countable P-space X
is countably sober if and only if it is an ω∗-d-space. In Section 4, we establish a topological representation
for countably directed complete posets (c-dcpos, for short) by using countably down-directed filters. In
Section 5, we develop a topological duality for c-dcpos. It is shown that the category of c-dcpos with the
morphisms which preserve countably directed sups and its inverse image of a countably down-directed filter
is a countably down-directed filter is dually equivalent to that of Lc-spaces with Fc-continuous mappings
whose inverse maps preserves the countably directed sups of any nonempty family of compact open filters.
Specially, we obtain a topological duality for dcpos by deleting the countability conditions in the duality
for countably directed complete posets.

2. Preliminaries

We refer to [2] for the standard definitions and notations of order theory and domain theory, and to [1, 3]
for topology.

Let (L,≤) be a poset and A ⊆ L. We define Au = {x ∈ L : ∀a ∈ A, a ≤ x} and Al = {x ∈ L : ∀a ∈ A, x ≤ a} as
well as ↓A = {x ∈ L : (∃a ∈ A)x ≤ a}, ↓x = {y ∈ L : y ≤ x}; ↑A and ↑x are defined dually. A nonempty subset
F of L is called a f ilter if F = ↑F and for any x, y ∈ F, there exists z ∈ F such that z ∈ {x, y}l.

Let X be a topological space. We denote the family of all open subsets of X byO(X). The specialization order
⊑ on X is defined as x ⊑ y if and only if for every open neighbourhood U of x, y ∈ U. It is easy to see that
the specialization order ⊑ on X is reflexive and transitive. Moreover, It should be noted that x ⊑ y if and
only if x ∈ cl({y}), where cl is the closure operator.

Let A be a subset of X. The saturation sat(A) of A is the intersection of all open sets containing A. A
subset A of a topological space X is said to be saturated if A = sat(A). It should be noted that A ⊆ X is
saturated iff it is an upper set with respect to the specialization order, that is iff A = ↑A.
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Definition 2.1. [8] Let L be a poset. A nonempty subset D ⊆ L is said to be countably directed if for any countable
subset A ⊆ D, there exists d ∈ D such that d ∈ Au.

It is easy to see that each countably directed set is directed, but a directed set may not be countably
directed by Example 2.2 in [8].

Definition 2.2. [8] Let L be a poset. Then L is called a countably directed complete poset(c-dcpo, for short) if for any
countably directed subset D ⊆ L, sup D exists.

In [18], c-dcpo is written as ω∗-dcpo. By Definition 2.1, it is clear that each dcpo is a c-dcpo, but a c-dcpo
may not be a dcpo. For example, let L =N. Then L is a c-dcpo, but not a dcpo.

Definition 2.3. [6] Let L,M be c-dcpos. A function f : L −→ M is said to preserve countably directed sups if for
any countably directed subset D ⊆ L, sup f (D) exists in M and f (sup D) = sup f (D).

Definition 2.4. [6] Let L be a poset. A subset U ⊆ L is called σ-Scott open if it satisfies the following conditions:
(1) U = ↑U;
(2) For any countably directed subset D ⊆ L, if sup D exists and sup D ∈ U, then D ∩U , ∅.

By the definition of σ-Scott open, it is obvious that each Scott open set is a σ-Scott open set, but a
σ-Scott open set may not be a Scott open set. For instance, let L = Nω, where Nω = N ∪ {ω} with the order
1 < 2 < ... < n < ... < ω. Then we have {ω} is a σ-Scott open set, but not a Scott open set.

Let L be a poset. All σ-Scott open subsets of L form a topology called the σ-Scott topolo1y and denoted
as σc(L).

For a c-dcpo L, we denote the set of all σ-Scott open filters of L by

OFc(L) = {F ⊆ L : F is a σ-Scott open filter of L}.

Definition 2.5. A T0-space X is called a σ-Scott space if for any subset U ⊆ X, U is open if and only if U is an up-set
and for every countably directed subset D ⊆ X, if sup D exists and sup D ∈ U, then D ∩U , ∅.

In the following, the symbol Z+ denotes a countable set.

Definition 2.6. [19] Let L be a complete lattice and F ⊆ L.
(1) F is called a countable f ilter if F = ↑F and

∧
i∈Z+ xi ∈ F for any {xi : i ∈ Z+} ⊆ F.

(2) F is called a completely prime countable f ilter if F is a countable filter and for any S ⊆ L,
∨

S ∈ F implies S∩F , ∅.

Definition 2.7. Let L be a poset and F ⊆ L. F is called a countably down-directed f ilter if F = ↑F and for any
{xi : i ∈ Z+} ⊆ F, there exists x ∈ F such that x ∈ {xi : i ∈ Z+}l.

Let L be a poset. The set of all countably down-directed filters of L is denoted by Fic(L). Specially, for
any x ∈ L, ↑x ∈ Fic(L).

Definition 2.8. [19] Let X be a topological space and C ⊆ X. C is said to be countably irreducible if C is nonempty
and if for any closed subsets {Bi : i ∈ Z+}, C ⊆

⋃
i∈Z+ Bi implies that C ⊆ Bi for some i ∈ Z+.

We denote the set of all countably irreducible subsets of space X by CIrr(X).

Definition 2.9. [5, 10] Let X be a topological space. A point p ∈ X is called a P-point if its filter of neighbourhoods
is closed under countable intersection. A topological space X is called a P-space if every point in X is a P-point.



L.P. Zhang et al. / Filomat 39:17 (2025), 6079–6090 6082

3. Countably sober, ω∗-well-filtered and ω∗-d-spaces

In this section, we give the equivalent definitions of countably sober, ω∗-well-filtered and ω∗-d-spaces
by using the definition ofΘ-fine in [9], and establish some connections between countably sober spaces and
ω∗-d-spaces.

Definition 3.1. [9] Let Θ be a ”function” which assigns a family Θ(X) of collections of subsets of X for each
topological space X.

A topological space X is called Θ- f ine if for any open set U of X andA ∈ Θ(X),⋂
{sat(A) : A ∈ A} ⊆ U implies A0 ⊆ U for some A0 ∈ A.

Example 3.2.

(1) For each topological space X, let Θcd(X) compriseA = {{xi} : i ∈ I} such that {xi : i ∈ I} is a countably directed
set with respect to the specialization order.

(2) For each topological space X, let Θcs(X) comprise A = {{xi} : i ∈ I} such that {xi : i ∈ I} is a countably
irreducible set.

(3) For each topological space X, let Θω∗ (X) compriseA = {{Fi} : i ∈ I}, where every Fi is compact and {{Fi} : i ∈ I}
is countably directed (that is, for any {Fi : i ∈ Z+} ⊆ A, there exists Fk ∈ A such that Fk ⊆

⋂
i∈Z+ ↑Fi).

Remark 3.3.

(1) It is obvious that every countably directed subset D of a topological space X (with respect to the specialization
order) is countably irreducible. Thus every Θcs-fine space is Θcd-fine.

(2) For every countably directed set {xi : i ∈ I}, {{xi} : i ∈ I} ∈ Θω∗ . Hence every Θω∗ -fine space is Θcd-fine.

Definition 3.4. [19] A T0-space X is called countably sober, or c-sober for short, if for any countably irreducible
closed set C, there exists a unique element x ∈ X such that C = ↓x.

By Proposition 3.3 in [21], the following result is trivial now. For the reader’s convenience, we provide
a brief proof.

Proposition 3.5. A topological space X is countably sober iff it is Θcs-fine.

Proof. Assume that the topological space X is countably sober and F a countably irreducible set of X. Then
cl(F) is a countably irreducible closed set by Proposition 2.2 in [16]. Thus there exists an element x0 ∈ X
such that cl(F) = ↓x0. Let U be an open subset of X and⋂

{↑x : x ∈ F} ⊆ U.

We have x0 ∈ U since F ⊆ ↓x0. Thus, F ∩ U , ∅. So there exists x ∈ F such that x ∈ U. Therefore, X is a
Θcs-fine space.

Conversely, assume that X is Θcs-fine. Let F be a countably irreducible closed set of X. Then we have
{{x} : x ∈ F} ∈ Θcs(X). By Lemma 2 in [9], through the same process as the proof of Theorem 1 in [9], we can
obtain that

⋂
{↑x : x ∈ F} = ↑a for some a ∈ X. Hence, F ⊆ ↓a. We claim that ↓a ⊆ F. Suppose that a < F.

There is an element x ∈ F such that x ∈ X\F by the definition of Θcs-fine spaces, which is a contradiction.
Therefore, F = ↓a.

For a topological space X, we denote the set of all nonempty compact saturated subsets of X by Q(X).

Definition 3.6. [18] A T0-space X is called ω∗-well- f iltered, if for any countably filtered family {Ki : i ∈ I} ⊆ Q(X)
and U ∈ O(X), it satisfies ⋂

i∈I

Ki ⊆ U⇒ ∃i0 ∈ I,Ki0 ⊆ U.
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From definition, we deduce the following.

Proposition 3.7. A topological space X is ω∗-well-filtered iff it is Θω∗ -fine.

Definition 3.8. [18] A T0-space X is said to be an ω∗-d-space iff every subset D countably directed relative to the
specialization order of X has a sup, and the relation sup D ∈ U for any open set U of X implies D ∩U , ∅.

From Proposition 4.6 in [18], we have the following.

Proposition 3.9. A topological space X is an ω∗-d-space iff it is Θcd-fine.

The upper Vietoris topolo1y on Q(X) is the topology that has {□U : U ∈ O(X)} as a base, where □U = {K ∈
Q(X) : K ⊆ U}. The sets ♢C = {K ∈ Q(X) : K ∩ C , ∅} for a closed set C of X form a base for the closed sets of
Q(X). The set Q(X) equipped with the upper Vietoris topology is called the Smyth power space or upper space
of X in [7, 15].

For each topological space X, let CS(X) be the collection of all countably irreducible sets of the upper
space Q(X). Then by Theorem 3.4 in [21] we immediately have the following.

Proposition 3.10. A topological space X is countably sober iff X is CS-fine.

In [22], Yang and Liu gave a variant of Rudin’s Lemma.

Lemma 3.11. [22] Let F be a countably directed family of nonempty finite subsets of a poset L. Then there exists a
countably directed set D ⊆

⋃
F∈F F such that D ∩ F , ∅ for all F ∈ F .

For each topological space X, let Θc f be the collection of all countably directed familiesA of nonempty
finite subsets of X, that is, A = {Ai : i ∈ I} ∈ Θc f if each Ai is a nonempty finite subset of X and for any
{Ai : i ∈ Z+} ⊆ A there is a A j such that A j ⊆

⋂
i∈Z+ ↑Ai. Therefore, it is easy to see that every Θc f -fine space

is Θcd-fine.

Theorem 3.12. A topological space X is an ω∗-d-space if and only if it is Θc f -fine.

Proof. Assume that X isΘc f -fine, then it is clear that X is an ω∗-d-space by Proposition 3.9. Now suppose X
is an ω∗-d-space and assume thatA = {Ai : i ∈ I} is a countably directed family of nonempty finite subsets
of X and U ∈ O(X) with ⋂

{↑Ai : i ∈ I} ⊆ U.

Suppose that Ai ⊈ U for any i ∈ I. ThenT = {Ai−U : i ∈ I} is a family of nonempty finite subsets. For any
{Ai −U : i ∈ Z+} ⊆ T , there exists A j ∈ A such that A j ⊆

⋂
i∈Z+ ↑Ai. It follows that A j −U ⊆

⋂
i∈Z+ (↑Ai −U).

Now we need to show that ↑Ai −U ⊆ ↑(Ai −U) for all i ∈ Z+. Let x ∈ ↑Ai −U, then there exists t ∈ Ai −U
such that t ⊑ x. Thus x ∈ ↑(Ai −U). So, A j −U ⊆

⋂
i∈Z+ (↑Ai −U) ⊆

⋂
i∈Z+ ↑(Ai −U). Hence, T is a countably

directed family of nonempty finite subsets of a poset (X,⊑). By Lemma 3.11, there is a countably directed
subset D ⊆

⋃
{Ai − U : i ∈ I} such that D ∩ (Ai − U) , ∅ for each i ∈ I. Since X is an ω∗-d-space, sup D

exists and sup D < U. If sup D ∈ U, then D ∩ U , ∅. This contradicts D ⊆ X − U. On the other hand,
sup D ∈

⋂
{↑(Ai −U) : i ∈ I} ⊆

⋂
{↑Ai : i ∈ I} ⊆ U implies sup D ∈ U.

This contradiction shows that there must be a Ai ∈ A such that Ai ⊆ U. Therefore X is Θc f -fine.

In what follows, we will establish some connections between countably sober spaces and ω∗-d-spaces.

Theorem 3.13. Let X be a T0-space. If X is a first countable P-space and A ∈ CIrr(X), then cl(A) is countably
directed.

Proof. For any x ∈ X, since X is first countable, there is an open neighborhood base {Un(x) : n ∈ N}. Set
U∞(x) =

⋂
n∈NUn(x) = ↑x. Since X is a P-space, U∞(x) is an open set by Proposition 4.3 in [19] and x ∈ U∞(x).
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Suppose that A ∈ CIrr(X), we prove that cl(A) is countably directed. Let {ai : i ∈ Z+} ⊆ cl(A). It needs to
be shown that

⋂
i∈Z+ ↑ai∩ cl(A) , ∅. Since ai ∈ cl(A) for any i ∈ Z+, A∩U∞(ai) , ∅. Thus A∩

⋂
i∈Z+ U∞(ai) , ∅

by the fact that A is countably irreducible. Therefore, we conclude that

cl(A) ∩
⋂
i∈Z+

↑ai = cl(A) ∩
⋂
i∈Z+

U∞(ai) , ∅.

Theorem 3.14. Let X be a first countable P-space. Then X is countably sober iff it is an ω∗-d-space.

Proof. Suppose that X is countably sober. By Proposition 3.5 and Proposition 3.9, it is straightforward to
see that X is an ω∗-d-space.

Conversely, let A be a countably irreducible closed subset of X. Then by Theorem 3.13, A is countably
directed. Since X is an ω∗-d-space, sup A ∈ A, and hence A = ↓ sup A. Thus X is countably sober.

In [18], Xu, Shen, Xi and Zhao proved that an ω∗-well-filtered space is an ω∗-d-space. And Yang, Luo
and Ye showed that a countably sober space is ω∗-well-filtered in [21]. Hence, we have the following.

Corollary 3.15. Let X be a first countable P-space. Then X is countably sober iff X is ω∗-well-filtered.

4. Topological representation for c-dcpos

In this section, our main aim is to establish the topological representation of c-dcpos.
Let L be a c-dcpo. Then (Fic(L),⊆) is also a c-dcpo. Hence, if {Fi : i ∈ I} is a countably directed subset of

Fic(L), then
sup

i∈I
Fi =

⋃
i∈I

Fi.

Now, let us consider the c-dcpo (Fic(L),⊆) with the σ-Scott topology τFic(L). It is easy to show that the
topological space (Fic(L), τFic(L)) is a P-space. For short, we denote XLc = (Fic(L), τFic(L)). It should be noted
that the specialization order ⊑ of the space XLc is the order of inclusion ⊆. That is, F1 ⊑ F2 if and only if
F1 ⊆ F2, for any F1,F2 ∈ Fic(L). For any x ∈ L, we define the set φx = {F ∈ Fic(L) : x ∈ F}.

Proposition 4.1. Let L be a c-dcpo. Then the family {φx : x ∈ L} form a base for the σ-Scott topology on XLc .

Proof. Claim1: φx is a σ-Scott open set for any x ∈ L.
It is obvious that φx is an upper set. Let {Fi}i∈I be a countably directed subset of Fic(L) and supi∈I Fi ∈ φx.

Since supi∈I Fi =
⋃

i∈I Fi, we have that x ∈
⋃

i∈I Fi. Then there exists i0 ∈ I such that x ∈ Fi0 . Therefore, Fi0 ∈ φx.
Claim2: The family {φx : x ∈ L} form a base for the σ-Scott topology on XLc .

Suppose U ⊆ Fic(L) is a σ-Scott open subset of XLc and F ∈ U. Let us take the set D = {↑x : x ∈ F}.
Then D , ∅ because F , ∅. Now, we claim that D is countably directed. Assume {↑xi : i ∈ Z+} ⊆ D, then
{xi : i ∈ Z+} ⊆ F. There is an element t ∈ F such that t ≤ xi for all i ∈ Z+ by the fact that F is a countably
down-directed filter. Thus ↑t ∈ D and ↑xi ⊆ ↑t for any i ∈ Z+. We conclude thatD is a countably directed
subset. Therefore, supD =

⋃
D = F ∈ U.

Since U is a σ-Scott open set, we have that U ∩ D , ∅. Hence, there exists x ∈ F such that ↑x ∈ U. So
φx ⊆ U. Thus F ∈ φx follows from ↑x ∈ φx and ↑x ⊆ F, which implies that F ∈ φx ⊆ U.

Therefore, the family {φx : x ∈ L} form a base for the σ-Scott topology on XLc .

In the following, the topological space XLc is termed as the dual space of the c-dcpo L, where the topology
is generated by the base {φx : x ∈ L}.

In [4], González and Jansana obtained the dual space of a poset P by endowing the set of all filters
with Scott topology and characterized the basic open sets of the dual space of a poset P. Next, similar to
Proposition 4.2 in [4], we characterize the basic open sets of the dual space of a countably directed complete
poset L.
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Proposition 4.2. Let L be a c-dcpo. Then for any x ∈ L, φx is a compact open filter of XLc .

Proof. Since ↑x ∈ Fic(L) for any x ∈ L, we have φx = ↑(↑x). It is easy to see that φx is an open filter by the
proof of Proposition 4.1. Now, let {Ui}i∈I be an open cover of φx. Then φx ⊆

⋃
i∈I Ui. Since ↑x ∈ φx ⊆

⋃
i∈I Ui,

there exists i0 ∈ I such that ↑x ∈ Ui0 . Therefore, φx ⊆ Ui0 .

Let L be a c-dcpo. We denote KOFc(XLc ) the set of all the compact open filters in XLc .

Proposition 4.3. Let L be a c-dcpo. Then for any compact open filter U of the dual space XLc , there exists an element
x ∈ L such that U = φx.

Proof. Suppose U is a compact open filter of XLc . Since U is a compact filter, there exists F ∈ Fic(L) such
that U = {G ∈ Fic(L) : F ⊆ G}. Let D = {↑x : x ∈ F}. Then D is a nonempty countably directed set of Fic(L).
Hence, supD =

⋃
D = F ∈ U. As U is σ-Scott open, we have that U ∩D , ∅. So there exists x ∈ F such that

↑x ∈ U and F ⊆ ↑x. Thus we obtain that ↑x = F. Therefore,

U = {G ∈ Fic(L) : ↑x ⊆ G} = {G ∈ Fic(L) : x ∈ G} = φx.

By Proposition 4.2 and Proposition 4.3, we know that KOFc(XLc ) = {φx : x ∈ L}. In the following, we will
consider the poset (KOFc(XLc ),⊆) and give a topological representation for c-dcpos.

Theorem 4.4. Let L be a c-dcpo. Then the mapping ϕL : L −→ KOFc(XLc ) : x 7→ φx is an order isomorphism.

Proof. (1) By Proposition 4.3, it is obvious that ϕL is surjective;
(2) The mapping ϕL is order-embedding. Let x, y ∈ L, we claim that

x ≤ y⇔ φx ⊆ φy.

(⇒) Assume F ∈ φx. Then we have x ∈ F. Since x ≤ y and F is an upper set, we conclude that y ∈ F and
F ∈ φy. Therefore, φx ⊆ φy.

(⇐) Suppose that x ≰ y. Then y < ↑x. Hence, ↑x < φy but ↑x ∈ φx. This contradictsφx ⊆ φy. So x ≤ y.

5. Topological duality for c-dcpos

In Section 4, we prove that each c-dcpo L is order isomorphic to the compact open filters of its dual space
XLc with respect to inclusion order. In this section, we will build the topological duality for c-dcpos.

Let X be a topological space. We define the set sco(U) =
⋂
{B ∈ KOFc(X) : U ⊆ B} for any open

filter U of X by using the idea of [17], where KOFc(X) is the set of all the compact open filters of X. Let
Fin(X) = {a ∈ X : ↑a is an open set}. Then we have KOFc(X) = {↑a : a ∈ Fin(X)} by the property of compact
open filters. Now, we will give the definition of Lc-spaces.

Definition 5.1. A P-space X is said to be an Lc-space if it satisfies the following conditions:
(Lc1) X is countably sober;
(Lc2) KOFc(X) forms a base for the topology on X;
(Lc3) For any countably directed subset {Ui}i∈I ⊆ KOFc(X), sco(

⋃
i∈I Ui) ∈ KOFc(X).

It is noteworthy that the sobriety is an important property for the dual space of a poset P in [4]. In our
duality, c-sobriety is also a crucial property for the dual space of a countably directed complete poset L.
And the condition (Lc3) of Definition 5.1 ensures that the set of all compact open filters of a P-space X under
the order of inclusion is a c-dcpo.

Next, similar to Proposition 5.2 in [4], we provide an equivalent characterization of Lc-spaces.
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Proposition 5.2. Let X be a P-space. Then X is an Lc-space if and only if the following statements hold:
(1) For any countably directed setD ⊆ X, supD exists concerning the specialization ⊑;
(2) X is a σ-Scott space;
(3) KOFc(X) forms a base for the topology on X;
(4) For any countably directed subset {Ui}i∈I ⊆ KOFc(X), sco(

⋃
i∈I Ui) ∈ KOFc(X).

Proof. (Necessary) Assume that X is an Lc-space, it is clear that (3) and (4) hold. We only need to show (1)
and (2).

By Proposition 3.1 and Proposition 3.2 in [16], it is easy to see that (1) holds and for any open set U, U is
a σ-Scott open set.

To prove (2), it is sufficient to show that each σ-Scott open set is an open set. Let U be a σ-Scott open set
and x ∈ U. LetD = {a ∈ Fin(X) : a ⊑ x}. ThenD , ∅ from the fact that KOFc(X) = {↑a : a ∈ Fin(X)} is a base
for the topology on X. Now, we prove the following claim.
Claim: D is countably directed.

Let {ai : i ∈ Z+} ⊆ D. Then ai ⊑ x for every i ∈ Z+. Thus x ∈
⋂

i∈Z+ ↑ai. Since X is a P-space, we have⋂
i∈Z+ ↑ai is an open set by Proposition 4.3 in [19]. Hence, there exists the family {c j : j ∈ I} ⊆ Fin(X) such

that
⋂

i∈Z+ ↑ai =
⋃

j∈I ↑c j. So x ∈
⋃

j∈I ↑c j. Then there is a j0 ∈ I such that x ∈ ↑c j0 . Thus c j0 ∈ D and ai ⊑ c j0
for every i ∈ Z+. We conclude thatD is countably directed.

By (1), we know supD exists. Now we want to prove that x = supD. It is easy to see that x ∈ Du.
Hence, supD ⊑ x. Conversely, let ↑s ∈ KOFc(X) and x ∈ ↑s, then s ⊑ x and s ∈ D. Thus s ⊑ supD, which
implies that x ⊑ supD. Hence, supD = x ∈ U. So U ∩ D , ∅ since U is σ-Scott open. Thus there exists
t ∈ U ∩D such that ↑t ⊆ U and t ⊑ x. This implies that x ∈ ↑t ⊆ U. So U is an open set of X.

Therefore, X is a σ-Scott space.
(Sufficiency) We only need to show that X is countably sober.
Obviously, X is a T0 space since X is a σ-Scott space. Suppose F is a completely prime countable filter

of O(X). We need to prove that there exists an element x ∈ X such that F = N◦(x).
LetD = {x ∈ X : ↑x ∈ F }. It follows from F , ∅ that there exists U ∈ F such that U =

⋃
i∈I ↑xi for some

{xi : i ∈ I} ⊆ Fin(X). Thus
⋃

i∈I ↑xi ∈ F . Since F is a completely prime countable filter, there exists i0 ∈ I such
that ↑xi0 ∈ F . So xi0 ∈ D. ThusD , ∅.

We claim that D is countably directed. Let {xi : i ∈ Z+} ⊆ D. Then for every i ∈ Z+, ↑xi ∈ F . Since
X is a P-space, we have

⋂
i∈Z+ ↑xi is an open set by Proposition 4.3 in [19]. Then

⋂
i∈Z+ ↑xi ∈ F because F

is a countably down-directed filter. If
⋂

i∈Z+ ↑xi = ∅, then F = O(X). This contradicts the fact that F is
completely prime. Hence,

⋂
i∈Z+ ↑xi , ∅. So there exists {c j : j ∈ I} ⊆ Fin(X) such that

⋂
i∈Z+ ↑xi =

⋃
j∈I ↑c j.

Whence we have
⋃

j∈I ↑c j ∈ F . Since F is completely prime, there exists j0 ∈ I such that ↑c j0 ∈ F . So c j0 ∈ D

and xi ⊑ c j0 for every i ∈ Z+. ThusD is countably directed.
By (1), supD exists. Let x = supD. We want to prove that F = N◦(x). On the one hand, let U ∈ F ,

there exists {xi : i ∈ I} ⊆ Fin(X) such that U =
⋃

i∈I ↑xi and
⋃

i∈I ↑xi ∈ F . Hence, there exists i0 ∈ I such that
↑xi0 ∈ F by the fact that F is completely prime. So xi0 ∈ D and xi0 ⊑ x. Therefore, x ∈ U. So we obtain that
F ⊆ N◦(x). On the other hand, let U ∈ N◦(x), thenD∩U , ∅. Thus there exists y ∈ D∩U such that ↑y ⊆ U.
Since ↑y ∈ F , we have U ∈ F . So N◦(x) ⊆ F . Therefore, F = N◦(x). Thus X is countably sober by Theorem
4.5 in [19] as desired.

Theorem 5.3. Let L be a c-dcpo. Then the dual space XLc is an Lc-space.

Proof. It is obvious that the dual space XLc is a P-space and satisfies (1), (2), (3) of Proposition 5.2. Hence, we
just need to show that for any countably directed subset {φxi : i ∈ I} ⊆ KOFc(XLc ), sco(

⋃
i∈I φxi ) ∈ KOFc(XLc ).

Claim: sco(
⋃

i∈I φxi ) = φsupi∈I xi .
It follows from the countable directness of {φxi : i ∈ I} that {xi : i ∈ I} is a countably directed subset of L.

Thus supi∈I xi exists. Since
⋃

i∈I φxi is an open filter of XLc , we have that

sco(
⋃
i∈I

φxi ) =
⋂
{φa ∈ KOFc(XLc ) :

⋃
i∈I

φxi ⊆ φa}.
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Since φxi ⊆ φsupi∈I xi for any i ∈ I, we have
⋃

i∈I φxi ⊆ φsupi∈I xi . Hence, sco(
⋃

i∈I φxi ) ⊆ φsupi∈I xi . Assume
φa ∈ KOFc(XLc ) and

⋃
i∈I φxi ⊆ φa. Then for any i ∈ I, φxi ⊆ φa. So xi ≤ a for all i ∈ I by Theorem 4.4. Thus

supi∈I xi ≤ a. By Theorem 4.4, we have φsupi∈I xi ⊆ φa. So φsupi∈I xi ⊆ sco(
⋃

i∈I φxi ).
Therefore, sco(

⋃
i∈I φxi ) = φsupi∈I xi ∈ KOFc(XLc ).

Obviously, by the definition of Lc-spaces, we know that if X is an Lc-space, then (KOFc(X),⊆) is a c-dcpo.
In particular, for any countably directed set {Ui}i∈I ⊆ KOFc(X), supi∈I Ui = sco(

⋃
i∈I Ui). Now, we will

consider the dual space Fic(KOFc(X)) of KOFc(X) for the Lc-space X.

Theorem 5.4. Let X be an Lc-space. Then the mapping θX : X −→ Fic(KOFc(X)) : x 7→ {U ∈ KOFc(X) : x ∈ U} is
a homeomorphism.

Proof. (1) θX is well-defined. It is obvious that θX(x) is an upper set. Let {Ui : i ∈ Z+} ⊆ θX(x). Then
x ∈
⋂

i∈Z+ Ui. Since X is a P-space, we know that
⋂

i∈Z+ Ui is an open set by Proposition 4.3 in [19]. Thus
there exists a compact open filter U ∈ KOFc(X) such that x ∈ U ⊆

⋂
i∈Z+ Ui. So U ∈ θX(x). Therefore,

θX(x) ∈ Fic(KOFc(X)).
(2) θX is injective. Let x, y ∈ X and x , y, without loss of generality, we assume that x ≰ y. Then there

exists U ∈ KOFc(X) such that x ∈ U, y < U. Hence, U ∈ θX(x) and U < θX(y). So θX(x) , θX(y).
(3) θX is surjective. Let F ∈ Fic(KOFc(X)) and D = {x ∈ X : ↑x ∈ F }. It follows from F , ∅ that D , ∅.

Assume {xi : i ∈ Z+} ⊆ D. Then {↑xi : i ∈ Z+} ⊆ F . Since F is a countably down-directed filter, there exists
↑t ∈ F such that ↑t ⊆ ↑xi for any i ∈ Z+. So xi ≤ t for any i ∈ Z+ and t ∈ D. ThusD is countably directed.

Obviously, supD exists since X is an Lc-space. Let x = supD. We claim that θX(x) = F . On the one
hand, assume ↑t ∈ F . Then t ∈ D and x ∈ ↑t. Thus ↑t ∈ θX(x). So F ⊆ θX(x). On the other hand, assume
↑t ∈ θX(x). According to supD = x ∈ ↑t, we haveD∩ ↑t , ∅. Thus there exists d ∈ D ∩ ↑t such that ↑d ∈ F
and ↑d ⊆ ↑t. Hence, ↑t ∈ F from the fact that F is an upper set. Therefore, θX(x) ⊆ F .

(4) θX is continuous. Let φU ∈ KOFc(Fic(KOFc(X))). Then we have

θ−1
X (φU) = {x ∈ X : θX(x) ∈ φU}

= {x ∈ X : U ∈ θX(x)}
= {x ∈ X : x ∈ U}
= U.

(5) θX is an open map. Suppose U ∈ KOFc(X). We claim that θX(U) = φU. Assume F ∈ θX(U). Then
there exists x ∈ U such that θX(x) = F . So U ∈ F and F ∈ φU. Therefore, θX(U) ⊆ φU. Conversely, suppose
F ∈ φU. Then U ∈ F . Since θX is surjective, there exists x ∈ X such that θX(x) = F . Hence, U ∈ θX(x) and
F ∈ θX(U). So φU ⊆ θX(U).

We consider the following categories:
Dcpoc has c-dcpos as objects with the morphisms f : L → M preserving countably directed sups and

satisfying that the inverse image of a countably down-directed filter is a countably down-directed filter.
A function 1 : X −→ Y from the Lc-space X to the Lc-space Y is said to be Fc-continuous if for any

U ∈ KOFc(Y), 1−1(U) ∈ KOFc(X).
TOPLc denotes the category whose objects are Lc-spaces and whose morphisms are Fc-continuous and

its inverse map preserves the countably directed sups of any nonempty family of compact open filters.
Now we will build a duality between the categoriesDcpoc and TOPLc below.

Theorem 5.5. The categoriesDcpoc and TOPLc are dually equivalent via the following functors:

1. Ω : Dcpoc → TOP
op
Lc

defined by

• Ω(L) := XLc , for each c-dcpo L;

• for every morphism f : L→M ofDcpoc, Ω( f ) : XMc −→ XLc is given by Ω( f ) := f−1.

2. Υ : TOPop
Lc
→ Dcpoc defined by
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• Υ(X) := KOFc(X), for each Lc-space X;
• for every morphism 1 : X→ Y of TOPLc , Υ(1) : KOFc(Y)→ KOFc(X) is given by Υ(1) := 1−1.

Proof. (1) It is clear that Ω,Υ are well-defined.
(2) Suppose f : L → M is a morphism of Dcpoc. Then the mapping Ω( f ) = f−1 : XMc −→ XLc is well

defined by the definition of f . We only need to show thatΩ( f ) is Fc-continuous and its inverse mapsΩ( f )−1

preserves the countably directed sups of any nonempty family of compact open filters. Let φx ∈ KOFc(XLc ).
Then

Ω( f )−1(φx) = ( f−1)−1(φx)

= {F ∈ Fic(M) : f−1(F) ∈ φx}

= {F ∈ Fic(M) : x ∈ f−1(F)}
= {F ∈ Fic(M) : f (x) ∈ F}
= {F ∈ Fic(M) : F ∈ φ f (x)}

= φ f (x) ∈ KOFc(XMc ).

So Ω( f ) is Fc-continuous.
Let {φxi : i ∈ I} ⊆ KOFc(XLc ) be a countably directed set. Then

Ω( f )−1(sco(
⋃
i∈I

φxi )) = ( f−1)−1(sco(
⋃
i∈I

φxi ))

= ( f−1)−1(φsupi∈I xi )

= φ f (supi∈I xi)

= φsupi∈I f (xi)

= sco(
⋃
i∈I

φ f (xi))

= sco(
⋃
i∈I

Ω( f )−1(φxi )).

Thus Ω( f )−1 preserves the countably directed sups of any nonempty family of compact open filters.
(3) Suppose 1 : X → Y is a morphism of the category TOPLc . We need to prove that for any F ∈

Fic(KOFc(X)), Υ(1)−1(F ) ∈ Fic(KOFc(Y)).
Let F ∈ Fic(KOFc(X)). Then

Υ(1)−1(F ) = {U ∈ KOFc(Y) : 1−1(U) ∈ F }.

By the proof of Theorem 5.4, there exists x ∈ X such that F = θX(x). Thus for each U ∈ KOFc(Y), we have

U ∈ Υ(1)−1(F )⇔ 1−1(U) ∈ F ⇔ 1−1(U) ∈ θX(x)

⇔ x ∈ 1−1(U)⇔ 1(x) ∈ U⇔ U ∈ θX(1(x)).

Therefore, Υ(1)−1(F ) = θX(1(x)) ∈ Fic(KOFc(Y)).
(4) Obviously, Ω,Υ are functors.
(5) Consider the functors ϕ : idDcpoc −→ Υ ◦Ω, θ : idTOPLc

−→ Ω ◦ Υ. For any L ∈ Dcpoc, ϕL : L −→
KOFc(XLc ) is an order isomorphism by Theorem 4.4. And for any X ∈ TOPLc , θX : X −→ Fic(KOFc(X)) is
homeomorphic and θX is Fc-continuous by Theorem 5.4. Now we only need to prove that ϕL preserves
countably directed sups and θ−1

X preserves the countably directed sups of any nonempty family of compact
open filters.

Suppose D is a countably directed set of L. Then for any x ∈ L, ϕL(x) = φx. Hence, we just need to show
that

φsup D = sup
d∈D
φd.
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Since d ≤ sup D for any d ∈ D, we have φd ⊆ φsup D. Thus φsup D ∈ {φd : d ∈ D}u. Assume U ∈ {φd : d ∈
D}

u. By Proposition 4.3, there exists x ∈ L such that U = φx. Hence, φd ⊆ φx for any d ∈ D. We know that
d ≤ x from Theorem 4.4. So x ∈ Du and sup D ≤ x. Therefore, φsup D ⊆ φx.

Suppose {φUi : i ∈ I} is a countably directed set of KOFc(Fic(KOFc(X))). Then {Ui : i ∈ I} is a countably
directed set of KOFc(X). Hence, supi∈I Ui exists. So we have

θ−1
X (sco(

⋃
i∈I

φUi )) = θ
−1
X (φsupi∈I Ui ) = sup

i∈I
Ui = sco(

⋃
i∈I

Ui) = sco(
⋃
i∈I

θ−1
X (φUi )),

as desired.
(6) Now we want to prove that for any morphism f : L −→ M of the category Dcpoc as well as any

morphism 1 : X −→ Y of the category TOPLc , the following diagrams commute:

L

f

��

ϕL // KOFc(XLc )

Υ(Ω( f ))
��

M
ϕM

// KOFc(XMc )

X

1

��

θX // Fic(KOFc(X))

Ω(Υ(1))
��

Y
θY

// Fic(KOFc(Y))

For any x ∈ L,
Υ(Ω( f )) ◦ ϕL(x) = ( f−1)−1(φx) = φ f (x) = ϕM ◦ f (x).

Then Υ(Ω( f )) ◦ ϕL = ϕM ◦ f .
For any x ∈ X, θX(x) = {U ∈ KOFc(X) : x ∈ U}. Thus

Ω(Υ(1)) ◦ θX(x) = (1−1)−1(θX(x))

= {V ∈ KOFc(Y) : 1−1(V) ∈ θX(x)}

= {V ∈ KOFc(Y) : x ∈ 1−1(V)}
= {V ∈ KOFc(Y) : 1(x) ∈ V}
= θY ◦ 1(x).

So Ω(Υ(1)) ◦ θX = θY ◦ 1.
Therefore, we conclude that the categoriesDcpoc and TOPLc are dually equivalent.

Specially, we can obtain a topological duality for dcpos by deleting the countability conditions in the
duality for countably directed complete posets.

In [4], the dual space of a poset P is obtained by considering the poset (Fi(P),⊆), where Fi(P) is the set
of all filters of P, and endowing the set Fi(P) with Scott topology determined by (Fi(P),⊆). Inspired by the
proofs in the duality for countably directed complete posets, it is not difficult to see that if P is a dcpo, then
the dual space satisfies that for every directed family {Ui : i ∈ I} of compact open filters, the intersection of
the family of all compact open filters that include

⋃
i∈I Ui is a compact open filter. Moreover, this condition

abstractly characterizes the duals of dcpos.

Definition 5.6. A topological space (X, τ) is a Pd-space if it satisfies the following conditions:
(Pd1) X is sober;
(Pd2) KOFc(X) forms a base for the topology on X;
(Pd3) For any directed subset {Ui}i∈I ⊆ KOFc(X), sco(

⋃
i∈I Ui) ∈ KOFc(X).

We denote byDCPO the category whose objects are dcpos and whose morphisms are Scott-continuous
maps satisfying that the inverse image of a filter is a filter.

A function 1 : X −→ Y from the Pd-space X to the Pd-space Y is said to be F-continuous if for any
U ∈ KOFc(Y), 1−1(U) ∈ KOFc(X).
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The symbol TOP(Pd) denotes the category whose objects are Pd-spaces and whose morphisms are F-
continuous maps satisfying that the sup of the inverse images of the elements of any directed family X of
compact open filters is the inverse image of the sup of X.

The following theorem provides a topological duality for dcpos. The proof of the theorem is similar to
that of Theorem 5.5.

Theorem 5.7. There is a dual equivalence between the categoriesDCPO and TOP(Pd).

In fact, another duality for dcpos of a different nature is obtained in [23]. In [23], the dual space of a
dcpo is obtained by endowing the set of prime Scott open subsets with the Hull-Kernel topology, which
applies only to dcpos with a top element. In contrast, in this paper, the dual space is defined by endowing
the set of filters with the Scott topology, allowing for the characterization of the duals of general dcpos.
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