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Abstract. In this paper, we introduce an innovative class of second-order stochastic differential equations.
We examine fundamental properties such as the existence, uniqueness of almost periodic solutions in
distribution (trajectory distribution). Moreover, to verify these properties, we propose a new modification

of Gronwall’s Lemma tailored for this type of solution. Finally, a meticulously chosen example is presented
to illustrate the effectiveness of our results.

Introduction

We consider the following second-order stochastic differential equation (SDEe) on a separable Hilbert
space:

d(Y'(t) - F(t, Y(t))) = (AY(t) + BY'(t) + G(t, Y(#))) dt + H(t, Y(#))dW(t), te R, (1)

where A and B are non-zero closed defined linear operators, (W(t)):cr is a Wiener process with covariance
operator Q (a Q-Wiener process with Trace(Q) < o), and F(-,-), G(-,-), and H(:, ) are continuous functions.

Equation (1) offers a versatile framework that encompasses a versatile array of semilinear SDE¢). Its
significance shines particularly bright in capturing phenomena like stochastic wave equations, showcasing
its practical value. These equations are vital in modeling a plethora of phenomena across disciplines such
as physics, chemistry, and biology.

An entirely different approach to tackling the deterministic second-order differential equation (DDEq),
involving the formulation of propagators or solution operators, is extensively explored by several re-
searchers as in works [9}[11}22 29] in the case where B = 0, and in [10}[12} [13}31H36] in the general case. This
method establishes necessary and sufficient conditions for the well-posedness of the DDE), particularly in
scenarios involving cases of incomplete data, by exploiting the existence of a cosine and exponential-cosine
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functions. This method also allows for the establishment of an analog to the Miyadera-Feller-Phillips-Hille-
Yosida (MFPHY) Theorem with B = I, focusing on the resolvent of A.

The lack of a definitive characterization for the well-posedness of the DDE() remains contentious. The
difficulty in determining whether the DDE¢, is well-posed stems from two main factors. Firstly, conven-
tional methods of reducing the problem to a system have not proved fruitful in yielding comprehensive
outcomes. Secondly, the concept of well-posedness for the DDE¢ has remained ambiguous. Fattorini [10]
demonstrated that the unique solution of the DDE( may not be exponentially bounded, unlike the case of
the DDE or the DDEy with B = 0. Therefore, the conventional approach of using the Laplace transform
technique faced limitations in its universal application.

In the deterministic case, several authors have explored the concept of well-posedness for the DDEq by
using the theory of cosine and exponential-cosine functions (for more details, see e.g., [3] 28]), which was
further developed by incorporating the theory of M, N-functions (see [13}[17H19, 31} 36]]). In the stochastic
case, many authors have delved into this topic, as seen in [15] 16} 23] 25H27]. To our knowledge, until now,
no work has addressed the existence and uniqueness of almost periodic solution in distribution of SDEe,
from model (I)), with B # 0.

This study directly addresses second-order formulations, allowing for unbounded operators and pre-
serving the system’s natural structure, thereby simplifying analysis and interpretation. It also bridges gaps
left by earlier methods, particularly by establishing the existence and uniqueness of almost periodic solu-
tions, which were often overlooked. Building on [15} 21} 25-27], this work studies the almost periodicity of
solutions by using the M-N-family framework, which generalizes the mild solution formula in unbounded
time domains and facilitates the exploration of various properties of solutions, such as the existence of time-
optimal controls in R (controllability results). This approach offers a more robust and flexible framework
for studying second-order SDEs.

In this work, we investigate the existence and uniqueness of almost periodic solution in distribution of
the SDEe (1) with A # 0, and B # 0. The main results of this paper are summarized as follows:

1. A novel set of sufficient conditions has been established for the existence, uniqueness, and almost
periodicity of the second-order stochastic system.

2. Banach’s fixed-point theorem has been effectively applied to derive results in unbounded time do-
mains.

3. The almost periodicity in the distribution of the solution to the SDE¢ evolution system has been
demonstrated for the first time.

More precisely:

e By assuming the commutativity of operators A and B, along with the exponential stability of M,
N-functions (which is considered more natural than that of cosine, as motivated by the special case
and the example provided at the end of this paper), we prove that the mild solution of type (1) can
be expressed in a simplified form, and by using a novel variant of Gronwall’s Lemma, we establish
that equation (1) has a unique bounded solution. It is important to highlight that some researchers
misapply the cosine function family when B is non-zero.

e We also show that if F(-,-), G(-,-), and H(, -) are almost periodic, then the unique bounded solution to
equation (1) exhibits almost periodicity in distribution (i.e., trajectory distribution). Our results can
be interpreted by drawing an analogy with the first-order findings presented in [1}, 514} 20, [30]], using
an integrated semigroup approach alongside a newly introduced modification of Gréonwall’s Lemma.

We now provide some clarifications and notes on the difficulties we encountered during our research.

When B = 0, the M and N families reduce to cosine and sine functions. However, the exponential
stability condition for these functions is often not satisfied in many cases. For instance, in L?[0, 7], the
cosine function is bounded by 1, which conflicts with the requirement for exponential stability. Despite
this, many studies assume exponential stability to validate the exponential stability of solutions to certain
SDE).
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However, our study leverages a non-zero value of B to more effectively formulate the solution, par-
ticularly as practical examples support this approach. By using the non-zero B, we address theoretical
challenges associated with the cosine family’s assumed exponential stability, which can lead to misleading
results. Therefore, we focus on the M and N families, which are more suitable for studying solutions in R,
with a particular emphasis on almost-periodic solutions, a critical aspect of our research.

Our study, particularly in the special case, builds upon the comprehensive framework provided by
[24], which aligns well with our findings. To tackle the limitations of previous approaches, we utilize the
non-zero value of B to adapt the solution model to the infinite domain, specifically focusing on the almost
periodicity of the solution. By combining the semi-group generated by B/2 with the cosine family defined
by A + (B/2)?, we manage the problem at infinity by selecting an appropriate constant that harmonizes the
semi-group with the cosine family. This method ensures the exponential stability of the solution family, as
demonstrated in both our specific case and the practical example. Nevertheless, proving the boundedness
of the solution remains a significant challenge.

Although direct calculations can establish the boundedness of the solution, we generalize the method
described in [14] to enhance rigor. Typically, the cosine (or sine) operator is bounded by exp(6t) (or [t| exp(6t),
with 0 € R). In a bounded domain, it is feasible to use the same constant to bound both the cosine and
sine families. However, in R, applying identical constants for bounding is not practical. This distinction
underscores the necessity of employing a novel variant of Grénwall’s Lemma.

Following a discussion of notations and key concepts such as the Q-Wiener process, almost periodic
functions, and M and N-functions, the subsequent section introduces a crucial Theorem establishing
the existence and uniqueness of solutions. It also highlights another significant result related to almost
periodicity. To further illustrate the practical application of the theory, the next section provides a detailed
example demonstrating its relevance to real-world scenarios.

1. Notations and Introductory Concepts

Let (51, ds,) and (5, ds,) be a separable and complete metric spaces. When $; and 5, are Hilbert spaces, we
denote them by (IHy, |||lr,) and (IHy, ||-|le,) respectively, where ||-|lp, and ||-||gs, are the associated norms. The
space of linear (resp. linear bounded) operators from H; to H; is denoted by £(IH;, H;) (resp. Ly(H;, H;))
and by L(H;) (resp. Lp(H,)) if H; := H;. If A € L(H;, H;), then A" denotes its adjoint operator.

Q-Wiener Process

Here, we delve into key concepts from [6]. Consider a probability space (3, F,IP). An H,-valued
stochastic process (X(t)):0 is deemed Gaussian if, for any # € IN and arbitrary positive numbers t1, t5, ..., t,,
the IH}-valued random variable (X(t;), ..., X(t,)) follows a Gaussian distribution. Let Q be a nonnegative
trace class operator on a Hilbert space H;. Now, let’s define a stochastic process (W(t))iso taking values in
H;. We call W a Q-Wiener process if it satisfies the following conditions:

1. W) =0,

2. W exhibits continuous trajectories,

3. W has independent increments, and

4. The law of (W(t) — W(r)) follows the Gaussian measure N (0, (f — Q).

It’s noteworthy that there exists a complete orthonormal system {e;} in H; and a bounded sequence of
nonnegative real numbers {A;} such that Qe; := Ae;. Assuming W is a Q-Wiener process, several statements
follow: W is a Gaussian process on H;, E(W(t)) = 0, Cov(W(t)) = tQ, and,

W= Y A 0,
j=1

where

Bi(t) := _

Ny

(Wne), . 120, jeN,
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representing independent R-valued standard Brownian motions that are mutually independent on (Q, ¥, IP).
At this juncture, let’s introduce the subspace Uy := QY2(H;) of H;, which forms a Hilbert space. Addition-
ally, we consider the space of all Hilbert-Schmidt operators Lg := L5(Uy, Hy) from Uj into H,, which is a
separable Hilbert space equipped with the norm,

1 1B b 2= IOQYAIE, gy, 1, = Trace [(QE)'T.

Consider two independent Q-Wiener processes denoted by W; and W,. We now define a new process W
as follows:

W(t) := Wi(t)1ys0) + Wa(—H)1ji<)-

Clearly, the process (W(t)):cr constitutes a Q-Wiener process with time parameters.

Probability Space

Consider a probability space (Q2, 7, {F}ier, IP), on which a Q-Wiener process (W(t))ser is defined on Hj.
Also, consider the right continuous filtration {fi}tem. We further define {F}}icr as the completed filtration
of {"ﬁ} ter, including the IP-null sets within the o-algebra #. For p > 2, consider the following spaces:

1. C(81,5;) is the set of continuous functions 1 : $; — 5,.
2. C,(H;,Hjy) consists of continuous functions # : [H; — H, such that ||4]|, := SUpP, ey, 1h(y)llF, < oo.

3. MP (R, H,) is the Banach space of continuous and progressively measurable stochastic processes
X : QX R — Hy, such that sup, ]EIIX(t‘)II’];{2 < 00,

Almost Periodic Function (Single Variable or Two Variables)

Let K be a set of compact subsets of 5; and K; € Kj. Suppose h € C(RR,5,) (resp. he C(R x 51, 57)).
The function  (resp. /) is considered ds,—almost periodic (with respect to t € R (resp. with respect to f € R,
uniformly with respect to y € Kj, for any K; € %K3)) if any of the following equivalent definitions holds
[2,5],

(1) Bohr definition: For every ¢ > 0 (resp. and for every K; € Kj), there exists a constant [ := I(¢) > 0
(resp. I :=I(e, Ky) > 0) such that,

Vh,e):= {T € ]R‘ sup ds, (h(t + ), h(t)) < s}, (2)
telR

is relatively dense, respectively,

Vh, e, Kq) = {T € IRI sup [sup dsz(fz(t + 1, y),fz(t, y))] <e } ,
teR | yeK;

is relatively dense.

(2) Bochner characterization (single sequences) : For any sequence {u;} C R, (resp. and for every
K; € %K3), there exist subsequences {u,} C {u;} and a function h, € C(R, $,) (resp. e € C(R x 51, 57)),
such that,

limy, oo 1 (F+ 10,) := Hoo(f),  Tesp.  limy e 1 (E+ 1y, v) = Fioo(t, ), (3)

exists, with respect to ds,, and uniformly on R (resp. uniformly on R x KK;) .
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(3) Bochner characterization (double sequences) : For any sequences {u;} C R and {v;} C R, (resp. and
for every K; € k), there exist sub-sequences {u,} C {u;,} and {v,} C {v}} respectively with the same
indexes, such that:

lim, e limy, s B (E+ Uy, +0,), and  lim,oe b (E+ u, +v,), 4)
respectively,

1imy, oo iMoo 2 (E+ 1ty + 0y, y),  and  limy e i (t+ i, + 04, Y),
exist and are equal, with respect to ds,, pointwise on R (resp. uniformly on R x Kj).

Almost Periodicity In Distributions

Let’s consider Bs, as the Borel o-algebra and $(5,) as the set of probability measures p : Bs, — [0, 1]
on 5,. Consider a Bs,—measurable mapping & : (52, Bs,, 1) — R. The expectation of & under u is denoted as

u(h) :=E,h) := ﬁ hdp.

We say that a sequence of probability measures y,, converges to u weakly if u,(h) converges u(h) for all
h € Cp(S52, R).

Let (QQ, ¥, IP) be a complete probability space, X : {3 — 5, be a random variable, and Law(X) := Py :
Bs, — [0, 1] be the law of X defined by,

Px(A) := P(X € A) := P o X"\ (A).

For all u € P(5,), there exists (1, F,P) and X : Q — 5, such that Law(X) := p and u(h) := E(h(X)). Now,
let’s proceed with the definition,

Definition 1.1 ([7,[8]). For h € Cy(52,R), the Lipschitz seminorm is:

h(y1) — h(yz)l]
hl :=su —_— .
i Prs: [ ds, (y1,y2)
We introduce this notation:
e BL(%;, R) := {h: %, — R |k is a continuous function such that ||gy := max {|h|., |ile} < o0}

For any p, po € P(S2) and h € Cy (52, R), define,

fhd(yl—uz) :=fhu1—fhduz.
Sz Sz SZ

Moreover, for any metrizable and separable topological spaces (5,,ds,), the metric on P(S;) is defined as
follows,

dpr(p1, p2) = SUP e <1

[ =
S

It's noteworthy that [20], dgr. serves as a complete metric on P(5;) and induces the weak topology. In
simpler terms, it is the coarsest topology on $(5,) ensuring the mappings y — p(h) are continuous for all
h € Cp(52, R).

Remark 1.2 ([5D). The definitions @)—®@) hold for the metric spaces (P(5),dpr) and (P(C(R,Sy)), dsr), where
C(R, $,) is endowed with the topology of uniform convergence on compact subsets of R.
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Definition 1.3 ([4]). Consider the mapping: X : Q X R — S, . We say that X(t) (resp. X(t) := X(t + -) in the case
of continuity of X), is almost periodic in one—(resp. multi)—dimensional distributions if the mapping [t — ]Px(t)]
(resp. [t — Px(+)]) is dgr.— almost periodic. Here, the mapping takes t from R to the space of probability measures
P(S,) (resp. P (C(R,Sy))).

Lemma 1.4 ([14]). Forp > 2 and X € L, (Uy, Hy), the following inequality holds for every t > 0:

P
E

¢
f X(s)dW(s)
0

<K,
H>

t 5
(f Trace (X(s)QX*(s)) dS) l,
0

where Ky > 0. Specifically, Ky := 1.

2. Second-Order Differential Equation

Consider the following second-order differential equation:

d(y'(t) = f(t)) = Ay(t) + By'(t) + g(t), tE€R, (5)

where f,g : R — H, are continuously differentiable functions, and A and B are closed linear operators on
Hilbert space H,. According to [13| p.p. 28-50], (or [18| Translated version]), we define:

Definition 2.1. A one-parameter families of bounded commuting operators M(t), N (t) is termed a strongly contin-
uous M, N-families (generated by operators A and B) if it satisfies the following conditions:

1. The composition law holds,
M(t + s) = M@E)M() + AN(GIN(H),
N(t+s) = MEIN({E) + M(EN(s) + BN(S)N(E), s, t=0.

2. Initial conditions: N(0) = 0, M(0) = I, and the derivatives N'(0) and M’ (0) exist and equal I and 0,
respectively.

3. M(t), N(t) are strongly continuous with respect to t > 0.

4. There exist Ms > 0 for 6 € R such that || M)l ze), IV (Ol g,y < Ms exp(6t) for all t > 0.

The operators A and B, defined by:
Au = M (O)u 1= Timy o i 2[M(2I) = 2M() + T, D (A) = {u € Hy : Timy o i 2[M(2h) = 2M() + Tu exists |,
Bu = N (O)u := limy,o i 2[N(2) = 2N()]u, D (B) := {u € Hy : limy, o h2[N/(2h) — 2N ()]u exists }
are known as the generators of the M, N-families.

2.1. Properties of Strongly Continuous M, N—Families

Let A and B be closed commuting linear operators on a Hilbert space IH,, and let M(t), N(t), t > 0, be a
strongly continuous M, N-families with generators A and B : M"”(0) = A, N”’(0) = B. Then,

Yu € D(A), MOAu = AM@P)u, N@HAu=AN)u.

Yu € D(B), M(@E)Bu = BM(t)yu, N()Bu = BN (t)u.

Yu € D(A), MBu = N(t)Au = AN(t)u.

Yu € D(B), N'Hu = M(t)u + N(t)Bu = (M(t) + BN (1)) u. (6)
Yu € D(AB), M (Bu = (AM(t) + ABN(t)) u = (BM'(t) + AM(t)) u.

Vue D(B2)ND(A), N"(Hu = (AN(t) + BM(t) + BEN(1))u = (BN'(H) + AN(H) u.
For further details, see e.g., [10,13]].
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2.2. Interrelations with Other Families and Specialized Cases
For additional specialized cases, please refer to [36].
e When A = 0, A and B generate M, N-families if and only if B generates a strongly continuous

t
semigroup (7 ())0. Additionally, M(t) =Iand N(t) = f T (s)ds for t > 0.
0

e Now, considering the case where B = 0. A and B generate M, N-families if and only if A generates a

¢

strongly continuous cosine function (C(t))ss0. Furthermore, M(t) = C(t) and N(t) = f C(s)ds := S(t)
0

fort > 0.

Now, let’s delve into the correlation between the M, N-families. In [13}[17], the EC(t), ES(f)-families was
introduced alongside M(t), N(t), defined as:

M(t) .= EC(t) — (B/2)ES(t), N(t) :=ES(H).

Definition 2.2. A family of bounded commuting operators, denoted as EC(t) and ES(t), parameterized by t > 0 is
termed a set of strongly continuous EC, ES-functions if it satisfies the following criteria:

1. EC(t +5) = EC(HEC(S) + ((B/2)* + A) ES(HES(S).

ES(t +5) = ESH)EC(s) + EC(HES(s).

Initial conditions: EC(0) = I, ES(0) = 0, EC’(0) = (B/2), ES'(0) = L.

Both EC(t) — (B/2)ES(t) and ES(t) exhibit strong continuity for t > 0.

There exist Ms > 0 for 6 € R such that ||EC(t) — (B/2)ESH)|| £n), IESM)l £(r1,) < Ms exp(0t) holds for all
t>0.

Ol W

In the papers [3} 28], the concept of the “exponential-cosine families” was explored, introduced through
the equation,

E(t+5) = 26()8(t) + [£(25) - 282(5)| &t —5),  0<s<t, EO) =1 (7)

If the linear commuting operators A and B generate strongly continuous families EC and &S of functions,
then the function &S satisfies equation [?] (see [13| p.p- 44.]). Inspired by [13] and [10, Lemma 3.3.], we
introduce the concept of a mild solution for equation (5).

Definition 2.3. A function y is termed the mild solution of the equation (B)) if, for all t > u with t € IR, the following
holds,
t t
y(t) = M(t —u)y(u) + N(t = u)(y/'(u) = f(u)) + f Ni(t =s)f (s)ds + f N(t—s)g(s)ds,

where Ni(t —s) := %N(t —-s).

3. Principal results
We investigate a semilinear stochastic differential equation given by,
d(Y'(t) — F(t, Y(t))) = AY(t)dt + BY'(t) dt + G(t, Y(t))dt + H(t, Y(£))dW(f), teR, 8)

where A and B are non-zero closed defined linear operators on a Hilbert space H,. F and G are mappings
from R X H; to Hj, and H is a mapping from R x H, to £, (U, Hy), (W(t))er is an H; —valued Q-Wiener
process with Trace(Q) < oo. Let B, denote a collection of bounded subsets of H,, and B, € B,. We consider
the following conditions for p > 2.
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(H1) Assumptions

(1) Let A, B € L(IH;) be such that it generates a strongly continuous M, N -families on H,. Additionally,
there exist constants M;, 6 > 0 such that,

IM(t = 9|zt + IIN(E = 9l sy + INe(E = 8)ll gy < Moe ™), t>s, teR

(2) FE G and H, are continuous (in y), and exhibit continuous differentiability with respect to ¢.

(H2) Lipschitz conditions

There exists some constant L, > 0, for all t € R, y1, y> € Hp,

G, y1) = Ft y2)lly, + IGC, y1) = Gt vl + IH(E y1) = HO, vl ) < Lollys = vl

(H3) Almost Periodicity conditions

For every ¢ > 0, and for every B, € B, , there exists a constant [ := I(¢,1B,) > 0 such that for any
interval of length /, there exists a number 7 satisfying,

sup [sup(IF(t + 7, y) = F(t, )iy, +1IG(t + 7, 9) = G(t, iy, + IH(E + 7, y) = HE Y, 10,)| < -
teR | yeB;

Remark 3.1. Under condition (H2) — (H3) it is not difficult to verify that,
I DI, +IGE iy, + IHE DI, 5 4 < 3Ly + EA+ I,

In the following Lemma we present a generalization of the well-known Gronwall’s Lemma, as discussed
in [14] (for the case where m := 0).

Lemma 3.2. Consider a continuous function h : R — RR. Assume that for all t € R, the following inequality holds:

0 < h(t) < B(t) + Z Bi Z f (t — s)/et9n(s) ds. (9)
=0 e

i=1
n

Here,  : R — R is a locally integrable function, and p1,...,p, = 0, 61,...,0, > m + 3, where p := Zﬁi . We
i=1

assume the convergence of the integrals in the above inequality.

1<isn
all t € R, we have:

Let 6 := min 0;. Then, for any y in (0,6 — m — B] such that fﬂ te"'p(t)dt, j = 0,1,2,...,m converges, and for

—00

h(t) < B(t) + B f e79p(s) ds. (10)
In particular, if B(t) := P is constant, then,
ht) < po—o . (11)

o-m-p
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Proof. Let f; := Bi/p,i=1,...,n. Define

m t
Ai(b) ::Z f (t = s)e =) n(s)ds.
j=0 V7

Then, differentiating, we find,

¢ - |
% (e,vtAi(t)) =t {h(t) + f (y - 8)h(s)e =) ds + Zf (t— S)]—l jh(s)eféf(t’s)ds
—oo o

m t
+ Z()/ -5)) f (t—s) h(s)e-5f<f-5>ds} )
j=1 -

Utilizing a change of indexes, we obtain:

d oot , ¢
— (e Ai(D) = e {h(t) + (t — 5) e % n(s)ds + (y — 6)) (t— )" h(s)e 2 t9ds
steno)-erfos £ [ I

m—1 t
+Z f (y—6i+j+1)(t—s) h(s)e-éf“-S)ds}.
j=0 e

Given thaty —6; < —m —f,and h > 0, we have,

% Z Bi (e Ait) = e {h(t) + 2 Bi(y = 6) f t (t = )" h(s)e " ~)ds
=1 i=1 -

n m—1 +
c VY [ o-arjrna-s h(s)e—6f<f—s>ds}
i=1 j=0 Y~

< eB(b).

Integrating over ] — oo, t], we obtain,

n m t ) t
Z Bie f (t —s)le™9p(s)ds < f e”*B(s)ds,
i=1 j=0 ¥V~ -

because both terms approach 0 as t — —oo, i.e,,

t

n m f
Z i Z f (t —s)e " =n(s)ds < e f e’*B(s)ds.
=1 j=0 v —o0

Using in (@) yields,

h(t) < B(t) + B Z B i f t (t —s)e9n(s)ds < B(t) + B f t eV B(s)ds.
j=0 Y e

i=1

Inequality follows directly from (10), withy :=6-m —p. O

5801

(12)

Remark 3.3. It can be demonstrated analogously that Lemma holds within the interval [u, t] instead of | — oo, t].
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Definition 3.4. Consider a stochastic process Y € MV (R, H,). We say that Y is a mild solution of the differential
equation (8), if, P-a.s., for all t > u with t € R, the following holds,

t t
Y(t) = M@t —u)Y(w) + Nt —u)(Y'(u) — F(u, Y(u))) + f Ni(t —s)E(s, Y(s))ds + f N(t—5)G(s, Y(s))ds
t
+ f N(t —s)H(s, Y(s))dW(s),

where Ni(t—s) := %N(t—s).

3.1. Existence and Uniqueness
Now we give the first main result. Define the parameters f1,(6) and f,,(9) as,

Brot®) = {16, (2(3) + 2 ()}

par® = {31 CM (2(3) ™ + o ()}

Cp:=3(L, + ).
The parameter K, ; is as shown in Lemma

Theorem 3.5. Assuming that conditions (H1) — (H3) hold and B1,(0) < 1 for p > 2, then there exists a unique mild
solution Y € MP (R, Hy) to equation (8) over R. Additionally, if 5 > B2,(0), p > 2, the following inequalities hold:
Forp>2,

9
E[Y®IF < — T
6—{3p—1cpM§ (2(%) +Ko2 (%) )}
Forp=2,
9
E[[Y#)IP <

5—{3CMz (2(2) + 1))
Moreover, this solution can be expressed as:
t t ¢
Y(t) = f Ni(t = s)F(s, Y(s))ds + f N(t—5)G(s, Y(s))ds + f N(t —s)H(s, Y(s))dW(s).

To prove this Theorem, we apply Banach’s classical fixed-point principle.

Proof. Step 2: Explicit formula.

Let’s begin by proving that the function Y, defined by the expression,

t t t
Y(t) := I Ni(t — s)F(s, Y(s))ds + I N(t —s)G(s, Y(s))ds + I N (t —s)H(s, Y(s))dW(s). (13)

is well-defined at —oco and satisfies the equation, IP — a.s., forall t > u, t € R,

¢ t
Y(#) = M@t —u)Y(u) + Nt —u)(Y' (1) — F(u, Y(u))) + f Ni(t = s)F(s, Y(s))ds + f N(t —5)G(s, Y(s))ds
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£
+ f N(t —s)H(s, Y(s))dW(s).
u
Taking u; < up and Y € MP(IR, Hy), let’s define,

¢ ¢ ¢
u) = f Ni(t — s)F(s, Y(s))ds + f N(t —s)G(s, Y(s))ds + f N(t —s)H(s, Y(s))dW(s).

We aim to demonstrate that (O(u)),cr is defined at —co. Starting with,

P
E|©(u2) - ®(u1)”§{2 <F'E

f Ni(t — s)F(s, Y(s))ds
u Hz
p
+37'E

f“z N(t —3)G(s, Y(s))ds

H>
r
+37'E

f”z N(t = s)H(s, Y(s))dW(s)

H>
=30+ + D). (14)

For p > 2, applying Holder’s inequality with exponents (p, (p — 1)"'p) under (H1) — (H3), we obtain,

p

f Ni(t —s)F(s, Y(s))ds

H>

r
JE( IAGCE = 9l e ) (INGCE = g G Y(s»u]Hz)ds)

p=1
( f ||Nt<t—s||L<H2>ds) NG = 9 B, Y

Uy

p-1
( INtt—s)IIL(HZ)dS) f INGCE = 9Lz E (1 + IYG)IE, ) s

p 1l p-1
( ”Ntt_S)HL(]HZ)dS) +Cp( f “Nt(t_s)”L(]Hz)dS) f ||Nt(t_S)“L(Hz)IE”Y(S)”]rI]{ZdS-

up up

(15)
Furthermore, we also have for Iﬁ,

P

f N(t —5s)G(s, Y(s))ds

H>

4 P
JE( IAVCE = ) ) (INGE = M G, YO ) ds)

p-1
(f IN( t_s)”.ﬁ(ll-h)ds) f IN(E =8Il carny EIGCs, Y ()l ds

u

p-1
<c,,( ||N<t—s)||£<Hz>ds) f IN (= )l ) E (1 + 1Y (), ) ds

uy

1o p 1o p-1 1)
cp( | ||N(t—s>||£<Hz>ds) +c,,( | ||N<t—s>||£<Hz>ds) [ v =9z B OIS a6)

ui up



A. Leslous et al. / Filomat 39:17 (2025), 5793-5816

For p > 2, employing the (— (— -1) 1E) Holder’s inequality and applying Lemma|1.4, we obtain,

=E f ZN(t—s)H(s,Y(s))dW(s)

H,

p
2

"2 o1 -1
<1<p/21E( f (1w -9 )||)(N(t—s)||§§§;2)’||H(s,Y(s))n%,_z(UU,Hz))ds)
<I<m( [ ||N<t—s)||zﬂz)ds) f INE = 9By EIHG, YOIy g5
1y

14
U 2-
<Ky ( f ||N(t—s)||fC(H2)ds) f ||N(t—s)||2£(H2)]E(1 +||y(s)||L2)ds
uq 1

1y ; 1y g‘l )3
< Cpr/Z (f ”N(t - S)”ZL(]HZ)dS) + Cpr/Z (f ”N(t - S)HZL(]HZ)dS) f ”N(t - S)HZL(]HZ)]E”Y(S)”;{zd&
Uy Uy uy

If p = 2, we have,
2
(t = s)H(s, Y(s))dW(s)

H,

Up
<E ( f IN (= )1, I, Y(s))uizwo,ﬁz)ds)

u

U
< [N S BB, YOI,

uy

<G f INCE = $)IByae, E (1 + YOI, ) ds
Uy

Up U
<c2( f ||N(t—s)||2L(]H2)dS)+Cz f IN(t = 9)1Pagy,) EIIY(5)I3, ds.

Because,

limy, oo f (NGt = )lLzqrts) + IN(E = )l 2y + IIN(E = 9)IPygy,, ) s = 0.

u

Then for Y € MP(IR, H,), we have,
limy, o Ell@(12) = O(u1)Ilf;, = 0.

5804

17)

(18)

(19)

(20)

Hence, the limit lim ©(u) exists, ensuring that Y in Equation (13) is well-defined at —co. Furthermore, we
U——00

observe that,

U

M@E-u)Y(w)+ Nt —-u)Y (u) = f (Mt — )N (u—3s) + Nt — u)N,u(u —s)) F(s, Y(s))ds

0

+ fu M@t —u)N(u —s)+ Nt —u)N,(u—5s)) G(s, Y(s))ds

U

Mt —u)Nu—s)+ Nt —u)N,(u—s))H(s, Y(s))dW(s)

—00

+ Nt —u)F(u, Y(u)).

According to the definition 2.T|and its corresponding properties|6} we can derive the following equations,

fort>u>s,telR,

ME-uwWN@w —s)+ Nt —u)N,(u—s) = N(t —5s),
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Mt = )N, —s) + N(t = )Ny (u — s) = Ni(t - s).
This yields,

N(E=u)Yw) + Nt —u)(Y' (u) — F(u, Y(u))) = fu Ni(t = s)F(s, Y(s))ds + fu N(t —s)G(s, Y(s))ds

+ f ' N(t = $)H(s, Y(s))dW(s). 1)

By separating the integral in Equation into two separate components and employing the equality stated
in Equation (2I)), it follows that

Y(t) = f ' Ni(t = 8)F(s, Y(s))ds + f ' N(t —35)G(s, Y(s))ds + f ' N(t = s)H(s, Y(s))dW(s)
t t t
+ f Ni(t = $)F(s, Y(s))ds + f N(t —35)G(s, Y(s))ds + f N(t = s)H(s, Y(s))dW(s)
t
= M(t — u)Y(u) + N(t — u)(Y' () — F(u, Y1) + f Ni(t = 5)F(s, Y(s))ds

t t
+ f N(t - 5)G(s, Y(s))ds + f N(t = s)H(s, Y(5))dW(s).

The first step is now complete.
Step 2: Existence and uniqueness.

Let’s define the operator I as,

t t t
TY(t) := f N (t — s)F(s, Y(s))ds + f N(t—5)G(s, Y(s))ds + f N(t—s)H(s, Y(s))dW(s). (22)

Now, we aim to prove thatif Y € MP (R,H,), thenT'Y € MP (R, H,). After the initial step, where u; ~ —co
and u, := t, in the estimates (14)—(20), we have,

_ Ly 1): P
s, <ot olf 53 ) - 32,0
Therefore, forp > 2,
supyeg EBITY(OIP < B1,(0)(1 + sup g EIIY(D)Ily ). (23)

If Y e M (R, Hy), we have I'Y € MP(R,H,), p > 2. Given YD Y? e MP(R,H,), according to the
definition of I, we derive,

14
ETYW () -TYP @) <3 'E

' f t Ni(t = s)(E(s, YV (s)) = E(s, YP(s)))ds

H,
P
+ 3 1E

t
’ f N(t = s)(G(s, YV (s)) = G(s, YP(s)))ds

H,
14

t
+ 3 1E f N(t = s)(H(s, YD(s)) — H(s, Y (s5)))dW(s)

H,
=310+ + ). (24)
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For p > 2, consider ];,

p

t
), =E H f Ni(t = 8)(F(s, YV(s)) = F(s, Y?(5)))ds

Hay

t L ) ,
<E ( f (”Nt(t - S)||f/;_(171]&2)) (”Nt(t = )y, [IFGs, YO(5)) = s, y(Z)(s))||H2) ds)
t p-1 ¢
<( [ mnate = Meanaas) [ MG Moy BIECs, YO9) - Fs, YO 0Dl s
t p-1 ¢
<G (f Wit S)”~f~<Hz>dS) 1= M BV - Y29l

t 4
<G (f IV (t - S)||£(]H2)ds) S EllY®(s) - YQ)(S)IILZ.

Similarly, for J7,

p

=E H f t N(t = 5)(G(s, Y(s)) = G(s, YP(s)))ds

H,
t 1-p7! -1 P
< ]E( f (IIN(t -9l [@’Z{Z))(IIN(t - s)ll”L(HZ)IIG(s, YW(s)) - E(s, Y(2>(s))||H2)ds)
t p-1 ¢
S(f W (t_s)”*‘(“”ds) f IN(E = )Lz BIIGG, YO(5)) = Gs, YO ()l ds
t p-1 At
<C”(f "N(f‘s)"£<ﬂz>d5) |G- B - YOl

t P
<G (f (IN(GE =)l L(]Hz)dS) SUP,ey_oo g BV () - Y(z)(s)”%z‘

For p > 2, when considering ]ﬁ, we obtain,

! p
J;=E 'l]: N(t = s)(H(s, YV(s)) — H(s, Y (s5)))dW(s)

H,

i 2
< ozl (f INE = 9)llza, IH (s, YO () — H, Y(Z)(s))”.zﬁz(Uo,le)ds)
t 5-1
e (foo NG S)”E“Hz’ds) [N = 9y B, YO0~ G, Y6l
t 51
<Gk (f NG S>”§:<1Hz>d5) NGB BV - YO0

:
t 2
< Crlre ( f IV <f—S>lli<Hz>dS) sup,cp_ g EIYOE) - YOOI,

Finally, for ]2, withp =2,

! 2
R |lf N(E=3)(H(s, Y (5) ~ His, YO(E)AW(e)

H,

5806

(25)

(26)

(27)
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t
<E (j: ”N(t - S)”‘ZE(HZ)”H(S, Y(l)(s)) - H(S, Y(Z)(S))HZLZ(UO,HZ)dS

0o

t
< f INCE = )Py gy, EIH (S, YO(5)) = H(s, YO)IZ, 5, 51,8

(o)

t
<Ca [ ING= 9B BV - YPGB, ds

00

t
<G ( f INCE - s>||2£(Hz)ds) SUP,cp_oo IV () = YO()IR,. (28)

0o

Combining the inequalities from (24)—(27), we obtain, if p > 2,

1

) 1V 5
sup, EILYO (@) -TYO@)ll, < {3P e, M! (z (5) +Kpp (%) )} sup,.g EIIY (1) - YO @I, .

When p = 2, by combining the inequalities (24)—(26) and (28) we have,

1

2 1
S0P EITY0) Y0, < {30 (2(5) (55 ) s BV - Y0,

Therefore, T' constitutes a contraction from M? (R, H;) to MP (R, Hy) for p > 2. Assuming Y is a unique
fixed point of T,

¢ ¢ ¢
Y(t) = I Ni(t — s)F(s, Y(s))ds + I N(t —s)G(s, Y(s))ds + I N(t —s)H(s, Y(s))dW(s).

Then,

1 P 1 g 1 p-1 t
1E||Y(t)||§{2 < {3p_1CpMZ (2 (5) + Ky (%) ]} + {3;7—1CPM§ (2(5) )}f e—é(t—s)]E||Y(s)||§{2dS

)
i 1 E_l t ~ .
+ {3P 1C,,M§K,,/2(%) } f e RIE|Y ()|, ds.

—00

We conclude based on the Lemmathat, if & > B2, (),

©) < 0

0
EIYOIP < =——=p1. T
6~ Pap(®" T {3v—1cng (z(%)p—l Ko (%)5—1)}

And,
5—{3CoM2 (2(1) +1)}

Additionally, according to [6, Theorem 7.2], almost all trajectories of this solution are continuous. The proof
for Theorem[3.5]has concluded. [

E (Y0 <

Almost-Periodicity of the Solution

In this section, we aim to demonstrate that the solution to the previous equation exhibits almost-
periodic behavior concerning the law. We introduce several assumptions to facilitate our analysis. Let
F',G" : RxH, — Hyand H" : RxH, — .[Zg be sequences of mappingsindexedbyn € IN := {0,1, ..., +o0}.
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Assumptions
(H4) For each n € N, the mappings H" , F", and G" satisfy conditions (H1) through (H3).

Under the assumptions (H1) — (H4), let (Y"(f))ier denote the solution to the following equation:
(Y™ (t) — F'(t, Y(t))) = (AY"™(t) + BY'"(t) + G™(t, Y*(t)))dt + H"(t, Y*(£))dW(t), t>u,
Y(u)=£&", Y'(u)=n" t=u.

(H5) For all (t,y) € R x Hj, we assume that

lim,e F'(t, y) :== FO(t,y), lim,oe G'(ty) := GT(,y), lim,—e H'(t, Y(t) := H*(t, y).

(H6) In the space (P(H; x C(R,H;)), dpr), we assume that

1im,, oo dir. (Per ), Pres wy) = 0,
limy; 0 dpr. (]P(n",W)/ ]P(q"",W)) =0,
1imyeo dpr (Peeng,en wy, Peee.emm)) = 0.

Key Results
We begin by revisiting the following proposition, initially outlined more comprehensively in [5]:
Proposition 3.6. Under assumptions (H1) — (H6), we have in (P(C ([u, b], Hy)), dgL), for any b > u,
limy, 0 dpr, (Pyn, Py~) = 0.
We further establish the following Theorem:

Theorem 3.7. Let assumptions (H1) — (H6) be fulfilled. Additionally, if

B12(6) = {3CZM§ (2(%)2 ; (21—6))} <1, and  2Bsa(6) = {6C2M§ (z(%) + 1)} <5,

then there exists a unique mild solution Y € M? (R, H,) that is almost periodic in distribution.
Proof. The solution’s existence and uniqueness were established via Theorem Let us show that Y is
almost periodic in distribution. We will utilize the definition provided in equation (@) for this purpose. Let

{u;} € Rand {v;} ¢ R. Our objective is to show the existence of subsequences {u,} c {u,} and {v,} C {v;}
with the same indices, such that for every f € IR, the limits

im, e limy, oo T (t+ 1, +0,), and  limy, e 7T (E+ U, +vy),
exist and are equal, where u(t) := Law(Y)(t) := Py . Using (H3), we have
1imy, s eo limyy oo F (F + ty + Uy, y) = limyoe0 F(E + 1y + 0y, y) 1= FO(t, ),
limy, s eo im0 G (E + y + O, y) = limyyeo G (E+ 1y + 0y, y) := GU(H y), (29)

im0 limyy—co H (F + 1y + 0, y) = limyeo H (£ + 1y + 0, y) := HO(t, y).
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These limits exist pointwise with respect to t € R and y € B,. Consider now the sequences defined by
{rn := u, + v,}. For each integer n, we consider a semilinear stochastic differential equations,

A(Y/(t) = F(t + 1, Yo (1)) = (AYn(t) + BY, () + G (t + 10, Yy (£))dt + H (t + 1, Yo () dW(E).
The mild solution for (Y, (t)),cr is given by,

¢ t t
Y, () = f Ni(t —s)F(s + 1y, Yy(s))ds + f N(t—5)G(s + 1y, Yy(s))ds + f N(t—s)H(s + 1y, Y, (s))dW(s).
Additionally, we have another stochastic differential equations,
A(Y” () — Ft, YO()) = (AY°(t) + BY °(t) + GO(t, YO()))dt + HO(t, YO(£))dW(F).
With its mild solution,

YO(t) = j: Ni(t = s)F°(s, YO(s))ds + f: N(t —5)GO(s, YO(s))ds + I N(t = s)H (s, YO(s))dW(s).

Now, consider the process,

t+7, f+7y
Y({t+r,)= Nt —(s—ry)E(s,Y(s))ds + N (t—(s—r,)G(s, Y(s))ds
t+r,
+ N (t—(s—r,)H(s, Y(s))dW(s).

By making the change of variable z := s — r,,, we get,
¢ t
Y(t+r,) = f Nit —s)F(s+71,,Y(s+1,))ds + f N(E=5)G(s+7,,Y(s+1,))ds

t
+ f Nt =s)H (s + 1y, Y (s + 1)) AW, (),

where,

WL(t) =W (Et+r,)—W(r,) = W(t).

0]

Due to the independence of the increments of W(t), we conclude that the process,

Y(t+m) = Y.

Y(t)
Now, we aim to demonstrate that Y,,(t) converges in (p = 2)—mean to YO(t) for each fixed t € R, i.e.
1m0 Bl Yu(t) = YOI, = 0.

We start the analysis from,

2

EllY,(t) - Y()Ii3,, < 3E H I Ni(t = 3) (F(s + 1, Yu(s)) = (s, YO(s))) ds

H,
2

t
- SIEH f N(t =) (G(s + 1, Ya(5) = G5, YO(s))) dis

H,
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2
+ 3E

t
‘ f N(t =) (H(s + 1, Yu(s) = H(s + 1, Y(s))) dW(s)

Hy
=31 + 2+ ).
For I!, we get,

2

t
I = ]EH f Ni(t —s) (F(s + 7, Yn(5)) — FOs, Yo(s))) ds

H>
2

< 2]E|l f Ni(t = 5) (F(s + 1, Yiu(5)) = F(s + 1, YO(5)) ) s

H;
2

t
+2]E’ f Ni(t - s) (F(s + 14, YO(s)) — FO(s, YO(s))) ds

H,
=201+ ).
Now, using (2, 2)—-Holder’s inequality, we obtain,

¢ 2
I'=E "f Ni(t =) (F(s + 7, Yu(s)) = F(s + 1, YO(s))) ds

H,
2

t
<E ( f (NGt = )Py ) (INeCE = )y IF (S + 7, Yu(S)) = Fls + 72, YO(5)) i) ds)
t t
<( f ||Nt<t—s>||m>ds) f ING(t = )Ly EIIF(s + T, Ya(s)) = F(s + 1, YO(6) Iy s

t t
<G ( f ||Nt(t—s>||.c<Hz>ds) f I Nt = )L EIYu(s) — YOOI, ds.

And for ]2, we have,

2

P=E H f Nt -9) (F(s + 7, Yu(s)) = F°(t, Y(5)) ) s

H,

t 2
<E ( f (NGt = 9Py ) (INCE = )y IF (s + 7, Yanls)) = F(E, Y°<s)>||H2)ds)
t t
<( f ||Nt<t—s>||£<H2>ds) f ING(t = | ey EIIEGS + 7, Ya(S)) = F(s, YO(5)) I3, dis

¢ 2
< ( f ING(E - s>||mH2>ds) SUP,ep- oo EIIEG + 7, Ya(S)) = F(s, YO(s))IE, -

For I?, we have,

2

t
E=E H f Nt =5)(Gls + 1, Ya(5)) = G°(s, YO(5))) ds

H>
2

< ZJEH f N(t-s) (G(s + 70, Yu(s)) — G(s + r,,,YO(s))) ds

2

H>

t
+2]E” f Nt =3)(Gs + 14, YO(5)) = G5, YO(5))) dis

H,

5810

(30)

(31)

(32)

(33)
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=207 + 4.

For ]3, we obtain that

2

t
P=E H f N(t-s) (G(s + 7, Yn(5) — G(s + r,,,YO(s))) ds

Hay
2

t
<E ( f (IN (= $)Ig, ) (INCE = 91y, IGG + 72, Ya(8)) = GLs + r, YO))l Iy ds)
<( f ||N<t—s>||£<Hz>ds) f INCE = )|y EIG( + 7, Ya(5)) = G5 + 1, YO(9))I s

t t
<Gy ( f ||N<t—s>||£<]Hz>ds) f N = 9)lLan EIY1(5) — YE)IB, ds.

Furthermore,

2

t
*=E H f N(t-s) (G(s + 1, Y2(5)) — GOs, Yo(s))) ds

H,
2

t
<E ( f (IN (= $)Ig ) (IN(E = 91y, IGG + 10, Ya(8)) = G5, YO($))lImay) ds)
t t
< ( INE s)nm{z)ds) NG M BIGES + 1, Y,6) - GG YOS
¢ 2
< ( f It~ S)ll./:(]Hz)dS) SUP, oo g EIIG(S + 7, Yu(5)) = GO5, YOS))Iy, -
And for I we have,

t 2
P=E H f N(t =) (H(s + 1, Yu(s)) = H'(s + 1, Y°(5))) dW(s)

H
2

< 2E l‘ft N(t—-5s) (H(s + 14, Yu(s)) — H(s + 7, yO(s))) dW(s)

H,
t 2

+2E f N(t =) (Hs + 14, Y(s)) = H(s, YO(5))) dW(s)

. H,
=2(° +7°).

By applying Lemma we derive,
t 2
P =E H f N(t = 5) (H(s + 1, Yu(s)) = H(s + o, YO(5))) dW(s)
. H,

<E ( f INGE = 9)| g, IS + 72, Y($) = HGs + 12, W(s))ﬂigds)
t
< f IINCE = 9151, BIIHS + 1, Yo(s)) = H(s + 1, YOIy s

t
<Ca [ ING = 9By, B9 - YOy

5811

(34)

(35)

(36)

(37)

(38)
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In addition,

2

J°=E H f N(t = 5) (H(s + 1, Ya(s)) = H'(s, Y°(5))) dW(s5)

Hy

<E (j:; IN(t - S)Ili(Hz)IIH(S + 1, Ya(s)) — Hs, YO(S))”ngdS)

< I; N (t = )11 gy, BIH (S + 120, Ya(5)) = HGs, YO(S))IIigds

< (j:; IN(t - s)IIi(HZ)ds) SUP,1_ oo gy EIIH(S + 72, Ya(s)) = HOs, YO(S))szg' )
Includes the inequalities from (30)—(39),

EIIY, (5 - YOI, < {6C2M§ (2(%)2 + (21—6))} ot (t) + 6C,M2 (2(%)) I ; VDB, (5) - YOS)IR, ds

t
+6C, M f e IEN|Y,,(5) = YO(5)IIFy, ds. (40)
For a sequence,

at) = sup, o E(IIFG + 1, Ya(s)) = F2(s, YOO)By, + 1GG + 72, Ya(®) = GO, YOIy,

+IH(S + 10, Y(9) = H, YOIy |

such that which converges to 0 as n — oo because sup, E|IY°(#)||> < oo which implies that (YO(t))t is tight
1
relatively to bounded sets. Since 6 > {6C2M§ (2 (5) + 1)} , we deduce from Lemmathat,

limy, e EE||Y 1 (F) — Yo(t)Hz]Hz =0.

Hence Y,,(t) converges in distribution to Y(t). But, since the distribution of Y,(t) is the same as that of
Y (t + r,), we deduce that Y (¢ + r,,) converges in distribution to YO(t), i.e.

limy, oo pt (t + Uy +0p) = Law(Y%)(#).
By analogy and using we can easily deduce that,
limy, oo limyy o pt (F+ Uy +0y) 1= Law(YO)(t).

We have demonstrated the almost periodicity of Y in one-dimensionaldistributions. To establish the almost
periodicity in multi-dimensional distributions for Y, we employ Proposition[3.6} For a fixed u € R, consider

E=Yur), 0= Y(utr),
and
F'(t,y) :=F(t+ 1Y), G"(t,y) =Gt +1n,y), H"((t,y) == H(t + 1, y).
From the previous discussions, we know that &" (resp. 1"") converges in distribution to some variable Y (1)

(resp. Y'(u)) . Consequently, &" (resp. n") is tight, and thus (£", W) (resp. (1", W)) is also tight. Therefore,
we can select Y(u) (resp. Y’ (u)) such that (", W) (resp. (1", W)) converges in distribution to (Y(u), W) (resp.
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(Y'(1), W)). Then, according to Proposition for every b > u, Y(- + u,) converges in distribution on
P(C ([u, b]; Hy)) to the (unique in distribution) solution to,

! !
Y(t) := Mt —w)Y(u) + N(t —u) (Y (u) — F(u, Y(1))) + f Ni(t = s)F(s, Y(s))ds + f N(t —s)G(s, Y(s))ds

t
+ f N(t —s)H(s, Y(s))dW(s).

Observe that Y remains independent of the selected interval [u, b], implying that the convergence occurs in
P(C (R;Hy)). Similarly, Y" := Y(: + u,,) converges in distribution on £(C (R; H;)) to a continuous process X.
For t > u, the expression for X(¢) is given by,

t t
X(t) := Mt —w)X(u) + N(t — u)(Y' (1) — F(u, Y(u)) + f N(t —s)F(s, X(s))ds + f N(t —5)G(s, X(s))ds

¢
+f N (t —s)H(s, X(s))dW(s).

However, based on , Y(- +r,) converges in distribution to the identical process X. Consequently, we can
assert that Y exhibits almost periodicity in multi-dimensional distributions. [
4. Special Case

In Theorems[3.53.7) within Condition (H1), a general condition was provided to streamline the analysis.
Thus, we directly utilize Lemma [3.2) mentioned in [14] (particularly for the case where m := 0). Indeed, we
will afford some leniency to this condition and underscore the significance of Lemma 3.2] Within condition
(H1), we substitute point (1) with

. . B? . . .
(1)" Assume the existence of an operator A, defined as A + T generating a strongly continuous cosine

families {C(t) : t € R} within H,. Furthermore, we posit that B/2 engenders a strongly continuous
semi-group denoted by {7 (t) : t € R,}. Additionally, we assert the presence of constants Ms, > 0,i =
1,2,3, where 63 > 0, > 01 > 0. These constants satisfy:
IC(t = 8)ll ) < M, @), ISt = 8)ll s,y < M, (E =)™, >, teR,
and
IBS(t = 5)ll 21y < Moy (£ = )7, 1T (¢ = )l ) < Moye™, t25, te R
According to the definition provided in [17], we can infer the following relation:
T(HC@H) :=EC(), and T (HS(t) = ES(H).

Now, let’s define some quantities:
5 PP P p 3
uo®) = o (3 +2(2) + Ko (55)° )}

por®) = {1+ 23 -+ (35) )

M = Més maX(Mle, Méz /2)

(Note that  := min(ég, - 61, 53 - 62, 2(63 - 61), 2(53 - 62)) = 63 - 62)
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Theorem 4.1. Given the fulfillment of conditions (H1)'—(H3) and p1,(5) < 1 for p > 2, it follows that there exists
a unique mild solution Y € MP (R,H,) to the equation (8) over R. Furthermore, if & > 2 + Bo,,(0) for p > 2, the
ensuing inequalities hold: For p > 2,

6-2
E|lYOIf € ————.
0= P2p(6)—2
Forp=2,
6—-2
E|Y®I € ————.
0 —P22(6) -2

The solution is expressed as:
t t
Y(t) = f T (t—15)(C(t—s)+ (B/2)S(t —5)) F(s, Y(s))ds + f T (t—s)S(t —s5)G(s, Y(s))ds

t
+ f T (t—s)S(t — s)H(s, Y(s))dW(s).

Proof. Using a method akin to the proof outlined in Theorem 3.5} we can establish the validity of step 1 by
relying on the relation (see [17]), N(t) := ES(t) := T (+)S(t) and,

M(t) := EC(t) — (B/2)ES(t) := T (t)C(t) — (B/2)T #)S(?).

Additionally, we utilize the observation that if u; < u; and 63 > 6, > 01 > 0, then,

HZ . c
lim,, . o f (t —s)e @045 =0, i=1,2, j=0,1,2.

Uy

By employing a similar approach as in Theorem and making use of Lemma the proof can be
concluded through the application of a contraction principle. [

Theorem 4.2. Assuming the fulfillment of assumptions (H1)'—(H6), and additionally, under the conditions where
p12(0) < 1 and 2B,,(0) < 0, it follows that there exists a unique mild solution Y € M2 (R, Hy) to the equation
over R, characterized by its almost-periodic in distribution.

Proof. Using an analogous approach to that of Theorem .7 and incorporating Lemma [3.2] along with
Theorem 4.1} the proof can be effectively concluded. [

5. Illustration

Let’s consider the following boundary value problem (see [24, Example 5]),

% y(x, t) - % f(t, y(x, 1) + b(x)y(x, t)ot = % y(x, 1)t + g(t, y(x, £))dt + h(t, y(x, t))dw(t),
where, te R, 0<x<m, (41)
Boundary conditions: y(0,t) = y(rr,f) =0, telR.

Here, b : [0, 1] — ]0, o[ is a continuous function, and w represents a Q—Wiener process on a stochastic

space (Q, 7, {Fi}ier, IP). We define the space H := L2[0, 7], and let H; := H, := H with inner product (-, -).
The operator A : D(A) — H, is defined by Ay := y”” where the domain D(A) is given by,
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D(A) :={y e H: y, y are absolutely continuous, y(0) = y'(n) =0, y” € H}.

Moreover, A has a specific spectrum characterized by eigenvalues of the form -n?,n=1,2,3.... Hence, A
can be represented as,

(o)

A]/ == Z n? (]// en) €n,

n=1
for y € D(A), where the corresponding eigenfunctions are given by e, (x) := V21~ sin( Vi2x) for 0 < x < 7.
2
We define B : H — H by [By]x := b(x)y(x). Defining A := BZ + A we have,

had 2
=Y (5 - ) wedew,

n=1

and A generates the cosine family,

[CHY] () = ), cos (t - }LbZ(x)) v, en)en(x)l{”g@}
+ Z cosh [t A/ ibz(x) - 712] (v, En)en(x)l{nk@} + ; (v, en) en(x)l{nz:@},

and its associated sine family can be expressed as,

[SHY](x) := i sin (t M)

n=1 n2 — 1b2(x)

w sinh (£ /1b2(x) — n2 N
+ Z \(/%/T) (v, en)en(x)l{nk%} + Zt(y, e”)e”(x)l{nz:@}'
=l 1 X)—n n=1

Then there exist constants M;,, 01 > 0 such that (see eg., [10]),

(v, en) en(x)l%g@}

IC(t = )l ey < My, 2, ISt = 9)ll gy < M, (t =)™, t>s,teR.
It is also noted that —B/2 generates the semi-group {7 () : t € R} on H defined by,
[T (H)ylx := e 20Dy (x), teR,.
and D(B) := Hy. Let 63 := min {b(x)/2 : x € [0, ]} . Then there exist constants M;,, 0;, i := 2,3 such that,
IBS(t = 9)ll gy < Mo, (t —5)e™),  and [T (t - 9)llcan) < Moye™', t>s, teR
Forte Rand y € H, define, FG: RxH — H, H: RxH — £L; (U, H), by,
G(t, () =gt y(x, 1), Fyx) = f(Eylx, D),  HE y)(x) = ht, y(x, 1)
The problem can then be expressed in the abstract form,

d(Y'(H) - E(t, Y(t)) = AY(t)dt — BY'()dt + G(t, Y(£)dt + H(t, Y(E)AW(t), teR.

Thus, under the conditions specified in Theorem with 6 := 03 -0, > 0, the semilinear stochastic equation
boundary value problem possesses a unique almost periodic solution in distribution.
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