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Abstract. This paper introduces a novel family of two-variable Fubini-type polynomials utilizing the
two-parameter Mittag-Leffler function. The proposed approach also leads to the introduction of a new type
of Stirling numbers of the second kind. The paper systematically explores various intriguing properties
associated with the introduced polynomials and numbers. The analytical properties, including differential
formulas, summation formulas, and connections to well-known polynomials and numbers, are thoroughly
investigated and presented.

1. Introduction and Preliminaries

Special functions play a vital role in mathematical physics, especially in approximating integrals arising
in applications such as the propagation of flattened Gaussian beams [1–3, 6, 17, 19]. Recently, truncated
polynomials and numbers have attracted growing interest due to their usefulness as generating functions.
These include truncated Bernoulli [7], Euler [13], Fubini-type [22, 24], Appell [10], Laguerre-type [3],
Apostol-type [21], Frobenius-Euler [14], Sheffer sequences [23], and Mittag-Leffler polynomials [26], among
others. For a detailed overview of the two-parameter Mittag-Leffler function and its functional extensions,
we refer the reader to the recent survey in [19].

This study introduces a new class of truncated polynomials and numbers, focusing on their connections
with classical families and potential applications in mathematical and physical contexts. We begin by
reviewing known truncated polynomials and their relations to classical ones. Throughout, we use the
notations N, R, C for natural, real, and complex numbers, and define N0 := N ∪ {0}. For any m ∈ N, the
rising factorial is given by

(z)(m) = z(z + 1) · · · (z +m − 1).
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Also, for a negative integer −m, we use the binomial expansion

(z + υ)−m =

∞∑
r=0

(−1)r
(
m + r − 1

r

)
zrυ−(m+r), |z| < υ. (1)

The truncated Bernoulli polynomials Bm,p(u), where m ∈N0, are defined as follows (see [7]):

tm

m!

et −
m−1∑
j=0

t j

j!

eut =

∞∑
p=0

Bm,p(u)
tp

p!
. (2)

For the case m = 1, Bm,p(u) yields the classical Bernoulli polynomials Bp(u), given by (see [5, 18, 20])

t
et − 1

eut =

∞∑
p=0

Bp(u)
tp

p!
(|t| < 2π).

The truncated Euler polynomials Em,p(u) for m ∈N0 are defined as follows (see [13]):

2 tm

m!

et + 1 −
m−1∑
j=0

t j

j!

eut =

∞∑
p=0

Em,p(u)
tp

p!
. (3)

For the case m = 0, Em,p(u) yields the classical Euler polynomials Ep(u), expressed as follows (see [18, 20]):

2
et + 1

eut =

∞∑
p=0

Ep(u)
tp

p!
.

It is evident that by setting u = 0 in (2) and (3), we obtain the truncated Bernoulli and truncated Euler
numbers, respectively, i.e.,

Bm,p(0) = Bm,p and Em,p(0) = Em,p.

In 2019, Duran and Acikgoz [4] introduced a novel class of truncated polynomials called the truncated
Fubini polynomials Fm,p(u, v), defined by the expression

tm

m!

1 − v
(
et − 1 −

m−1∑
j=0

t j

j!

) eut =

∞∑
p=0

Fm,p(u, v)
tp

p!
.

For the special case m = 0, the truncated Fubini polynomials reduce to the classical Fubini polynomials of
two-variable Fp(u, v), given as follows (see [9, 11, 12, 25]):

1
1 − v(et − 1)

eut =

∞∑
p=0

Fp(u, v)
tp

p!
. (4)

Setting u = 0 in (4), we obtain the usual Fubini polynomials Fp(v), expressed as follows (see [9, 11, 12, 25]):

1
1 − v(et − 1)

=

∞∑
p=0

Fp(v)
tp

p!
. (5)

Furthermore, the case v = 1 in (5) yields the familiar Fubini numbers Fp as follows:

1
2 − et =

∞∑
p=0

Fp
tp

p!
.
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Additionally, Duran and Acikgoz [4] proposed the truncated Stirling numbers of the second kind S2,m(p, q)
defined by the expression(

et
− 1 −

m−1∑
j=0

t j

j!

)q

q!
=

∞∑
p=0

S2,m(p, q)
tp

p!
. (6)

Setting m = 0 in (6), we obtain the classical Stirling numbers of the second kind S2(p, q) as follows (see [15]):

(et
− 1)q

q!
=

∞∑
p=0

S2(p, q)
tp

p!
.

The main objective of this study is to identify a new class of two-variable Fubini-type polynomials and a
new type of Stirling numbers of the second kind by utilizing the two-parameter Mittag-Leffler function [27].
The two-parameter Mittag-Leffler function Eα,β(t), which is a generalization of the standard Mittag-Leffler
function, is defined as (see [27], see also [19])

Eα,β(t) =
∞∑

p=0

tp

Γ(β + αp)
(t ∈ C,ℜ(α) > 0 andℜ(β) > 0). (7)

Setting β = 1 in (7), we obtain the classical Mittag-Leffler function Eα(t) [16] given by

Eα(t) =
∞∑

p=0

tp

Γ(1 + αp)
(t ∈ C and ℜ(α) > 0). (8)

Several special cases of Eα,β(t) are given below [8]:

E1,2(t) =
et
− 1
t
, E1,1(t) = et, E2,1(t2) = cosh t and E2,1(−t2) = cos t.

2. Extension of the two-variable Fubini Polynomials

In this section, we introduce a further extension of the two-variable Fubini polynomials and the Stirling
numbers of the second kind by employing the two-parameter Mittag-Leffler function [27].

Definition 2.1. For m, p ∈ N0, with ℜ(α) > 0, ℜ(β) > 0, and v(tmEα,β(t) − 1) , 1, we define the extended
Fubini-type polynomials F(α,β)

m,p (u, v) as follows:

tm

m!

1 − v
(
tmEα,β(t) − 1

) eut =

∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!
. (9)

Setting u = 0 in (9), we obtain a new family of two-variable Fubini-type polynomials denoted as F(α,β)
m,p (v),

given by

tm

m!

1 − v
(
tmEα,β(t) − 1

) = ∞∑
p=0

F
(α,β)
m,p (v)

tp

p!
. (10)

Furthermore, by setting v = 1 in (10), we arrive at the new extended Fubini-type numbers F(α,β)
m,p as follows:

tm

m!

2 − tmEα,β(t)
=

∞∑
p=0

F
(α,β)
m,p

tp

p!
.
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We observe that from (9), it is clearly shown that

F(1,1)
0,p

(
u,−

1
2

)
= Ep(u) and F(1,1)

0,p

(
0,−

1
2

)
= Ep,

where Ep(u) and Ep are the classical Euler polynomials and numbers, respectively [18].

Remark 2.2. Setting α = 1 and β = m + 1 (m ∈N0) in (9) and using the fact

E1,m+1(t) =

et
−

m−1∑
j=0

t j

j!

tm , (11)

we obtain the two-variable truncated Fubini polynomials Fm,p(u, v) as introduced by Duran and Acikgoz [4]. Fur-
thermore, for m = 0, the expression yields the two-variable Fubini polynomials Fp(u, v) given in (4). Moreover, by
setting m = 0, α = 1, and β = 1 in (9), we obtain the traditional Fubini polynomials Fp(u, v) as provided in (4).

Definition 2.3. Let m, p ∈ N0, with ℜ(α) > 0 and ℜ(β) > 0. Then, the extended Stirling numbers of the second
kind S(α,β)

2,m (p, q) are described by

(tmEα,β(t) − 1)q

q!
=

∞∑
p=0

S
(α,β)
2,m (p, q)

tp

p!
. (12)

The case α = 1 and β = m + 1 (m ∈ N0) in (12) corresponds to the truncated Stirling numbers of the
second kind introduced by Duran and Acikgoz [4]. Furthermore, for m = 0, we obtain the standard Stirling
numbers of the second kind as provided in (6).

Now, we discuss some noteworthy properties of the proposed polynomials and numbers.

Theorem 2.4. Let m, p ∈N0,ℜ(α) > 0,ℜ(β) > 0 and w ∈ R. Then we have

F
(α,β)
m,p (u + w, v) =

p∑
q=0

(
p
q

)
wq F

(α,β)
m,p−q(u, v), (13)

F
(α,β)
m,p (u + w, v) =

p∑
q=0

(
p
q

)
(u + w)q F

(α,β)
m,p−q(v), (14)

and

F
(α,β)
m,p (u, v) =

p∑
q=0

(
p
q

)
uq F

(α,β)
m,p−q(v). (15)

Proof. Starting with the expression (9), we have

∞∑
p=0

F
(α,β)
m,p (u + w, v)

tp

p!
=

tm

m!

1 − v(tmEα,β(t) − 1)
e(u+w)t

=
tm

m!

1 − v(tmEα,β(t) − 1)
eut ewt

=

∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!

∞∑
q=0

wq tq

q!

=

∞∑
p=0

 p∑
q=0

(
p
q

)
wq F

(α,β)
m,p−q(u, v)

 tp

p!
.
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By comparing coefficients of the same powers of t, we obtain the identity (13). Similarly, the identity (14)
can be derived by utilizing (10). Finally, setting w = 0 in (14) establishes identity (15).

Remark 2.5. If we compare the identities (13) and (14), then we easily get the following interesting result:

p∑
q=0

(
p
q

)
wq F

(α,β)
m,p−q(u, v) =

p∑
q=0

(
p
q

)
(u + w)q F

(α,β)
m,p−q(v) (ℜ(α) > 0, ℜ(β) > 0).

Theorem 2.6. For m, p ∈N0,ℜ(α) > 0 andℜ(β) > 0, we have

S
(α,β)
2,m (p, q + σ) =

q!σ!
(q + σ)!

p∑
r=0

(
p
r

)
S

(α,β)
2,m (p − r, q) S(α,β)

2,m (r, σ). (16)

Proof. By applying (12) to the left-hand side of (16) and performing a brief simplification, we obtain the
desired identity.

Theorem 2.7. For p, q ∈N0, the following relation holds true:

S(1,2)
2,1 (p, q) = 2q S2(p, q :

1
2

), (17)

where S2(p, q : 1
2 ) are the Apostol-type Stirling numbers of the second kind given by (see [15])

∞∑
p=0

S2(p, q : ν)
tp

p!
=

(νet
− 1)q

q!
(ν ∈ C).

Proof. This result follows directly by applying (12) to the left-hand side of (17).

Theorem 2.8. For m, p ∈N0 with p ≥ m,ℜ(α) > 0 andℜ(β) > 0, we have

F
(α,β)
m,p (v) =

∞∑
q=0

(
p
m

)
vq q! S(α,β)

2,m (p −m, q). (18)

Proof. From (10) and (12), we have

∞∑
p=0

F
(α,β)
m,p (v)

tp

p!
=

tm

m!

1 − v(tmEα,β(t) − 1)
=

tm

m!

∞∑
q=0

vq
(
tmEα,β(t) − 1

)q
=

∞∑
p=0

∞∑
q=0

vq q! S(α,β)
2,m (p, q)

tp+m

p!m!
,

which, upon comparing the coefficients of tp, provides our needed result (18).

Theorem 2.9. For m ∈N0, p ≥ 1,ℜ(α) > 0 andℜ(β) > 0, the following derivative formula holds true:

∂
∂u
F

(α,β)
m,p (u, v) = p F(α,β)

m,p−1(u, v). (19)

Proof. From (9), we observe that

∞∑
p=1

∂
∂u
F

(α,β)
m,p (u, v)

tp

p!
=t

tm

m!

1 − v(tmEα,β(t) − 1)
eut =

∞∑
p=1

F
(α,β)
m,p−1(u, v)

tp

(p − 1)!
.

By comparing the coefficients of tp, we obtain the desired result (19).
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Theorem 2.10. For p,m ∈N0,ℜ(α) > 0 andℜ(β) > 0, we have

F
(α,β)
m,p (u, v) =

∞∑
q=0

p∑
r=0

(u)(q)

(
p
r

)
F

(α,β)
m,p−r(−q, v) S2(r, q). (20)

Proof. By using (9) and (1), we have

∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!
=

tm

m!

1 − v(tmEα,β(t) − 1)
(e−t)−u

=
tm

m!

1 − v(tmEα,β(t) − 1)

∞∑
q=0

(
u + q − 1

q

)
(1 − e−t)q

=
tm

m!

1 − v(tmEα,β(t) − 1)

∞∑
q=0

(u)(q) (et
− 1)q

q!
e−qt

=

∞∑
q=0

(u)(q)
∞∑

p=0

F
(α,β)
m,p (−q, v)

tp

p!

∞∑
r=0

S2(r, q)
tr

r!

=

∞∑
p=0

∞∑
q=0

p∑
r=0

(u)(q) F
(α,β)
m,p−r(−q, v) S2(r, q)

tp

(p − r)! r!
,

which yields our needed result (20).

Theorem 2.11. For p,m ∈N0, the following relations holds true:

F(1,m+1)
m,p (u,−

1
2

) = Em,p(u) (21)

and

F(1,m+1)
m,p (−

1
2

) = Em,p, (22)

where Em,p(u) and Em,p denote the truncated Euler polynomials and numbers, respectively.

Proof. By applying (9) and (11) to the left-hand side of (21), we readily obtain the claimed result. Further-
more, setting u = 0 in (21) yields the result (22).

Theorem 2.12. Let p,m, q, j ∈ N0 such that p ≥ j + q,ℜ(α) > 0 andℜ(β) > 0. Then the following relations hold
true:

F
(α,β)
m,p (u, v) =

m!p!
2(p +m)!

p+m∑
q=0

(
p +m

q

)
F

(α,β)
m,p+m−q(v) Em,q(u) +

p!m!
2

p∑
q=0

p∑
j=0

F
(α,β)
m,p− j−q(v) Em,q(u)

q!(p − j − q)!( j +m)!
(23)

and

F
(α,β)
m,p (u, v) = p!m!

p∑
q=0

p∑
j=0

F
(α,β)
m,p− j−q(v) Bm,q(u)

q!(p − j − q)!( j +m)!
, (24)

where Em,q(u) and Bm,q(u) represent the truncated Bernoulli and truncated Euler polynomials described in (3) and
(2), respectively.
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Proof. From (9), we can write

∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!
=

tm

m! eut

1 − v(tmEα,β(t) − 1)
2 tm

m!

et + 1 −
m−1∑
j=0

t j

j!

et + 1 −
m−1∑
j=0

t j

j!

2tm

m!

=
m!
2tm

∞∑
p=0

F
(α,β)
m,p (v)

tp

p!

∞∑
q=0

Em,q(u)
tq

q!

( ∞∑
j=m

t j

j!
+ 1

)
=

m!
2

∞∑
p=0

p∑
q=0

F
(α,β)
m,p−q(v) Em,q(u)

tp−m

q!(p − q)!

( ∞∑
j=0

t j+m

( j +m)!
+ 1

)
=

m!
2

∞∑
p=0

p∑
q=0

F
(α,β)
m,p−q(v) Em,q(u)

tp−m

q!(p − q)!

+
m!
2

∞∑
p=0

p∑
q=0

p∑
j=0

F
(α,β)
m,p− j−q(v) Em,q(u)

tp

q!(p − j − q)!( j +m)!
.

By comparing the coefficients of tp, we have the result (23). Similarly, the second result (24) can be established
using the same approach.

3. Concluding remarks

In this article, we have introduced a novel family of two-variable Fubini polynomials and Stirling
numbers of the second kind by employing the two-parameter Mittag-Leffler function in the generating
function. We have thoroughly investigated various analytical properties of these proposed polynomials
and numbers, including differential formulas, summation formulas, and their relationships with other
well-known polynomials and numbers.

In the final discussion, we briefly explore the variations in the generating functions of the introduced
polynomials F(α,β)

m,p (u, v) and numbers S(α,β)
2,m (p, q). We have the following connections of two-parameter

Mittag-Leffler function Eα,β(t) with the Wright hypergeometric function pΨq and the Fox H-function Hm,n
r,s .

Specifically, the relations [8] are given by

Eα,β(t) = 1Ψ1

[
(1, 1) t(β, α)

]
and Eα,β(t) = H1,1

1,2

[
−t (0, 1)

(0, 1), (1 − β, α)

]
.

Using the above relations, we express the variations in the generating functions of our introduced polyno-
mials and numbers as follows:

tm

m! eut

1 − v
(
tm

1Ψ1

[
(1, 1) t(β, α)

]
− 1

) = ∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!
,

tm

m! eut

1 − v
(
tmH1,1

1,2

[
−t (0, 1)

(0, 1), (1 − β, α)

]
− 1

) = ∞∑
p=0

F
(α,β)
m,p (u, v)

tp

p!
,

(
tm

1Ψ1

[
(1, 1) t(β, α)

]
− 1

)q

q!
=

∞∑
p=0

S
(α,β)
2,m (p, q)

tp

p!
,
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and (
tmH1,1

1,2

[
−t (0, 1)

(0, 1), (1 − β, α)

]
− 1

)q

q!
=

∞∑
p=0

S
(α,β)
2,m (p, q)

tp

p!
.

These relations reveal the essential connections between the newly introduced polynomials and numbers
and the well-established functions pΨq and Hm,n

r,s .
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