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Abstract. We establish that the approximate McShane integral is equivalent to the McShane integral and
hence the Lebesgue integral for real functions. Then we consider a function Vap

F analogous to VF, for
which some generalizations of the Hake’s theorem can be established. We also provide a measure theoretic
characterization for the approximate Henstock integral, in terms of Vap

F .We prove that Vap
F (E) = VF(E), for all

measurable subsets E of the domain of F, if F is the primitive of an HK-integrable function. Some examples,
when these two differ, are also provided.

1. Introduction

The notion of approximate derivative has been first considered by A. Khintchine in 1916. In [4], the
approximately continuous Perron integral (AP-integral) was introduced, in terms of ap-major and ap-
minor functions. Analogously we have approximate Denjoy and approximate Henstock integrals, which
are known to be equivalent (see [13, 14, 17]). For the descriptive definitions and convergence theorems for
approximate integrals, see [3, 5, 7, 10, 11, 17]. In [14, Theorem 2.8.], an analogue of the Hake’s theorem for
the approximate Denjoy integral is presented. A survey on approximately continuous integrals appeared
in [18], which also presents some open problems in this direction.

In this paper, we discuss the approximate McShane integral, analogous to the approximate Henstock-
Kurzweil (HK) integral, and establish its equivalence to the McShane integral and, consequently, to the
Lebesgue integral for real functions.

The variational measure VF is used for characterizations of primitives of HK-integrable functions. A
function F : [a, b] −→ R is primitive of some HK-integrable function if and only if VF generated by F is
absolutely continuous with respect to the Lebesgue measure [2, Theorem 3]. The variational measure VF
and variational measure with respect to measurable gauges (Vm

F ) are equal for primitives of HK-integrable
functions (see [12]). Motivated by this, we consider a function Vap

F analogous to VF, for which some
generalizations of Hake’s theorem can be established. We also provide a measure-theoretic characterization
for the approximate Henstock integral in terms of Vap

F . We prove that Vap
F (E) = VF(E), for all measurable

subsets E of the domain of F, if F is the primitive of an HK-integrable function. An example when these
two differ, is also provided.
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2. Preliminaries

We follow the notations of [6, Chapter 16]. Let R denote the set of real numbers, µ be the Lebesgue
measure on R, [a, b] be a compact real interval, E be a Lebesgue measurable subset of [a, b], and A be an
arbitrary subset of [a, b], A real x ∈ R is said to be the density point of E if

lim
h→0+

µ(E ∩ (x − h, x + h))
2h

= 1.

Let Ed denote the set of density points of E which belong to E.
A collection ∆ of point-interval pairs (t, I) such that t ∈ [a, b] and I ⊂ [a, b] is said to be an approximate full

cover of A ⊂ [a, b] if for every x ∈ A, there exists a measurable set Sx ⊂ [a, b] such that

x ∈ Sd
x, and (x, [c, d]) ∈ ∆ if and only if c, d ∈ Sx.

The collection {Sx : x ∈ A} will be termed as the selection on A, generated by ∆. If B ⊂ A, we write
∆B := {(t, I) ∈ ∆ : t ∈ B}.

A finite family P := {(xi, Ii) : 1 ≤ i ≤ m} of point interval pairs is said to be

1. a partial M-division in [a, b] if Ii’s are pairwise non-overlapping subintervals of [a, b] such that
⋃m

i=1 Ii ⊂

[a, b] and xi ∈ [a, b] for all 1 ≤ i ≤ m.
2. a partial division in [a, b] if it is an partial M-division and xi ∈ Ii for all 1 ≤ i ≤ m.
3. a division (an M-division) of [a, b] if it is a partial division (partial M-division) such that

⋃m
i=1 Ii = [a, b].

4. A-anchored if xi ∈ A, for each i.

Throughout this paper, let P denote the above collection and f : [a, b] −→ R. Define

S(P, f ) :=
m∑

i=1

f (xi)µ(Ii).

The function f is said to be approximate Henstock integrable (or simply AH-integrable) if there is some A ∈ R
such that for every ϵ > 0 there exists an approximate full cover ∆ of [a, b] such that

∣∣∣S(P, f ) − A
∣∣∣ < ϵ, for

every division P of [a, b] such that P ⊂ ∆.
In this case, the number A is called the approximate Henstock-Kurzweil integral of f over [a, b] and will

be denoted by (AH)
∫ b

a f dµ. Further, a function F on subintervals of [a, b] will be called the AH-primitive of
f if

F(J) = (AH)
∫

J
f dµ, for every interval J ⊂ [a, b].

Note that the AH-integral is well-defined only if for every approximate full cover ∆ of [a, b], there exists
a division P of [a, b] such that P ⊂ ∆. This is indeed true (see [6, Lemma 16.3, p.246]).

It is immediate that every Henstock integrable function is AH-integrable. However, the converse is
not true (see [14, Example 2.5]). Various results for the Henstock integral, including the Saks-Henstock
lemma, remain valid even for the AH-integral. For details, the reader is referred to [6, Theorem 16.18] and
[17, 18]. The descriptive approach to the AH-integral requires the notion of approximate continuity and
approximate differentiability. A function f : [a, b] −→ R is said to be

1. approximately continuous at c ∈ [a, b] if there exists a measurable set E ⊂ [a, b] such that c ∈ Ed and f |E
is continuous at c.

2. approximately differentiable at c ∈ [a, b] if there exists a measurable set E ⊂ [a, b] such that c ∈ Ed and the
limit

lim
x∈E,x→c

f (x) − f (c)
x − c

exists. In this case, the above limit is denoted by f ′ap(c).
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Unless specified, for F : [a, b] −→ R and [c, d] ⊂ [a, b], we write F([c, d]) := F(d) − F(c). Given E ⊂ [a, b]
and an approximate full cover ∆ on E,we define

Vap(F,E,∆) := sup
P

n∑
i=1

|F(Ji)|,

where the supremum is taken over all E-anchored partial divisions P := {(xi, Ji) : 1 ≤ i ≤ n} such that P ⊂ ∆.
The approximate variational measure Vap

F is defined as

Vap
F (E) = inf{Vap(F,E,∆) : ∆ is an approximate full cover on E}.

The function Vap
F will be called absolutely continuous if Vap

F (E) = 0, whenever µ(E) = 0. In this case, we
write Vap

F ≪ µ. As in [16], it can be shown that for any F : [a, b] −→ R, Vap
F is an outer measure on [a, b].

3. Approximate McShane Integral

Replacing divisions with M-divisions, in the definition of the approximate Henstock integral, we define
the approximate McShane integral (or AM-integral). In this section, we show that the latter is equivalent to
the Lebesgue integral for real functions.

First we establish that the approximately McShane integral is absolute. Our proof is based upon the
idea in [15, Theorem 3.6.9]

Theorem 3.1. If f : [a, b] −→ R is approximately McShane integrable, then so is | f |.

Proof. Let (AM)
∫ b

a f denote the approximately McShane integral of f , ϵ > 0 be given and ∆ be an approx-
imate full cover of [a, b] for this ϵ, as per the requirement of McShane integrability. Let Q1 = {(Ii, ti) : i =
1, . . . ,m} and Q2 = {(J j, s j) : j = 1, . . . ,n} be M-divisions of [a, b] such that Q1,Q2 ⊂ ∆. Define M-divisions P1
and P2 of [a, b] as follows:

P1 :=
{

(Ii ∩ J j, ti) : if f (ti) ≥ f (s j)
(Ii ∩ J j, s j) : if f (ti) < f (s j)

1 ≤ i ≤ m, 1 ≤ j ≤ n
}

P2 :=
{

(Ii ∩ J j, s j) : if f (ti) ≥ f (s j)
(Ii ∩ J j, ti) : if f (ti) < f (s j)

1 ≤ i ≤ m, 1 ≤ j ≤ n
}

Using our hypothesis, it can be verified that both P1 and P2 are M-divisions of [a, b] and P1,P2 ⊂ ∆. Therefore

m∑
i=1

n∑
j=1

| f (ti) − f (s j)|µ(Ii ∩ J j) = |S(P1, f ) − S(P2, f )|

≤

∣∣∣∣S(P1, f ) − (AM)
∫ b

a
f
∣∣∣∣ + ∣∣∣∣(AM)

∫ b

a
f − S(P2, f )

∣∣∣∣ < 2ϵ.

Hence we observe that∣∣∣S(Q1,| f |) − S(Q2, | f |)
∣∣∣ = ∣∣∣ m∑

i=1

| f (ti)| µ(Ii) −
n∑

j=1

| f (s j)| µ(J j)
∣∣∣

=
∣∣∣∑

i, j

(| f (ti)| − | f (s j)|)µ(Ii ∩ J j)
∣∣∣ ≤∑

i, j

∣∣∣| f (ti)| − | f (s j)|
∣∣∣µ(Ii ∩ J j)

≤

∑
i, j

∣∣∣ f (ti) − f (s j)
∣∣∣µ(Ii ∩ J j) < 2ϵ

Since ϵ > 0 is arbitrary, the result is established using Cauchy criterion.
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Theorem 3.2. Let f : [a, b] −→ R. Then f is approximately McShane integrable if and only if f is Lebesgue
integrable.

Proof. The converse is immediate, as every Lebesgue integral is equivalent to the McShane integral, and
every McShane integrable function is approximate McShane integrable.

For the necessity part, assume that f is approximately McShane integrable. By Theorem 3.1, | f | is also
AM-integrable, and hence AH-integrable. Now by [6, Theorem 16.14], f is Lebesgue measurable. Further
applying [6, Theorem 16.15], | f | is Lebesgue integrable. Hence f is Lebesgue integrable.

4. A Characterization in terms of Variational Measures

In this section, we provide a characterization of AH-integrable functions in terms of the variational
measure Vap

F .

Theorem 4.1. If f : [a, b] −→ R is AH-integrable function with primitive F, then Vap
F ≪ µ.

Proof. Pick any E ⊂ [a, b] such that µ(E) = 0. Let 1 := fχ[a,b]\E. Clearly, 1 is also an AH-integrable function
with primitive F.

Let ϵ > 0 be given. We choose an approximate full cover ∆ on [a, b], by Saks-Henstock lemma, see [6,
Lemma 16.9]. That is, for every partial division P := {(t j, J j) : 1 ≤ j ≤ n} ⊂ ∆,we have

n∑
j=1

|F(J j) − 1(t j)µ(J j)| < ϵ.

In particular, if the above division P is anchored in E, we obtain
∑n

j=1 |F(J j)| < ϵ. Since ϵ > 0 is arbitrary, we
conclude Vap

F (E) = 0. Hence the result.

Next we provide a version of the fundamental theorem of calculus, in our setting.

Theorem 4.2. Let F be approximately differentiable almost everywhere such that Vap
F ≪ µ. Then F′ is AH-integrable

with primitive F.

Proof. Let E := {x ∈ [a, b] : F′ap does not exist at x} and f := F′apχ[a,b]\E. Since µ(E) = 0, it is enough to prove
that f is AH-integrable with primitive F.

Let ϵ > 0 be given. Since Vap
F ≪ µ, there exists an approximate full cover∆0 of E such that

∑m
i=1 |F(Ji)| < ϵ/2,

for every E-anchored partial division {(yi, Ji) : 1 ≤ i ≤ m} ⊂ ∆0.Now pick any x ∈ [a, b]\E. Since F′ap(x) = f (x),
there exists a measurable set Ax such that x ∈ Ad

x and

lim
y∈Ax,y→x

F(y) − F(x)
y − x

= f (x).

Hence there exists a δx > 0 such that for all y ∈ Ax ∩ (x − δx, x + δx),we have

|(F(y) − F(x)) − f (x)(y − x)| <
ϵ|y − x|
2(b − a)

.

Now we define an approximate full cover ∆ on [a, b] as

∆ := ∆0 ∪ {(x, [c, d]) : x ∈ [a, b] \ E; c, d ∈ Ax ∩ (x − δx, x + δx)}.

Let {(x j, J j) : 1 ≤ j ≤ n} ⊂ ∆ be a division of [a, b].Writing ∧ := { j : x j ∈ E},we obtain
n∑

j=1

|F(J j) − f (x j)µ(J j)| ≤
∑
j∈∧

|F(J j)| +
∑
j<∧

|F(J j) − f (x j)µ(J j)|

<
ϵ
2
+

ϵ
2µ([a, b])

∑
j<∧

µ(J j) ≤ ϵ.

Since ϵ > 0 is arbitrary, the result follows.
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Definition 4.3. Let F : [a, b] −→ R and A ⊂ [a, b]. Then F is said to be
1. ACap on E if for every ϵ > 0 there exists an approximate full cover ∆ of E and η > 0 such that

∑n
j=1 |F(I j)| < ϵ,

for every E-anchored partial division {(t j, I j) : 1 ≤ j ≤ n} inside ∆ satisfying
∑n

j=1 µ(I j) < η.
2. ACGap on [a, b], if [a, b] = ∪∞n=1En, for a sequence of measurable sets {En} such that F is ACap on En, for all

n ∈N.

Theorem 4.4 (Theorem 16.18, [6]). A function f : [a, b] −→ R is AH-integrable on [a, b] if and only if there exists
a function F : [a, b] −→ R such that F′ap = f , almost everywhere on [a, b] and F is ACGap on [a, b].

Theorem 4.5. A function f : [a, b] −→ R is AH-integrable on [a, b] if and only if there exists a function F : [a, b] −→
R such that F′ap = f , almost everywhere on [a, b] and Vap

F ≪ µ on [a, b].

Proof. Assume that f is AH-integrable on [a, b] with primitive F. Applying Theorems 4.1 and 4.4, Vap
F ≪ µ

and F′ap = f , almost everywhere on [a, b].
Conversely, suppose that F : [a, b] −→ R is a function such that Vap

F ≪ µ on [a, b] and F′ap = f , almost
everywhere on [a, b]. By Theorem 4.2, f is AH-integrable on [a, b] with primitive F. Hence the result.

In [14, Theorem 2.8.], an analogue of the Hake’s theorem for the approximate Denjoy integral (and
thence its equivalent AH-integral) is presented. We have already provided some further generalizations of
this theorem, in terms of the Henstock variational measure VF (see [19, 20]). It can be verified that a result
analogous to [20] can be obtained for the AH-integral too.

If VF denote the standard Henstock variational measure, it is easy to see that Vap
F (E) ≤ VF(E). A strict

inequality may hold here (see Examples 4.7-4.8). Readers interested in VF are referred to chapter 5 of [9].
Below we recall a generalization of [1, p.104, Theorem 7.5], as in [8, Theorem 3.9].

Theorem 4.6. If f : [a, b] −→ R is HK-integrable with primitive F, then

VF(E) =
∫

E
| f |dµ for every measurable set E ⊂ [a, b],

even if the right hand side is infinity. Here the integral on the right denotes the Lebesgue integral.

Analogously, one can conclude that if f : [a, b] −→ R is AH-integrable with primitive F, then Vap
F (E) =∫

E | f |dµ for every measurable set E ⊂ [a, b].
Consequently, if F is primitive of some HK integrable function, then Vap

F (E) = VF(E) for every measurable
set E ⊂ [a, b].

In general, VF qnd Vap
F may differ. Consider the following example.

Example 4.7. Let F denote the Dirichlet function on [0, 1], defined as

F(x) :=

1, if x ∈ [0, 1] ∩Q
0, if x ∈ [0, 1] \Q.

Write E := [0, 1] \ Q. It is clear that for corresponding interval function VF(E) = ∞. Consider the selection
{Sx : x ∈ [0, 1] \Q} defined as Sx := E for all x ∈ E. Let ∆ be an approximate full cover of E, w.r.t. this selection. Then
Vap(F,E,∆) = 0 which implies Vap

F (E) = 0. Hence Vap
F (E) < VF(E).

Further, every point of E is its density point and µ(E) = 1. Therefore F is approximately continuous on E. Also
note that F′ap(c) = 0 for all c ∈ E.While F is not the primitive of its almost everywhere approximate derivative. Hence
Vap

F is not absolutely continuous.

Note that the function in the above example is not a primitive of an AH-integrable function. Here we
provide another example.

Example 4.8. Let f be the AH-integrable function of [14, Example 2.5], which is not HK-integrable, and F be the
AH-primitive of f . Then Vap

F ≪ µ and hence Vap
F ({a}) = 0. However, F is not continuous at a and VF({a}) = 1. Hence

Vap
F ({a}) < VF({a}).
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