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Abstract. In this paper, we propose an adaptive cubic regularization method with line search filter tech-
nique for solving derivative-free bound constrained optimization using an interior affine scaling approach.
The affine scaling interior-point cubic model is based on the quadratic interpolation model of the objective
function. The new iteration is obtained by solving the adaptive cubic regularization algorithm with line
search filter technique. The global convergence and local superlinear convergence rate of the proposed
algorithm are established under some mild conditions. Finally, the numerical results are detailed to show
the effectiveness of the proposed algorithm.

1. Introduction

In this paper, we consider the following minimization problem with the bound constraints:

min
x∈Rn

f (x), (1)

s.t. l ≤ x ≤ u,

where f : Rn
→ R is a nonlinear function, sufficiently smooth, but its derivative information is unavailable

or unreliable, l ∈ {R ∪ {−∞}}n , u ∈ {R ∪ {+∞}}n, l < u. We define the feasible set Ω = {x : l ≤ x ≤ u} and the
strict interior int(Ω) = {x : l < x < u}.

Minimization problems for derivative-free nonlinear optimization with simple bound constraints form
an important and common class in various circumstances. There are many useful and successful algorithms
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for these type of optimizations (e.g.[10, 14, 22, 28]). These authors use different tools to solve this kind of
optimizations. In order to increase the tools available for solving the derivative-free bound constrained
optimization problems, we extent the cubic regularization algorithm with line search filter technique to solve
the bound constrained optimization without derivatives based on a polynomial interpolation approach.

Recently, Cartis, et al. [2, 3] proposed an adaptive cubic regularization (ARC) method for solving
the unconstrained optimization which has roots in earlier algorithmic proposals by Griewank in [20],
Nesterov and Polyak [25] and Weiser et al. [30]. The excellent global and local convergence properties
were obtained, and the numerical experiments with small-scale test problems from the CUTEr set showed
encouraging performance of the ARC procedures when compared with a basic trust region methods for
solving small scale problems. At each iteration, the objective function is locally replaced by a cubic
approximation, in which third order Taylor’s expansion is replaced by a cubic regularization term with an
adaptive regularization parameter whose role is related to the local Lipschitz constant of the objective’s
Hessian. In [4], Cartis, et al. extended the cubic algorithms for unconstrained optimizations to finite-
difference versions and yielded complexity bounds for first-order and derivative-free methods applied on
the same problems class. In [5], the authors extended the bound of [2, 3] to nonlinear problems with
convex constraints. Gould et al. [16] presented a new updating strategy for the adaptive regularization
parameter and provided numerical experiments on large nonlinear least-squares problems. Huang and
Zhu in [22] proposed an affine scaling cubic regularization algorithm for derivative-free bound constrained
optimization using backtracking line search technique to obtain the step size. In order to conquer the
lack of bound constraints information in the framework of ARC method, we turn to an affine scaling
technique in [6]. Affine scaling techniques usually combine with trust-region methods for solving bound
constrained optimization problems (e.g. [6, 32]). However, for various reasons, there were many examples
in computational science and engineering, their (at least some) derivatives were unavailable or unreliable.
But they may still be desirable to get the optimizations. Such situations motivated researchers to go after
techniques for derivative-free optimization. Recently, there were many papers proposing various different
methods for the derivative-free optimization problems. Algorithms for bounded constrained optimizations
with global convergence results using the trust region derivative-free methods were presented in [7, 12, 19].
Powell in [26, 27] proposed NEWUOA algorithm, which employs a quadratic polynomial interpolation of
the objective function, with good practical performance for the unconstrained or simple bound constrained
optimizations. In [8], Conn et al. gave trust-region methods for derivative-free optimization, maintaining
linear or quadratic models which were based only on the objective function values computed at sample
points. The corresponding models were constructed by means of polynomial interpolation or regression or
by any other approximation techniques. Wild and Shoemaker [31] extended the work of Conn et al. in [8]
to fully linear models which included a nonlinear term and analyze global convergence of derivative-free
trust region algorithms relying on radial basis function interpolation models. Fletcher and Leyffer first
introduced the filter technique for constrained nonlinear optimization in [13]. The underlying concept of
filter is that trial points are accepted if they improve the objective function or improve the constrained
violation instead of a combination of those two measures defined by a merit function. Recently, Gould et
al. in [15, 18] extended to the work to nonlinear feasibility problems, including nonlinear equations and
nonlinear least-squares, to minimize the norm of the violations of a set of constraints. Then, Gould, et
al. extended the filter techniques further to general unconstrained optimization problems in [17]. They
showed that the procedure was global convergence to at least one second-order critical point and numerical
experiments indicated encouraging performance of the filter-trust-region method when compared to the
classical trust-region algorithms. Li and Zhu in [23] proposed an affine trust-region method with line search
filter technique, using a backtracking relevance condition, for bound constrained optimization problems to
obtain the global convergence.

Stimulated by the progress of these ideas, we will try our best to introduce an affine scaling interior-
point adaptive cubic regularization method with line search filter technique, which does not depend on
external restoration phase, for solving the bound constrained derivative-free optimization (1) under some
mild assumptions in this paper. In absence of derivatives, we use Lagrange polynomials interpolation
to build models of the objective function based on sample function values. There are two advantages
of our proposed algorithm. One is that we only need to solve the subproblem once at each iteration
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if the interpolating radius meets the desirable condition, while the cubic regularization derivative-based
algorithms need to solve the subproblem repeatedly if the trial step is not accepted, in which solving the
subproblem is computationally more expensive than using line search to get the trial step. The other
advantage is that the proposed algorithm uses a line search technique such that the new iteration is strictly
feasible. Global convergence and local convergence results are also retained and numerical results show
that the proposed algorithm is effective.

This paper is organized as follows. In Section 2, we review the basic concepts needed in this paper and
introduce our algorithm for problem (1). The corresponding analysis of global convergence is investigated
in Section 3 and local convergence is reported in Section 4. In Section 5, we draw the numerical experiments
in details.

In this paper, unless otherwise noted, we all write ∥ · ∥ = ∥ · ∥2 for brevity.

2. Development of the algorithm

In this section, we first describe the components of our algorithm and then formally state the overall
algorithm in detail.

2.1. Affine-scaling technique
There are many algorithms for minimization problems with upper and/or lower bounds. But almost

all of these methods for problem (1) were ” active set” methods. Coleman and Li [6] proposed a new trust
region approach with an affine scaling technique for solving (1). The scaling matrix was motivated by
examining the optimality conditions for (1).

Let x∗ be a local minimum point for (1), then the first-order necessary conditions for (1) at x∗ are

[∇ f (x∗)]i


= 0, if li < [x∗]i < ui,
≤ 0, if [x∗]i = ui,
≥ 0, if [x∗]i = li.

(2)

where [∇ f (x∗)]i, [x∗]i, li, ui are the ith component of ∇ f (x∗), x∗, l, u, respectively.
Following an observation by Coleman and Li [6], the first order optimality conditions of (1) are equivalent

to the nonlinear system of equations

D(x∗)−2
∇ f (x∗) = 0,

where x∗ is a local minimizer,

D(x) = diag{|v(x)|−
1
2 }, (3)

and

[v(x)]i =


xi − ui, if [∇ f (x)]i < 0 and ui < +∞,
xi − li, if [∇ f (x)]i ≥ 0 and li > −∞,
−1, if [∇ f (x)]i < 0 and ui = +∞,
1, if [∇ f (x)]i ≥ 0 and li = −∞.

(4)

It is clear that the scaling matrix D(x) depends on the distance of x to the bounds and the first-order deriva-
tive ∇ f (x). And at the same time, we can observe that D(x∗)−2

∇ f (x∗) = 0 is equivalent to D(x∗)−1
∇ f (x∗) = 0

from the definition of D(x).
Besides above, the following definition in [6] is also important.

Definition 2.1. A point x ∈ Ω is nondegenerate if, each index i,

∇ f (x) = 0 ⇒ li < xi < ui. (5)
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Similar to the view expressed in [6], we consider the following diagonal system :

D(x)−2
∇ f (x) = 0. (6)

It is easy to see that system (6) is continuous but not everywhere differentiable. Nondifferentiability
occurs when vi = 0, but we can avoid such points by instricting xk ∈ int(Ω). Discontinuity of vi may also
occur when [∇ f (x)]i = 0, however D(x)−2

∇ f (x) is continuous at such points. Assume that xk ∈ int(Ω), a
Newton step dk for (6) satisfies{

D−2
k ∇

2 f (xk) + diag{∇ f (xk)}Jk

}
dk = −D−2

k ∇ f (xk), (7)

where Dk = D(xk), Jk ∈ R
n×n is the Jacobian matrix of |v(xk)|when |v(x)| is differentiable at xk.

Define

Mk = ∇
2 f (xk) + Ck, Ck = Dkdiag{∇ f (xk)}JkDk, M̂k = D−1

k MkD−1
k , ∇̂ f (xk) = D−1

k ∇ f (xk).

Lemma 2.3 in [6] gave the following results:

Lemma 2.2. Assume that x∗ ∈ Ω and D−1
∗ = D(x∗)−1. Then

(a) ∇̂ f (x∗) = 0 if and only if (2) is satisfied;
(b) M̂∗ is positive definite and ∇̂ f (x∗) = 0 if and only if the second-order sufficiency conditions are satisfied at x∗;
(c) M̂∗ is positive semidefinite and ∇̂ f (x∗) = 0 if and only if the second-order necessary conditions are satisfied at x∗.

Following the suggestion in [6], (7) can be rewritten as the following equations{
D−1

k ∇
2 f (xk)D−1

k + diag{∇ f (xk)}Jk

}
(Dkdk) = −D−1

k ∇ f (xk). (8)

2.2. Adaptive Cubic Regularization algorithm (ARC).

Following the notations proposed by the predecessors in the introductions, Cartis et al. [2, 3] gave the
ARC model following

ψk(d) = f (xk) + ∇ f (xk)Td +
1
2

dTBkd +
1
3
σk∥d∥3, (9)

where Bk is a symmetric approximation to the Hessian ∇2 f (xk), and σk is a dynamic positive parameter.
Here, the parameter σk performs a double task. One is account for the discrepancy between the objective
function and its second order Taylor expansion, the other is for the difference between the exact and the
approximate Hessian. The rules for updating σk are analogy to the trust-region methods. But σk might be
regarded as the reciprocal of the trust-region radius and it can adjust automatically under some criterions.
If good agreements between model and function are observed, there may be benefits in decreasing σk.
By contrast, the only recourse available is to increase σk prior to reducing the size of the step to the next
iteration.

By employing the affine scaling technique, we construct the adaptive cubic regularization method for
bound constrained optimization. The adaptive cubic regularization method for box constrained optimiza-
tion of (1) at the kth iteration is defined as follows

ψ̄k(d) =
[
D−1

k ∇ f (xk)
]T

(Dkd) +
1
2

(Dkd)T
[
D−1

k ∇
2 f (xk)D−1

k + diag{∇ f (xk)}Jk

]
(Dkd) +

1
3
σk∥Dkd∥3. (10)
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2.3. Derivative-free model

There are many approaches for derivative-free optimization. Here, we are interest in the interpolation
model in [9]. Powell [27] proposed the quadratic interpolation model which approximated to the objective
function that were highly useful for obtaining a fast rate of convergence in iterative algorithms for simple
bound constrained optimizations. In this paper, in order to guarantee the quadratic interpolation model is
fully quadratic, we choose (n + 1)(n + 2)/2 sampling points to construct a quadratic interpolation model.
With quadratic approximation, the model has to belong to a fully quadratic class. This concept requires the
following assumption [9].

Assumption 2.1. Suppose a set S ⊆ Rn and give a radius ∆max. Assume that f is twice continuously differentiable
with Lipschitz continuous Hessian in an appropriate open domain containing the∆max neighborhood

⋃
x∈S B(x;∆max)

of the set S.

Definition 2.3. Give a function f that satisfies Assumption2.1. A set of model functionsM =
{
m : Rn

→ R,m ∈ C2
}

is called a fully quadratic class of models if the following hold:

1. There exist positive constants κe f , κe1, κeh, and κblh, such that for any x ∈ S, and ∆ ∈ (0,∆max] there exists
a model function m(x + s) in M, with Lipschitz continuous Hessian and corresponding Lipschitz constant
bounded by κblh, and such that
• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇
2 f (x + s) − ∇2m(x + s)∥ ≤ κeh∆ ∀ x + s ∈ B(x,∆), (11)

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ f (x + s) − ∇m(x + s)∥ ≤ κe1∆
2
∀ x + s ∈ B(x,∆), (12)

• the error between the model and the function satisfies

∥ f (x + s) −m(x + s)∥ ≤ κe f∆
3
∀ x + s ∈ B(x,∆). (13)

From [9], we know that if a model is fully quadratic on B(x, ∆̄) with respect to some (large enough) constants
κe f , κe1, κeh and for some ∆̄ ∈ (0, ∆̃], then it is also fully quadratic on B(x,∆) for any ∆ ∈ [∆̄, ∆̃].

Now we expand (10) to the derivative-free version. Using the polynomial interpolation mentioned
above, the derivative-free adaptive cubic regularization method for box constrained optimization of (1) at
the kth iteration is defined as follows,

φk(d) =
[
D̄−1

k 1k

]T
(D̄kd) +

1
2

(D̄kd)T
[
D̄−1

k HkD̄−1
k + diag{1k} J̄k

]
(D̄kd) +

1
3
σk∥D̄kd∥3, (14)

where 1k = ∇m(xk), Hk = ∇
2m(xk). In the derivative-free case, 1k , ∇ f (xk), Hk , ∇

2 f (xk). D̄k and J̄k are the
corresponding terms of D̄(x) and J̄(x) at xk, where D̄(x) and J̄(x) are defined following:

D̄(x) = diag
{
|v̄(x)|−

1
2

}
,

and

[v̄(x)]i =


xi − ui, if [∇m(x)]i < 0 and ui < +∞,
xi − li, if [∇m(x)]i ≥ 0 and li > −∞,
−1, if [∇m(x)]i < 0 and ui = +∞,
1, if [∇m(x)]i ≥ 0 and li = −∞,

and J̄(x) is the Jacobian matrix of |v̄(x)|.
By employing the notations Ĥk = D̄−1

k HkD̄−1
k + diag{1k} J̄k, 1̂k = D̄−1

k 1k and d̂ = D̄kd, we rewrite (14) as
follows

φk(d) = 1̂T
k d̂ +

1
2

d̂TĤkd̂ +
1
3
σk

∥∥∥d̂∥∥∥3 . (15)
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2.4. Line search filter technique

Filter technique was proposed firstly by Fletcher and Leyffer [13] for constrained nonlinear optimization.
The notion of filter in the half-plane {(∥h∥, f ) ∈ R2

} is based on that of dominance. The needed definitions
are defined as follows:

Definition 2.4. A pair (∥h(xk)∥, f (xk)) dominates another pair (∥h(xl)∥, f (xl)) if both ∥h(xk)∥ ≤ ∥h(xl)∥ and f (xk) ≤
f (xl).

Definition 2.5. A filter F is a list of pairs (∥h(xl)∥, f (xl)) such that no pair dominate another.

Definition 2.6. A pair (∥h(xk)∥, f (xk)) is said to be acceptable for the filter F when it is not dominated by any pair
in the filter F .

The idea of using filter is to interpret the system of (1) as a biobjective optimization problem with two
goals: minimizing the objective function f (x) and minimizing the constraint violation ∥h(x)∥, where h(x) =
D̄(x)−11(x) and 1(x) = ∇m(x). In order to ensure f or ∥h∥ decreasing sufficiently, we gave such a strategy:

∥h(xk(αk,l))∥ ≤ (1 − γh)∥h(xk)∥, (16)

or

f (xk(αk,l)) ≤ f (xk) − γ fαk,l∥h(xk)∥2, (17)

where γh, γ f ∈ (0, 1) are small positive constants and

xk(αk,l) = xk + αk,ldk. (18)

Now we consider using a filter mechanism to potentially accepted xk(αk,l) as a new iterate. If (16) or (17)
holds, we say that the trial point xk(αk,l) to be acceptable to the current filter F . If xk(αk,l) satisfies

(∥h(xk(αk,l))∥, f (xk(αk,l))) ∈ F , (19)

we say that the trial point xk(αk,l) is not acceptable to the current filter, that is, neither (16) nor (17) holds.
The filter is augmented as follows:

Fk+1 = Fk ∪
{
(∥h∥, f ) ∈ Rn : ∥h∥ ≥ (1 − γh)∥h(xk)∥ and f ≥ f (xk) − γ fαk∥h(xk)∥2

}
, (20)

after the new iterate has been accepted. Otherwise, the filter remains unchanged. At the beginning, the
filter is initialized to

F0 =
{
(∥h∥, f ) : ∥h∥ ≥ ∥h∥max

}
, (21)

for some ∥h∥max > ∥h(x0)∥, so the algorithm will never allow trial points to be accepted that have a gradient
norm large than ∥h∥max. In this way, this procedure ensures that the algorithm cannot cycle.

2.5. Algorithm (DFFARC)

Now we describe an affine scaling interior-point adaptive cubic regularization algorithm with line search
filter technique for solving derivative-free optimization subject to bounds below:

Initialization step:
An initial point x0 ∈ int(Ω) = {x : l < x < u}, a positive parameter σ0 > 0 and a radius 1 ≥ ∆0 > 0 are
given. The constants η1, η2, γ1, γ2, τ1, τ2 are also given and satisfy that

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 ≤ γ2 < 2, 0 < τ1 ≤ τ2 < 1.

Initialize the filter F0. Choose ϵ ∈ (0, 1), γ f , γh ∈ (0, 1), γ3 ∈ (0, 1). Set k← 0, and go to main step.
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Main Step:
Step 1. Choose a set Yk of interpolation points with xk ∈ Yk ⊆ B(xk,∆k), then applying Algorithms 6.1 and

6.3 in [9] to construct the corresponding model mk = m(xk) which is fully quadratic on B(xk,∆k).

Set 1k = ∇mk, Hk = ∇
2mk. Compute D̄k and h(xk) def

= D̄−1
k 1k.

Step 2. If ∥h(xk)∥ ≤ ε, stop with the solution xk, else go to next.
Step 3. Compute a finite search direction dk for which

φk(dk) ≤ φk(dC
k ), (22)

where

dC
k = −ζ

C
k D̄−2

k 1k, ζC
k = arg min

ζ∈R+
φk(−ζD̄−2

k 1k), (23)

and φk(d) is defined in (15).
Step 4. Backtracking line search.

Step 4.1 Set αk,0 = 1 and l← 0.
Step 4.2 Compute xk(αk,l) = xk + αk,ldk.
Step 4.3 If (∥h(xk(αk,l))∥, f (xk(αk,l))) ∈ Fk, reject the trial step size αk,l and go to Step 4.6, else go to Step

4.4.
Step 4.4 If

∥h(xk(αk,l))∥ ≤ (1 − γh)∥h(xk)∥,

with
xk + αk,ldk ∈ Ω

holds, accept the trial step αk,l and go to Step 4.7, else go to Step 4.5.
Step 4.5 If

f (xk(αk,l)) ≤ f (xk) − γ fαk,l∥h(xk)∥2,

with
xk + αk,ldk ∈ Ω

holds, accept the trial step αk,l and go to Step 4.7, else go to Step 4.6.
Step 4.6 Set αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l← l + 1 and go to Step 4.2.
Step 4.7 Set αk = αk,l and

sk =

{
αkdk, if xk + αkdk ∈ int(Ω),
θkαkdk, if otherwise,

where θk ∈ (θ0, 1], for some 0 < θ0 < 1 and θk − 1 = O(∥dk∥).
Step 5. Let ∆̃k = ∆k.

If ∆̃k > min(∥h(xk)∥, ∥ŝk∥),
set ∆̃k ← γ3∆̃k and applying Algorithm 6.1, 6.3 in [9] to construct model m̃k which is

fully
quadratic on B(xk, ∆̃k). Set 1̃k = ∇m̃k, H̃k = ∇

2m̃k. Go to Step 3 to compute d̃k that satisfies
(22), (23).

Until ∆̃k ≤ min(∥h̃(xk)∥, ∥ ˜̂sk∥).
Update mk = m̃k, 1k = ∇m̃k, Hk = ∇

2m̃k, ∆k = ∆̃k and sk = s̃k, compute φk(sk), then go to Step
6.

Step 6. Compute xk+1 = xk+ sk, f (xk+1) = mk+1 = m(xk+1), 1k+1 = 1(xk+1) = ∇m(xk+1) and Hk+1 = ∇
2m(xk+1).

Step 7. Compute the following ratio ρk,

ρk =
f (xk) − f (xk+1)
−φk(sk)

.

Set

σk+1 =


γ1σk, if ρk > η2,
σk, if η1 ≤ ρk ≤ η2,
γ2σk, if ρk < η1.
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Step 8. Augment the filter if necessary. If neither (16) nor (17) holds, augment the filter using (20), else
the filter remains unchanged.

Step 9. Set yk+1
0 = xk+1, ∆k+1 = ∆k. Choose q interpolation points in region B(xk+1,∆k+1) to construct the

sample set Yk+1 = {yk+1
0 , · · · , yk+1

q }. Determine the corresponding interpolation model mk+1(xk+1)
on the sample set Yk+1. Compute 1k+1 and Hk+1. Set k← k + 1 and go to Step 1.

Remark 2.7. The scalar αk given in (17) of Step 4 denotes the step size along the direction dk to the boundary on the
variables l ≤ xk + αkdk ≤ u, that is,

αk
def
= min

{
max

{
li − [xk]i

[dk]i
,

ui − [xk]i

[dk]i

}
, i = 1, 2, . . . ,n

}
, (24)

where li, ui, [xk]i and [dk]i are the ith components of l, u, xk and dk, respectively.

3. Global convergence analysis

In this section, we present some lemmas which provide some basic properties of the proposed algorithm.
And these properties will also be referred to next on global convergence and local convergence analysis.
Throughout this paper, we denoteA to the set of indices which the filter has been augmented, i.e. k ∈ A ⇔
Fk ⊂ Fk+1. Before we study the properties of the algorithm, we make the following assumptions.

Assumption 3.1. Assume that f : Rn
→ R is twice continuously differentiable and bounded from below, its gradient

is Lipschitz continuous on the paths of iterates with Lipschitz constants L1.

Give an initial point x0 ∈ int(Ω) and denote the level set of f by L(x0) = {x ∈ Rn
| f (x) ≤ f (x0), x ∈ Ω}.

Assumption 3.2. The iterates xk remain in L(x0), which is compact on Rn.

Assumption 3.3. There exist some positive constants κD, κ1 and κh such that ∥D̄(x)−1
∥ ≤ κD, ∥D(x)−1

∥ ≤ κD,
∥∇ f (x)∥ ≤ κ1, ∥∇2 f (x)∥ ≤ κh for all x ∈ L(x0), respectively.

Consequently, from Assumptions 3.1-3.3, (12) and the choice of ∆k in Step 5, we can get that

κl f ≤ f (x) ≤ κu f , ∥1k∥ ≤ ∥∇ f (xk)∥ + ∥∇ f (xk) − 1k∥ ≤ κ1 + κe1∆
2
0

def
= κn1,

and

∥Hk∥ ≤ κh + κeh∆0
def
= κnh, ∥Ĥk∥ ≤ κ

2
Dκnh + κn1

def
= κH.

Firstly, we give the global optimality result for the cubic model directly from [2].

Lemma 3.1. A step dk is a solution to (14) if and only if dk satisfies the following equation[
Ĥk + σk∥d̂k∥I

]
d̂k

def
=
[
D̄−1

k HkD̄−1
k + diag{1k}J̄k + σk∥D̄kdk∥I

]
(D̄kdk) = −D̄−1

k 1k
def
= −1̂k, (25)

where Ĥk + σk∥d̂k∥I
def
= D̄−1

k HkD̄−1
k + diag{1k} J̄k + σk∥D̄kdk∥I is positive semidefinite.

The predicted reduction−φk(dk) satisfies a guaranteed low bound, which makes sure the global convergence
of the proposed algorithm. The following lemma is from [22].

Lemma 3.2. Suppose that dk is the solution in Step 3. Then for k ≥ 0, we have the result following:

−φk(dk) ≥
1
6
∥1̂k∥min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk

 . (26)
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Assumption 3.4. Suppose that Ĥk is positive semidefinite for all xk ∈ L(x0).

From Assumption 3.4, we have that

−φk(αkdk) ≥
αk

6
∥1̂k∥min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk

 . (27)

The following lemma shows that the direction of the trial step is a sufficiently descent direction. This
lemma is from [22].

Lemma 3.3. Suppose that Assumption 3.4 holds. If dk is a solution in Step 3, then

1T
k dk ≤ −

∥1̂k∥

6
min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk

 . (28)

The following lemma from [22] gives a useful bound on the step dk.

Lemma 3.4. If dk is a solution in Step 3 and Assumption 3.4 holds, then

∥D̄kdk∥ = ∥d̂k∥ ≤ 3

√
∥1̂k∥

σk
. (29)

Lemmas 3.3-3.4 and Assumption 3.3 imply that

1T
k dk ≤ −

∥1̂k∥

6
min
{
∥1̂k∥

κH
,

√
3

12
∥d̂k∥

}
. (30)

Assumption 3.5. Suppose that ∥D̄−2
k ∇dφk(dk)∥ ≤ κθ min

{
1, ∥d̂k∥

}
∥D̄−2

k 1k∥, where κθ ∈ (0, 1).

Now, we show that the algorithm will not loop infinitely in the Step 5 unless the current iterate is a
first-order stationary point.

Lemma 3.5. If ∥D−1
k ∇ f (xk)∥ , 0 and Assumption 3.5 holds, the Step 5 of the algorithm will terminate in a finite

number.

Proof. The proof is very similar to Lemma 5.1 in [8], but we repeat the details of Lemma 5.1 in [8] here in
order to maintain the integrity of the paper and emphasize the importance of this lemma. In order to obtain
a contradiction, we suppose that there are infinitely many improvement steps.

In the beginning, according to the algorithm, we know that, if we implement the improvement algorithm,
either mk is not fully quadratic on B(xk,∆k) or ∆k > min{∥h(xk)∥, ∥ŝk∥}. Then we let 1(0)

k = ∇mk and improve
the model until it is fully quadratic on B(xk, γ0

3∆k). If γ0
3∆k ≤ min(∥h(xk)(1)

∥, ∥ŝ(1)
k ∥), the procedure terminates

with ∆̃k = γ0
3∆k ≤ min(∥h(xk)(1)

∥, ∥ŝ(1)
k ∥). Otherwise, that is, if min(∥h(xk)(1)

∥, ∥ŝ(1)
k ∥) < γ

0
3∆k, we improve the

model until it is fully quadratic on B(xk, γ3∆k). Then, either the procedure terminates or multiplies γ3 to ∆̃k
again, and so on.

This procedure will be infinite only when the following inequality always holds

min(∥h(xk)(l)
∥, ∥ŝ(l)

k ∥) < γ
l−1
3 ∆k for all l ≥ 1, (31)

where 1(l)
k = ∇m(l)

k , h(xk)(l) = D̄−1
k 1

(l)
k . We will get that lim

l→+∞
γl−1

3 ∆k = 0 since that 0 < γ3 < 1. Then from the

above inequality, we will get that min(∥h(xk)(l)
∥, ∥ŝ(l)

k ∥)→ 0(l→ +∞).
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Since each model m(l)
k is fully quadratic on B(xk, γl−1

3 ∆k), then (12) with s = 0 and x = xk provides

∥∇ f (xk) − 1(l)
k ∥ ≤ κe1(γl−1

3 ∆k)2 for all l ≥ 1.

Thus, Dk = D̄k from the definition of D(x) and D̄(x) for sufficiently large l.
From the choice of αk, if ∥ŝk∥ ≤ ∥ŝ

(l)
k ∥, then ∥h(xk)(l)

∥ = min
{
∥h(xk)(l)

∥, ∥ŝk∥
}
≤ min

{
∥h(xk)(l)

∥, ∥ŝ(l)
k ∥
}
→ 0, as

l→∞. Using the triangle inequality, we have that,

∥D−1
k ∇ f (xk)∥ ≤ ∥D−1

k ∥ · ∥∇ f (xk) − 1(l)
k ∥ + ∥h(xk)(l)

∥

≤ κD∥∇ f (xk) − 1(l)
k ∥ + ∥h(xk)(l)

∥

≤ κDκe1(γl−1
3 ∆k)2 + γl−1

3 ∆k

≤ κD(κe1∆k + 1)γl−1
3 ∆k,

where γ3 ∈ (0, 1). Then we infer that

∥D−1
k ∇ f (xk)∥ = 0,

which contradicts ∥D−1
k ∇ f (xk)∥ , 0, hence the conclusion holds.

If ∥ŝk∥ > ∥ŝ
(l)
k ∥, i.e. αk > αk,l, then (17) also hold for αk at the trial step xk(αk,l) = xk + αk,ldk. And from (12),

we have

∥D−1
k ∇ f (xk) − h(xk)(l)

∥ = ∥D−1
k ∇ f (xk) − D̄−1

k 1
(l)
k ∥ ≤ κDκe1(γl−1

3 ∆k)2 for all l ≥ 1.

Then, ∥h(xk)(l)
∥ , 0 from ∥D−1

k ∇ f (xk)∥ , 0 for sufficiently large l. Thus there exists a ε > 0, such that
∥h(xk)(l)

∥ > ε for large l. Similar to prove Lemma 4.1 in [4], we can have that

∥ŝk∥ ≥
αkθ0(1 − κθ)ε

κD(κH + 3√σkκDκn1)
def
= µ(αk, σk)ε,

from Assumption 3.5. Since γ3 ∈ (0, 1), there exists a K =
[

log[min {ε,µ(αk ,σk)ε}]
logγ3

]
+

, such that for l > K + 1,

γl−1
3 ∆k < γ

l−1
3 ≤ min

{
ε, µ(αk, σk)ε

}
≤ min

{
∥h(xk)(l)

∥, ∥ŝk∥
}
,

which is contradiction to (31). Thus, the algorithm terminates in a finite number.

Lemma 3.6. Suppose that Assumptions 3.1-3.2 hold. Then

Θk := min{∥h∥ : (∥h∥, f ) ∈ Fk} > 0 (32)

for all k.

Proof. By induction, it is clear from initialization step of the Algorithm that the claim is true for k = 0 since
∥h∥max > 0. Suppose the claim holds for k. Then, we prove the claim is right for k + 1. If the algorithm
proposed has not terminated, ∥h(xk)∥ > 0. Without loss of generality, we assume the filter is augmented in
iteration k. It is clear from the update rule (20) that Θk+1 > 0, since γh ∈ (0, 1).

Lemma 3.7. Suppose that Assumptions 3.1-3.4 hold. If mk is fully quadratic on B(xk;∆k) and√
σk∥1̂k∥ ≥

216
1 − η1

max
{
κD(L1κD + κe1∆0), κH

} def
= κHB, (33)

then ρk ≥ η1 and

σk+1 ≤ σk. (34)
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Proof. The proof is very similar to Lemma 3.11 in [22], but we repeat the details of Lemma 3.11 in [22] here
in order to maintain the integrity of the paper and emphasize the importance of this lemma. From (33), we
will get that ∥1̂k∥ , 0, because otherwise, the algorithm would have terminated, then ∥1̂k∥ = 0 will conflict
with (33). However,

ρk − η1 =
f (xk + sk) − f (xk) − η1φk(sk)

φk(sk)
=

f (xk + sk) − f (xk) − φk(sk) + (1 − η1)φk(sk)
φk(sk)

.

Firstly, using a Taylor expansion, for some ξk ∈ (0, 1), the first term of the numerator in the fraction above
becomes that

f (xk + sk) − f (xk) − φk(sk)

= f (xk) + ∇ f (xk + ξksk)Tsk − f (xk) − 1̂T
k ŝk −

1
2

ŝT
k Ĥkŝk −

σk

3
∥ŝk∥

3

=
(
D̄−1

k ∇ f (xk + ξksk) − 1̂k

)T
ŝk −

1
2

ŝT
k Ĥkŝk −

σk

3
∥ŝk∥

3

≤

(
D̄−1

k ∇ f (xk + ξksk) − 1̂k

)T
ŝk

≤ κD
(
∥∇ f (xk + ξksk) − ∇ f (xk)∥ + ∥∇ f (xk) − 1k∥

)
· ∥ŝk∥

≤ θ2
kα

2
kκD

[
L1κD + κe1∆0)

]
· ∥d̂k∥

2

≤ θ2
kα

2
k max{κD(L1κD + κe1∆0), κH} · ∥d̂k∥

2

≤ θkα
2
k max{κD(L1κD + κe1∆0), κH} ·

9∥1̂k∥

σk
, (35)

where we used Lemma 3.4, Assumption 3.1, (12) and the triangle inequality.
Next, we consider the second term of the numerator in the fraction.

(1 − η1)φk(sk) ≤ −
(1 − η1)θkαk

6
∥1̂k∥ ·min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk


≤

(η1 − 1)θkαk

6
· ∥1̂k∥

2
·min

 1
κH
,

√
3

4

√
1

∥1̂k∥σk


(33)
=

√
3(η1 − 1)θkαk

24
· ∥1̂k∥

2
·

√
1

∥1̂k∥σk

=

√
3θkαk(η1 − 1)

24
·
∥1̂k∥

3
2

√
σk

≤
θkα2

k(η1 − 1)

24
∥1̂k∥

3
2

√
σk
, (36)

where we used (27), Assumption 3.3 and 0 < αk ≤ 1.
However, the denominator φk(sk) < 0 is from (27).
Thus, following with (33), (35) and (36), we get that,

ρk − η1 ≥

θkα2
k max

{
κD(L1κD + κe1∆0), κH

} 9∥1̂k∥

σk
+

α2
k (η1−1)

24
∥1̂k∥

3
2

√
σk

φk(sk)

=
θkα2

k∥1̂k∥ ·
[
216 max

{
κD(L1κD + κe1∆0), κH

}
+ (η1 − 1)

√
σk∥1̂k∥

]
24σkφk(sk)
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=
θkα2

k∥1̂k∥ ·
[

216
1−η1

max
{
κD(L1κD + κe1∆0), κH

}
−
√
σk∥1̂k∥

]
24σkφk(sk)

(33)
≥ 0. (37)

Thus, ρk ≥ η1 and (34) follows from the updating rule in Step 7.

Assumption 3.6. Suppose that σk ≥ σmin > 0, then lim
k→∞

σk = ∞ as αk → 0.

The Assumption 3.6, which is reasonable when we use Armijo backing line search or Wolfe condition (ii)
for global convergence, plays an important role to promote global convergence.

If xk + αkdk satisfies Armijo condition, f (xk + αkdk) ≤ f (xk)+ c1αk∇ f (xk)Tdk, where c1 ∈ (0, 1), without loss
of generality, we assume that αk = αk,l, where l is the first integer such that αk,l satisfies Armijo condition,
we have that

f (xk +
αk

τ1
dk) > f (xk) +

αk

τ1
c1∇ f (xk)Tdk. (38)

From the mean value theorem, we have that

f (xk +
αk

τ1
dk) = f (xk) +

αk

τ1
∇ f (xk + ξk

αk

τ1
dk)Tdk. (39)

where ξk ∈ (0, 1). Combining (38) and (39), we can get the following inequality,

αk

τ1
(∇ f (xk + ξk

αk

τ1
dk) − ∇ f (xk))Tdk +

αk

τ1
(1 − c1)(∇ f (xk) − 1k)Tdk +

αk

τ1
c11

T
k dk > 0. (40)

From Assumption 3.1 and (12), then,

(
αk

τ1
)2L1∥dk∥

2 +
α3

k

τ1
(1 − c1)κe1κ

2
D∥dk∥

3 +
αk

τ1
c11

T
k dk > 0. (41)

Dividing (41) by αk
τ1

and applying Lemma 3.3, we have that

αk

τ1
L1∥dk∥

2 + α2
k(1 − c1)κe1κ

2
D∥dk∥

3 > c1
∥1̂k∥

6
min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk

 . (42)

If ∥1̂k∥ > ε, using Assumption 3.3 and the fact that ∥dk∥ is bounded, which is from Lemma 3.4, ∥dk∥ ≤

κD∥d̂k∥ ≤ 3κD

√
∥1̂k∥

σk
≤ 3κ

3
2
D

√
κn1

σmin
, we can infer that σk →∞ as αk → 0 from (42).

Next we show that Assumption 3.6 can be also achieved when xk(αk) = xk + αkdk satisfies the Wolfe
condition (ii) ∇ f (xk + αkdk)Tdk ≥ c2∇ f (xk)Tdk, where c2 ∈ (0, 1). We rewrite it, then

(∇ f (xk + αkdk) − ∇ f (xk))Tdk + (1 − c2)(∇ f (xk) − 1k)Tdk + (1 − c2)1T
k dk > 0.

From Assumption 3.1 and (12) again, we have that,

L1αk∥dk∥
2 + (1 − c2)α2

kκe1κ
2
D∥dk∥

3 + (1 − c2)1T
k dk > 0.

Using Lemma 3.3 and Assumption 3.3, the following inequality

L1αk∥dk∥
2 + (1 − c2)α2

kκe1κ
2
D∥dk∥

3 > (1 − c2)
∥1̂k∥

6
min

∥1̂k∥

κH
,

√
3

4

√
∥1̂k∥

σk

 ,
holds. Consequently, σk →∞ as αk → 0 if ∥1̂k∥ > ε.
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Lemma 3.8. Suppose that Assumptions 3.1-3.6 hold and the filter is augmented only a finite number of times, i.e.
|A| < ∞. If any limit point x∗ of {xk} is nondegenerate, then

lim
k→∞
∥h(xk)∥ = 0. (43)

Proof. Choose K such that for all iteration k ≥ K the filter is not augmented in iteration k, i.e. k < A for all
k ≥ K. From Step 4 of Algorithm DFFARC, we have that either (16) or (17) holds. If (16) holds for k ≥ K,
since γh ∈ (0, 1), we have that

∥h(xk+1)∥ ≤ (1 − γh)∥h(xk)∥ ≤ (1 − γh)2
∥h(xk−1)∥ ≤ · · · ≤ (1 − γh)k−K

∥h(xK+1)∥.

This implies that (43) holds. If (16) does not hold for some k sufficiently large, the mechanism of Algorithm
DFFARC then implies that (17) holds. This implies

f (xk+1) − f (xk) ≤ −γ fαk∥h(xk)∥2, (44)

for all k ≥ K. Hence, for all j = 1, 2, . . . ,

f (xK+ j) = f (xK) +
K+ j−1∑

k=K

( f (xk+1) − f (xk)) ≤ f (xK) −
K+ j−1∑

k=K

γ fαk∥h(xk)∥2.

In order to get a contradiction, we suppose that ∥h(xk)∥ > ϵ. Thus,

K+ j−1∑
k=K

γ fαkϵ
2
≤

K+ j−1∑
k=K

γ fαk∥h(xk)∥2 ≤ f (xK) − f (xK+ j).

Since f (xK+ j) is bounded below as j→∞, the series on the left-hand side above is bounded as j→∞, then
αk → 0 as k→∞.

Assume that αk given by (24) in Step 4 is the step size to the boundary of box constraints Ω along dk.
If D−1

∗ ∇ f (x∗) = 0 for any i with [ν∗]i = 0, without loss of generality, assume [x∗]i = li for some i, we get
[∇ f (x∗)]i > 0 since x∗ is nondegenerate. As a consequence, [∇ f (xk)]i > 1

2 [∇ f (x∗)]i > 0 for k sufficiently large
since the smoothness of f (x). From (12), we get that [1k]i > 0 for k sufficiently large, then αk =

|[ν̄k]i |

|[dk]i |
. Left

multiplying D̄−1
k at the side of (25), we have

(diag{1k}J̄k + σk∥d̂k∥I)dk = −D̄−2
k (1k +Hkdk).

Since diag{1k} J̄k + σk∥d̂k∥I is positive semidefinite, we have

αk =
|[1k]i| + σk∥d̂k∥

|[1k]i + [Hkdk]i|
≥
|[1k]i| + σk∥d̂k∥

∥1k +Hkdk∥∞
.

If D−1
∗ ∇ f (x∗) = 0 with [∇ f (x∗)]i = 0 for any i, we obtain that li < [x∗]i < ui from that x∗ is nondegenerate, then

li < [xk]i < ui for k sufficiently large. Obviously, we get αk ↛ 0 as k→∞ from (24).
Furthermore, if αk is obtained from Step 4, we have that σk → ∞ from Assumption 3.6. Recall that

∥1̂k∥ = ∥h(xk)∥ > ϵ, we can have that
√
σk∥1̂k∥ >

√
σkε > κHB for sufficiently large k, then σk+1 ≤ σk from

Lemma 3.7. According to the updating role in σk, if σk+1 = γ2σk > σk, then σk ≤
κ2

HB
ε < γ2

κ2
HB
ε from Lemma

3.7. By induction, σ0 ≤ max{σ0, γ2
κ2

HB
ε }. Suppose the claim that σk ≤ max{σ0, γ2

κ2
HB
ε } holds. It is obvious that

σk+1 ≤ max{σ0, γ2
κ2

HB
ε } if σk+1 ≤ σk. If σk+1 > σk, then σk ≤

κ2
HB
ε , consequently, σk+1 ≤ max{σ0, γ2

κ2
HB
ε } since

σk+1 = γ2σk(≤ γ2
κ2

HB
ϵ ). The claim σk ≤ σmax = max{σ0,

γ2κ2
HB
ϵ }, which contradicts σk → ∞. Hence, αk ↛ 0, our

hypothesis ∥h(xk)∥ > ϵ is impossible. Thus, the conclusion holds.
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Lemma 3.9. Suppose that Assumptions 3.1-3.6 hold and |A| = ∞. If any limit point x∗ of {xk} is nondegenerate,
then

lim
k→∞,k∈A

∥h(xk)∥ = 0. (45)

Proof. In order to obtain a contradiction, we suppose that there exists an infinite subsequence {ki} ⊆ A, such
that

∥h(xki )∥ ≥ ϵ, (46)

for all large ki and some ϵ > 0. By the definition of ki, the pair of (∥h(xki )∥, f (xki )) is added to the filter. This
implies that the filter is not augmented in the square [∥h(xki )∥−γhϵ, ∥h(xki )∥]× [ f (xki )−γ fαkiϵ

2, f (xki )] or with
the intersection of this square withA0. Observe that the area of each of these squares is γhγ fαkiϵ

3.
Similarly as in the proof in Lemma 3.8, we have αki ↛ 0 as ki → ∞. Thus, there exists an infinite

subsequence {ki j } ⊆ {ki}, such that αki j
≥ ϵ as j → ∞, the set A0 ∩ {(∥h∥, f )| f ≤ κ f } is completely covered

by at most a finite number of such squares, for any choice of κ f ≥ κl f . Since the filter is keeping on being
added, f (xki j

) tends to infinity as i→∞. Without loss of generality, we assume that f (xki( j+1)
) ≥ f (xki j

) for all
j sufficiently large, which means that (17) does not hold and then (16) holds. However, (16) implies that

∥h(xki j+1
)∥ ≤ (1 − γh)∥h(xki j

)∥,

and as a consequence, ∥h(xki j
)∥ converges to zero since 0 < γh < 1 and ∥h(xki j

)∥ ≤ κDκn1, which contradicts
(46). Hence our hypothesis is impossible and (45) holds.

Lemma 3.10. Suppose that Assumptions 3.1-3.6 hold. If any limit point x∗ of {xk} is nondegenerate, then

lim inf
k→∞

∥h(xk)∥ = 0, (47)

furthermore,

lim inf
k→∞

∥D−1
k ∇ f (xk)∥ = 0. (48)

Proof. (47) is directly from Lemmas 3.8-3.9. We only need to prove (48). Since |[1k]i − [∇ f (xk)]i| ≤ ∥1k −

∇ f (xk)∥ ≤ κe1min{∥ŝk∥
2, ∥h(xk)∥2} ≤ κe1∥h(xk)∥2, we can deduce that [1k]i and [∇ f (xk)]i have the same sign for

k sufficiently large from (47). Consequently, we get that Dk = D̄k for k sufficiently large. Moreover, we have
that

∥D−1
k ∇ f (xk)∥ ≤ ∥[D̄−1

k ∇ f (xk) − h(xk)∥ + ∥h(xk)∥

≤ κDκe1∥h(xk)∥2 + ∥h(xk)∥,

thus, combining with (47) again, we infer that (48) holds.

Theorem 3.11. Suppose that Assumptions 3.1-3.6 hold. If any limit point x∗ of {xk} is nondegenerate, then

lim
k→∞
∥h(xk)∥ = 0. (49)

Proof. If the filter is augmented only a finite number of times, Lemma 3.8 implies the conclusion. If in the
other extreme there exists some K ∈N, such that the filter is updated by (20) in all iterations k ≥ K, then the
conclusion follows from Lemma 3.9. It remain to consider the case where for all K ∈N, there exist k1, k2 ≥ K
with k1 ∈ A and k2 < A. Assume that (49) does not hold. Then there exists a subsequence {xki } such that
∥h(xki )∥ ≥ 2ε and ki < A. From Lemma 3.9, we also have that ∥h(xli )∥ < ε for each ki, the iterate xli is the first
iterate after xki such that (∥h(xli )∥, f (xli )) is included in the filter, that is, li ∈ A. Thus, we have that

∥h(xk)∥ ≥ ε, for all i with ki ≤ k < li. (50)
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Obviously,K = {k ∈N | ki ≤ k < li} is infinite, where ki and li are defined as above.
For all k = ki, . . . , li − 1 < A, we have that either (16) or (17) holds. If (16) holds, then,

∥h(xk+1)∥ ≤ (1 − γh)∥h(xk)∥.

Since 0 < γh < 1 and ∥h(xk)∥ ≤ κDκn1, ∥h(xk+1)∥ → 0, which contradicts (50). The DFFARC algorithm implies
that (17) holds. Thus,

f (xk+1) ≤ f (xk) − γ fαk∥h(xk)∥2 < f (xk) − γ fαkε
2. (51)

Furthermore, { f (xk)} is monotonically decreasing and f (xli ) ≤ f (xki+1). Consequently, for all i,

f (xli ) ≤ f (xki+1) < f (xki ) − γ fαki∥h(xki )∥
2 < f (xki ) − γ fαkiε

2.

This ensures that, for all K ∈N, there exists some i ≥ K with

f (xk(i+1) ) ≥ f (xli ), (52)

because otherwise the inequality above would imply

f (xk(i+1) ) < f (xli ) ≤ f (xki+1) ≤ f (xki ) − γ fαki∥h(xki )∥
2 < f (xki ) − γ fαkiε

2, (53)

for all i.
Similar to prove Lemma 3.8, we can to prove that αk∈K1 ↛ 0, whereK1 ⊆N and αk is the step size to the

boundary of box constraints along dk. Furthermore, from Assumption 3.6, we can get σk → ∞ as αk → 0.

Recall that ∥1̂k∥ ≤ κDκn1 and ∥d̂k∥ ≤ 3
√
∥1̂k∥

σk
, thus ∥d̂k∥ → 0, consequently, ∥dk∥ ≤ κD∥d̂k∥ → 0, furthermore,

θk → 1 where θk is defined in Step 4, then, sk = αkdk, ∥ŝk∥ = αk∥d̂k∥ → 0. However,

−φ̄k(sk) = −φ̄(αkdk)

≥
αk

6
∥1̂k∥min

 ∥1̂k∥

∥Ĥk∥
,

√
3

4

√
∥1̂k∥

σk


≥

αkε
6

min
{
ε
κH
,

√
3

12
∥d̂k∥

}
=

√
3

72
ε∥ŝk∥, (54)

and

f (xk + sk) − f (xk) − φk(sk) = ∇ f (xk + ξksk)Tsk − 1̂
T
k ŝk −

1
2

ŝT
k Ĥkŝk −

1
3
σk∥ŝk∥

3

≤ ∇ f (xk + ξksk)Tsk − 1̂
T
k ŝk

=
[
∇ f (xk + ξkdk) − ∇ f (xk)

]T sk +
[
D̄−1

k ∇ f (xk) − 1̂k

]T
ŝk

≤ ∥∇ f (xk + ξksk) − ∇ f (xk)∥ ∥sk∥ + κD∥∇ f (xk) − 1k∥ ∥ŝk∥

≤ L1κ2
D∥ŝk∥

2 + κDκe1∥ŝk∥
3.

Thus, combining (54) and above, we can have that

ρk = 1 −
f (xk + sk) − f (xk) − φk(sk)

−φk(sk)
≥ 1 −

L1κ2
D∥ŝk∥

2 + κDκe1∥ŝk∥
3

√
3

72 ε∥ŝk∥
≥ η2,

for sufficiently large k. Then,

f (xk) − f (xk+1) = f (xk) − f (xk + sk) ≥ η2[−φk(sk)] ≥

√
3

72
η2ε∥ŝk∥. (55)
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Consequently,

∥xki − xli∥ ≤

li−1∑
k=ki

∥xk − xk+1∥ ≤

li−1∑
k=ki

κD∥ŝk∥ ≤

li−1∑
k=ki

72κD
√

3η2ε

[
f (xk) − f (xk+1)

]
≤

72κD
√

3η2ε
[ f (xki ) − f (xli )]. (56)

Since f (xk) is convergent, we can get ∥xki − xli∥ → 0 from (56). However, ∥h(xki )− h(xli )∥ = ∥D̄
−1
ki
1ki − D̄−1

li
1li∥ ≤

κD∥1ki − 1li∥ + ∥D̄
−1
ki
− D̄−1

li
∥ · ∥1li∥ and |[ν̄ki ] j − [ν̄li ] j| ≤ |[xki ] j − [xli ] j| ≤ ∥xki − xli∥ implies ∥D̄−1

ki
− D̄−1

li
∥ → 0,

consequently, ∥h(xki )− h(xli )∥ → 0 from the fact that ∥1li∥ ≤ κn1, which contradicts ∥h(xki )− h(xli )∥ ≥ ∥h(xki )∥ −
∥h(xli )∥ ≥ ε. Hence αk ↛ 0.

Combining (53) with αki ↛ 0, we get that f (xki ) → −∞, which is in contradiction to the fact that { f (xk)}
is bounded below. Thus, from (52), there exists a subsequence {i j} of {i} such that

f (xk(i j+1) ) ≥ f (xli j
). (57)

Since k(i j+1) < A for k(i j+1) ∈ {ki} and Fli j
⊆ Fk(i j+1) for k(i j+1) > li j > ki j , otherwise, k(i j+1) ≤ li j would contradict

with the choice of li j , it follows from (57) and (20) that

∥h(xk(i j+1) )∥ ≤ (1 − γh)∥h(xli j
)∥. (58)

Since li j ∈ {li} ⊆ A for all j, Lemma 3.9 implies lim
j→∞
∥h(xli j

)∥ = 0. Consequently, from (58), we get that

lim
j→∞
∥h(xk(i j+1) )∥ = 0 which contradicts the fact that ∥h(xk(i j+1) )∥ ≥ 2ε since k(i j+1) < A for the definition of ki .

Thus, the claim holds.

4. Properties of the local convergence

Theorem 3.11 shows that any limit point x∗ of (1) is a stationary point. In this section, we investigate the
local convergence properties of the proposed algorithm. It needs the following assumptions.

Assumption 4.1. lim
k→∞

∥(D−1
k ∇

2 f (xk)D−1
k −D̄−1

k HkD̄−1
k )d̂k∥

∥d̂k∥
= 0 as lim

k→∞
∥h(xk)∥ = 0.

Assumption 4.2. Assume that x∗ satisfies the strong second-order condition, that is,

∃κc > 0 such that dTD(x∗)−1
∇

2 f (x∗)D(x∗)−1d ≥ 2κc∥d∥2, ∀d , 0.

Assumption 4.3. [22] Assume that

sign
(
[∇ f (x)]i) = sign([1(x)]i

)
, ∀x ∈ B(x∗, δ), when [∇ f (x∗)]i = 0, i = 1, 2, . . . ,n.

Noting that D(x∗)−2
∇ f (x∗) = 0 is equivalent to D(x∗)−1

∇ f (x∗) = 0 from the definition of D(x), we have that
the fact ∥D−2

k ∇ f (xk)∥ → 0 is equivalent to the fact ∥D−1
k ∇ f (xk)∥ → 0. Let h1(x) = D̄(x)−21(x). From (12), the

fact ∥h1(xk)∥ → 0 is equivalent to the fact ∥h(xk)∥ → 0, as k → ∞. In order to illustrate the properties of the
local convergence, we substitute h(xk) for h1(xk) in Step 4.4. That is, we accept the trial step αk,l if

∥h1(xk(αk,l))∥ ≤ (1 − γh)∥h1(xk)∥

with
xk + αk,ldk ∈ Ω

holds in Step 4.4 in the following sections.

Theorem 4.1. Suppose that Assumptions 3.1-3.6, 4.1-4.3 hold. If any limit point x∗ of {xk} is nondegenerate, then
∥dk∥ → 0, αk ≡ 1 for sufficiently large k and all iterations eventually satisfy ρk > η2, σk is bounded from above as
k→∞.
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Proof. Under the Assumptions in Theorem 4.1, Theorem 3.11 provides that ∥h(xk)∥ → 0 as k → ∞. Conse-
quently, Assumption 4.1 implies that

lim
k→∞

∥(D−1
k ∇

2 f (xk)D−1
k − D̄−1

k HkD̄−1
k )d̂k∥

∥d̂k∥
= 0. (59)

Thus, for sufficiently large k,

d̂T
k

(
D−1

k ∇
2 f (xk)D−1

k − D̄−1
k HkD̄−1

k

)
d̂k ≤ κc∥d̂k∥

2, (60)

where κc is defined in Assumption 4.2. And from Assumptions 3.1, 4.2, we also have that,

d̂T
k D−1

k ∇
2 f (xk)D−1

k d̂k ≥ 2κc∥d̂k∥
2,

for sufficiently large k. Combining (60) and above, we can infer that,

2κc∥d̂k∥
2
≤ d̂T

k

[
D−1

k ∇
2 f (xk)D−1

k − D̄−1
k HkD̄−1

k

]
d̂k + d̂T

k D̄−1
k HkD̄−1

k d̂k ≤ κc∥d̂k∥
2 + d̂T

k D̄−1
k HkD̄−1

k d̂k.

As a consequence, d̂T
k D̄−1

k HkD̄−1
k d̂k ≥ κc∥d̂k∥

2. So D̄−1
k HkD̄−1

k and Ĥk are positive definite. And the following
relations are from (25) and the Cauchy-Schwarz inequality,

κc∥d̂k∥
2
≤ d̂T

k D̄−1
k HkD̄−1

k d̂k ≤ d̂T
k [Ĥk + σk∥d̂k∥I]d̂k

(25)
= −1̂T

k d̂k ≤ ∥1̂k∥∥d̂k∥.

The first and last terms above give

∥d̂k∥ ≤
∥1̂k∥

κc
=
∥h(xk)∥
κc

, (61)

since d̂k , 0. Otherwise, −φk(dk) = 0 from Lemma 3.1. This, however, contradicts −φk(dk) > 0 since 1̂k , 0.
Thus, (61) gives that ∥d̂k∥ → 0 from the fact that ∥h(xk)∥ → 0. Furthermore, ∥dk∥ ≤ κD∥d̂k∥ → 0 and θk → 1,
where θk is defined in Step 4. Then sk = αkdk, ŝk = αkd̂k for sufficiently large k.

Assumption 4.3 provides that [1k]i and [∇ f (xk)]i have the same sign for sufficiently large k if∇[ f (x∗)]i = 0.
On the other side, (12) gives that [1k]i and [∇ f (xk)]i have the same sign for sufficiently large k if [∇ f (x∗)]i , 0
for some i. Thus, Dk = D̄k for sufficiently large k.

Now we consider the tendency of σk. From the definition of ρk in Step 7, we have that

ρk = 1 −
f (xk + sk) − f (xk) − φk(sk)

−φk(sk)
. (62)

However, using a Taylor expansion, for some ξk ∈ (0, 1),

f (xk + sk) − f (xk) − φk(sk) = ∇ f (xk)Tsk +
1
2

sT
k∇

2 f (xk + ξksk)sk − 1
T
k sk −

1
2

ŝT
k Ĥkŝk −

1
3
σk∥ŝk∥

3

≤ (∇ f (xk) − 1k)Tsk +
1
2

sT
k∇

2 f (xk + ξksk)sk −
1
2

sT
k Hksk

≤ κDκe1∥1̂k∥∥ŝk∥
2 +

1
2
κ2

D∥ŝk∥
2
∥∇

2 f (xk + ξksk) − ∇2 f (xk)∥

+
1
2
∥ŝk∥

2

∥∥∥(D−1
k ∇

2 f (xk)D−1
k − D̄−1

k HkD̄−1
k )ŝk

∥∥∥
∥ŝk∥

, (63)

where the first inequality is from the fact that diag{1k} J̄k is positive semidefinite.
And

φk(sk) = 1̂T
k ŝk +

1
2

ŝT
k Ĥkŝk +

1
3
σk∥ŝk∥

3
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(25)
= −

[
ŝT

k (Ĥk + σk∥ŝk∥I)ŝk

]
+

1
2

ŝT
k Ĥkŝk +

1
3
σk∥ŝk∥

3

= −
1
2

ŝT
k Ĥkŝk −

2
3
σk∥ŝk∥

3

≤ −
1
2

ŝT
k D̄−1

k HkD̄−1
k ŝk

≤ −
κc

2
∥ŝk∥

2. (64)

Together (62), (63) with (64), we obtain that

ρk ≥ 1 −
κDκe1∥1̂k∥ +

1
2κ

2
D∥∇

2 f (xk + ξksk) − ∇2 f (xk)∥ + 1
2
∥(D−1

k ∇
2 f (xk)D−1

k −D̄−1
k HkD̄−1

k )ŝk∥

∥ŝk∥

κc
2

> η2

for sufficiently large k, where the last inequality is from that ∥h(xk)∥ = ∥1̂k∥ → 0 and Assumptions 3.1, 4.1.
Recall the updating role in σk in Step 7, we get that

σk+1 = γ1σk < σk, 0 < γ1 < 1, k sufficiently large.

Thus, σk is bounded from above and σk∥d̂k∥ → 0. Clearly, ∥h1(xk)∥ = ∥D̄−2
k 1k∥ , 0. Set

ωk =
1 − γh

2δ1
∥h1(xk)∥,

where δ1 is sufficiently small such that

∥h1(xk) + ∇h1(xk)dk∥ = ∥D̄−2
k 1k + (D̄−2

k Hk + diag{1k} J̄k)dk∥
(25)
= σk∥d̂k∥∥dk∥ ≤ ωk∥dk∥, (65)

whenever ∥dk∥ ≤ δ1. Let

εk =
1 − γh

2δ2
∥h1(xk)∥,

where δ2 is sufficiently small such that

∥h1(xk + dk) − h1(xk) − ∇h1(xk)dk∥ ≤ εk∥dk∥, (66)

whenever ∥dk∥ ≤ δ2. Such a δ2 exists by Lemma 1.2 in [11].
Then, it follows that

∥h1(xk + dk)∥ ≤ ∥h1(xk + dk) − h1(xk) − ∇h1(xk)dk∥ + ∥h1(xk) + ∇h1(xk)dk∥

≤ εk∥dk∥ + ωk∥dk∥

≤
(1 − γh)
δ
∥h1(xk)∥∥dk∥

≤ (1 − γh)∥h1(xk)∥, (67)

whenever ∥dk∥ ≤ δ, where δ = min{δ1, δ2}.
Let αk be given in (24) in Step 4 denotes the step size along the direction dk to the boundary. Similar to

prove Lemma 3.8, we can also get that αk =
|[1k]i |+σk∥d̂k∥

|[1k]i+[Hkdk]i |
from the nondegenerate property at x∗. So αk ≥ 1 for

sufficiently large k since |[Hkdk]i| ≤ ∥Hkdk∥ ≤ κnh∥dk∥ → 0. Therefore, αk ≡ 1 for sufficiently large k.

Corollary 4.2. Under the conditions of Theorem 4.1, then

∥D−2
k+1∇ f (xk+1)∥

∥D−2
k ∇ f (xk)∥

→ 0, as k→∞, (68)

and
∥xk+1 − x∗∥
∥xk − x∗∥

→ 0, as k→∞. (69)
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Proof. Recalling (12) and the fact that Dk = D̄k for sufficiently large k, we obtain the following inequalities,

∥D−1
k+1∇ f (xk+1)∥ ≤ ∥D−1

k+1∇ f (xk+1) − h(xk+1)∥ + ∥h(xk+1)∥ ≤
(
κDκe1∥h(xk+1)∥ + 1

)
· ∥h(xk+1)∥, (70)

and

∥D−1
k ∇ f (xk)∥ ≥ ∥h(xk)∥ − ∥h(xk) −D−1

k ∇ f (xk)∥ ≥ (1 − κDκe1∥h(xk)∥) · ∥h(xk)∥. (71)

Hence,

∥D−1
k+1∇ f (xk+1)∥

∥D−1
k ∇ f (xk)∥

≤
(κDκe1∥h(xk+1)∥ + 1) · ∥h(xk+1)∥

(1 − κDκe1∥h(xk)∥) · ∥h(xk)∥
→ 0, (72)

as k→∞. The limit in (72) is from (67). In fact, (67) gives that ∥h1(xk+1)∥ = o(∥h1(xk)∥) since ∥dk∥ → 0. Thus,
∥h(xk+1)∥ = o(∥h(xk)∥). Noting that ∥D−2

k ∇ f (xk)∥ → 0 is equivalently to ∥D−1
k ∇ f (xk)∥ → 0, we have that

∥D−2
k+1∇ f (xk+1)∥

∥D−2
k ∇ f (xk)∥

→ 0, as k→∞.

Since x∗ is the limit point of {xk}, there exist positive scales β1, β2, β3, β4, such that

β1∥xk+1 − x∗∥ ≤ ∥D−2
k+1∇ f (xk+1)∥ ≤ β2∥xk − x∗∥,

and
β3∥xk+1 − x∗∥ ≤ ∥D−2

k ∇ f (xk)∥ ≤ β4∥xk − x∗∥.

Consequently, (69) holds from the inequalities above and (68).

5. Numerical results

In this section, we present some typical examples to analyze the feasibility and effectiveness of the
proposed algorithm. The program is implemented using MATLAB with double precision and runs under
MATLAB Version 7.10.0.499 (R2010a) in a notebook I5, 1.8GHz, 8GB of RAM. The selected parameters of
our proposed algorithm (called DFFARC) are: ∆0 = 1, ϵ = 10−4, γ1 = 0.3, γ2 = 1.5, γ3 = 0.5, σ0 = 0.5, η1 =
0.01, η2 = 0.9, γh = 10−5 γ f = 10−5, τ1 = 0.25, τ2 = 0.75. The computation of DFFARC terminates if ∥1̂k∥ ≤ ε
is satisfied and ∆k ≤ min(∥1̂k∥, ∥ŝk∥) and the interpolation model is fully quadratic on B(xk,∆k). We claim
that the method of DFFARC fails, when the following condition holds:

(I) the number of iterations is greater than or equal to 1000.
(II) the execution time of the algorithm over 2 hours.

Any run exceeding this is flagged as a failure, which we use the symbol (Failed).
In Tables 1-3, n is the dimension of the problem, NIT means the number of iterations, T expresses the

CPU Time in seconds, NF and NG stand for the number of function and gradient evaluations, respectively.
The test problems are selected from [1], [21] and [29] with the dimensions from 2 up to 25. We use
(n + 1)(n + 2)/2 interpolation points to construct quadratic interpolation model for the derivative-free
optimization. If the examples are unconstrained, we took the precaution of including the simple bounds
−100 ≤ [xk]i ≤ 100, 1 ≤ i ≤ n. And for examples from [21] and [29], we use the starting point supplied by
the problems. Preliminary results are presented in Tables 1-2 and they show that the proposed algorithm is
effective.
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Table 1: Numerical results

Problem n NIT f (x∗) ∥1̂(x∗)∥ NF NG T
ARWHEAD 15 10 4.405364e-013 5.042711e-005 157 16 272.772756

Badly scaled augmented Powell’s 6 41 0.003207 4.534216e-005 237 73 7.757471
BIGGSB1 (CUTE) 20 3 2.246682e-011 7.612936e-005 32 3 795.998078

25 3 3.148723e-010 7.711032e-005 357 3 1379.017105
BRKMCC 2 10 0.169042 9.680970e-005 32 11 0.791369

Broyden Tridiagonal 5 10 1.092810e-012 6.631958e-005 46 12 6.076346
10 21 1.283415e-012 8.810823e-005 126 21 45.759181
20 17 1.152413e-012 8.504238e-005 279 17 604.257868

Chandrasekhar’s H-equation 5 5 5.222661e-012 3.189531e-005 33 5 5.594066
10 5 3.560478e-013 8.119432e-006 78 5 49.691945
20 5 9.6210131e-014 2.920578e-006 243 5 674.493165

Complementary 4 7 4.483507e-012 5.011525e-005 32 8 5.225067
DENSCHNA 2 7 1.211647e-013 5.333000e-006 20 11 0.820089
DENSCHNC 2 10 7.037155e-013 2.221761e-005 26 17 0.745808
DENSCHND 3 22 5.313245e-014 4.360934e-006 62 33 1.176189
DENSCHNE 3 33 8.001662e-013 1.760822e-005 95 44 1.525745
DENSCHNF 2 11 1.255654e-013 9.122356e-005 34 13 0.762065

Discrete boundary value 5 4 1.506474e-012 4.079295e-005 29 5 5.729851
10 4 2.116612e-012 5.260158e-005 74 5 48.584642
20 3 7.378956e-012 9.808574e-005 236 4 602.704476

DIXON3DQ 10 5 2.811364e-010 7.184837e-005 78 5 42.071922
DQDRTIC 10 11 6.427845e-013 0 93 14 98.860231

20 6 1.589138e-011 0 243 9 3796.685038
ENGVAL1 2 9 3.677146e-013 2.982002e-005 24 15 0.873645

Exponential function 1 5 10 1.307281e-008 4.601213e-005 42 16 5.992573
10 9 1.336812e-008 5.451432e-005 85 14 41.939545
20 8 2.033617e-008 8.827135e-005 248 12 625.532067

Exponential function 2 5 5 8.689089e-011 1.345969e-005 31 7 5.542916
10 13 0.005203 8.413612e-005 91 24 49.559337
20 23 4.646012e-010 9.720014e-005 294 26 641.525970

Exponential function 3 5 3 2.791074e-008 5.134633e-005 27 3 6.519383
10 2 2.262812e-008 8.164931e-005 69 2 55.126244
20 2 6.893817e-009 3.598932e-005 234 2 645.017193

Ferraris-Tronconi (1986) 2 8 3.901203e-010 1.835368e-005 21 14 0.729169
Function 15 5 13 1.333302e-010 9.449993e-005 56 14 5.651515

10 218 2.544360e-011 9.935652e-005 717 218 56.510921
Hanbook function 5 6 5.306477e-012 0 34 8 11.690561

Himmelblau function 2 66 7.555989e-014 4.278545e-005 219 90 1.003909
4 57 1.095483e-012 2.524473e-005 201 77 4.107451

GULF 3 1 32.835000 4.258427e-009 10 1 11.068458
HS3 2 7 3.486251e-007 5.102719e-005 24 7 1.032979
HS4 2 5 2.666667 1.026215e-005 18 5 0.657579
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Table 2: Numerical results

Problem n NIT f (x∗) ∥1̂(x∗)∥ NF NG T
Minimal 5 3 1.145281e-014 1.145281e-014 26 4 8.415264
NASTY 2 2 0.500000 0 9 2 0.454205

Penalty I 5 27 3.372686e-007 6.139816e-005 91 37 6.505059
Powell singual 4 2 2.733561e-013 7.362638e-005 18 2 4.186743

12 3 1.458409e-014 1.161427e-006 97 3 96.617548
20 3 2.425262e-014 1.511478e-006 237 3 664.935606

Powell (CUTE) 12 5 1.5179e-012 4.4180e-005 103 5 86.614451
20 5 2.665854e-012 8.595065e-005 240 4 793.190653

Power 10 11 7.158913e-012 0 91 16 98.107606
20 20 3.700532e-011 0 285 23 1939.458521

Extended PSC1 function 4 11 1.546398 9.208528e-005 36 20 3.465759
QUARTC 5 13 1.546124e-008 3.727713e-005 43 23 5.067744

10 12 3.142712e-008 5.336147e-005 88 23 35.064146
20 13 8.129413e-008 3.021472e-005 255 25 509.965435

Raydan 1 5 6 1.500000 1.580859e-005 32 10 5.631576
10 6 5.500000 1.894513e-005 77 10 40.597998
20 6 21.000000 8.228471e-005 241 11 490.496471

S201 2 4 2.996375e-014 6.548827e-006 12 7 0.642334
S206 2 11 7.870869e-013 1.774314e-005 35 12 0.597334
S207 2 8 1.330297e-011 6.541827e-005 27 8 0.581048
S261 4 13 2.327938e-008 9.942237e-005 51 13 2.861911
S271 6 6 2.866745e-012 0 40 9 13.431779
S273 6 14 3.317621e-012 0 67 14 4.744452
S283 10 30 1.604658e-009 7.120493e-005 153 30 28.972625
S290 2 14 1.438378e-008 6.331972e-005 32 27 0.761901
S308 2 23 0.773214 7.947815e-005 58 37 0.563101
S311 2 66 7.648325e-014 4.167234e-005 219 90 0.936182
S314 2 10 0.169043 9.6842e-005 32 11 0.608592
S328 2 16 1.744219 1.426438e-007 50 17 0.598852

Singular function 4 13 4.619432e-008 4.114478e-005 39 25 2.885978
5 13 2.779684e-008 7.171909e-005 45 25 5.565229

10 16 5.213718e-008 3.464832e-005 100 27 41.841570
SISSER 2 12 9.943707e-009 3.983812e-005 28 23 1.074144

Strictly convex 1 5 7 3.882245e-011 8.809467e-005 37 13 5.181868
10 8 6.446012e-015 1.134537e-006 82 13 47.690457

Strictly convex 2 5 8 1.917355e-011 1.110369e-005 36 14 5.589002
10 8 1.819143e-010 7.278062e-005 81 14 47.111603

Tridiagonal exponential 5 4 7.377892e-012 4.923239e-005 28 6 5.262962
10 4 3.775757e-012 3.128624e-005 73 6 37.796012

Trigonometric 5 8 7.179389e-015 1.695222e-006 37 13 5.886580
10 9 8.246573e-014 5.730712e-006 83 16 41.248582

Troesch 5 8 1.917036e-012 6.458804e-005 39 11 5.142342
10 10 1.558365e-011 8.212104e-005 90 13 38.278590

Wood 4 14 2.816335e-009 7.543268e-006 50 22 2.063650
Variable dimensioned 5 9 1.232562e-013 5.241241e-006 45 9 6.698718
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From Tables 1-2, we notice that the proposed algorithm provides efficient method for solving the
bounded constrained optimization. We also observe that the NG is larger than the NIT. The reason is that
we use the filter mechanism to potentially accept the trial point xk(αk,l) as the new iterate. If xk(αk,l) is not
acceptable for the filter, it need to evaluate gradient again in the main step. On the other hand, we also
observe that DFFARC for the derivative-free optimization needs more function evaluations than the case
of gradient evaluations, which since NF in DFFARC includes two parts evaluation, the evaluations in main
step, which is equal to NG, and the evaluations of the quadratic interpolation model, which may need the
evaluation up to (n + 1)(n + 1)/2.

In the next experiments, we compare the proposed algorithm DFFARC with the existing algorithms:
BC-DFO, NEWUOA and SID-PSM in [19]. The numerical results are presented in Table 3. In Table 3, we
compare the number of function evaluations needed by each solver to achieve the desired accuracy in the
objective function value. We use two different levels of accuracy: 2 and 4 significant figures in f (x∗). We
notice that four methods have their own advantages from Table 3.

Table 3: Comparison between DFFARC, BC-DFO, NEWUOA and SID-PIM

nf DFFRAC nf BC-DFO nf NEWUOA nf SID-PSM
Problem n 2fig 4fig 2fig 4fig 2fig 4fig 2fig 4fig

ARWHEAD 15 146 157 16 16 513 579 33 33
BDQRTIC 10 88 Failed 347 435 181 236 180 358
BIGGSB1 25 357 357 35 35 144 341 33 62
BRKMCC 2 12 32 7 13 7 7 8 23

DENSCHNA 3 17 20 Failed Failed Failed Failed Failed Failed
DENSCHNC 3 23 26 Failed Failed Failed Failed Failed Failed
DENSCHND 3 15 62 58 78 45 45 3 3
DENSCHNE 3 59 95 67 76 87 92 32 32
DENSCHNF 2 23 34 15 18 23 25 58 77
DIXON3DQ 10 72 78 31 31 72 72 124 124
DQDRTIC 10 72 93 44 44 71 71 3 3
ENGVAL1 2 18 24 4 4 17 23 15 52

GULF 3 10 10 197 307 187 336 646 1435
HELIX 3 22 27 57 66 66 75 78 98

HS3 2 18 24 3 8 6 9 6 6
HS4 2 15 18 5 575 7 5 5 Failed

MEXHAT 2 13 39 263 508 64 65 122 3786
NASTY 2 9 9 3 3 Failed Failed 7 7
POWER 10 70 91 358 704 218 289 3 3
QURTC 20 249 255 Failed Failed Failed Failed Failed Failed

S202 2 27 Failed Failed Failed Failed Failed Failed Failed
S203 2 25 Failed Failed Failed Failed Failed Failed Failed

SINEVAL 2 133 Failed 171 177 203 217 414 437
SINGULAR 4 31 39 67 99 60 82 73 113

SISSER 2 22 28 3 8 16 27 5 13
TROESCH 10 72 90 Failed Failed Failed Failed Failed Failed

WOOD 4 50 50 Failed Failed Failed Failed Failed Failed

To have comprehensive comparisons among the reported results of Table 3, we use the performance
profiles as described in [24]. The performance profiles are defined in terms of a performance measure
tp,s > 0 obtained for each p ∈ P and s ∈ S, where P and S are the problems set and the solvers set. In this
paper, our profiles are based on the numbers of function evaluations. For any pair (p, s) of problem p and
solver s, the performance evaluations ratio is defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
.
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Note that the best solver for a particular problem attains the lower bound rp,s = 1. The convention rp,s = ∞
is used when solver s fails to satisfy the convergence test on problem p. The performance profile of a solver
s ∈ S is defined as the fraction of problems where the performance ratio is at most τ, that is,

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ}.

Figures 1-2 give the performance profiles of these four algorithms for NF with 2 digits accuracy and 4
digits accuracy, respectively. From the performance profiles of these four algorithms, we an observe that
DFFARC is better than the other existing algorithms, which shows that our proposed algorithm DFFARC
is competitive, especially for 2fig in NF.
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Figure 1: Performance profile for NF of DFFARC, BC-DFO, NEWUOA and SID-PSM algorithms (2fig)
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Figure 2: Performance profile for NF of DFFARC, BC-DFO, NEWUOA and SID-PSM algorithms (4fig)

6. Conclusions

In this paper, we propose an adaptive cubic regularization method with line search filter technique
for solving derivative-free bound constrained optimization using an interior affine scaling approach. In
constrained optimization, the combination of filter and line search techniques proposed by us provides
several key advantages, utilizing the strengths of these two methods to improve robustness, efficiency,
and convergence. Classical methods (e.g., penalty or barrier functions) require careful tuning of penalty
parameters to balance objective minimization and constraint satisfaction. Poor choices can lead to numerical
instability or slow convergence. The filter technique directly manages constraints by maintaining a set of
non-dominated solutions (balancing objective improvement vs. constraint violation), and line search
technique ensures sufficient progress in either the objective or constraint violation at each step.
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