Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat ## Saturation numbers for linear forests # Renying Chang^{a,*}, Xueliang Li^b ^aBusiness School, Shanghai Dianji University, Shanghai, 201306, China ^bCenter for Combinatorics, Nankai University, Tianjin, 300071, China **Abstract.** Given a graph H, we say a graph G is H-saturated if G does not contain H as a subgraph and the addition of any edge $e \notin E(G)$ results in H as a subgraph. The question of the minimum number of edges of an H-saturated graph on n vertices, known as the *saturation number*. In this paper, we mainly research the saturation number for linear forests and characterize the extremal graphs. #### 1. Introduction ### 1.1. Basic Definitions All graphs considered in this paper are simple, finite and undirected. Let G = (V(G), E(G)) be a nontrivial graph with the vertex set V(G) and the edge set E(G) where each edge $e \in E(G)$ is an unordered pair of distinct vertices $u, v \in V(G)$. We write e = uv when $e = \{u, v\}$ and we say that u is adjacent to v in v. If v is adjacent to exactly v vertices in v0, we say that v1 has degree v2, and we write v3 had we write v4. The neighborhood of a vertex v5 vertices which is adjacent to v6, denoted by v6. And we write v7 is an independent set if for all pairs v7 is an independent set if for all pairs v8 vertices v9 and v9 are not adjacent. For $X \subseteq V(G)$, G[X] denotes the subgraph of G induced by X. P_n , K_n denote the path on n vertices, the complete graph on n vertices. Given two disjoint graphs G_1 and G_2 , the *join* of G_1 and G_2 , denoted by $G_1 \vee G_2$, is obtained from the vertex-disjoint copies of G_1 and G_2 by adding all edges between $V(G_1)$ and $V(G_2)$. Let *G* and *H* be graphs. If $V(H) \subset V(G)$ and $E(H) \subset E(G)$, we say that *H* is a *subgraph* of *G*. If *H* is a subgraph of *G* such that $E(H) = \{uv \mid u, v \in V(H) \text{ and } uv \in E(G)\}$, we say that *H* is an induced subgraph of *G* and we may write H = G[V(H)]. We say that two graphs G and H are *isomorphic* if there exists an adjacency-preserving bijection between their vertex sets and we write $G \cong H$. If there exists a subset $V' \subset V(G)$ and a subset $E' \subset E(G)$ such that H is isomorphic to the subgraph H' = (V', E'), we say that G contains a copy of H. Note that by our definition above, when we say that G contains a copy of H, the subgraph H' of G such that $H \cong H'$ need not be an induced subgraph of G. 2020 Mathematics Subject Classification. Primary 05C35. $\textit{Keywords}.\ \text{saturation number};\ \text{saturated graph};\ \text{linear forest}.$ Received: 09 September 2024; Revised: 02 February 2025; Accepted: 25 April 2025 Communicated by Snežana Č. Živković-Zlatanović * Corresponding author: Renying Chang Email address: changrysd@163.com (Renying Chang) ORCID iD: https://orcid.org/0009-0004-0770-6759 (Renying Chang) If we obtain the graph G' from G by adding the edge $e \notin E(G)$, we have $E(G') = E(G) \cup \{e\}$ and we write G' = G + e. If e = uv, we may write G' = G + uv. For undefined notations and terminology, refer to [3] #### 1.2. Saturation Number We say that *G* is *H*-saturated if *G* contains no copy of *H* and for all $e \in E(\bar{G})$ the graph G + e does contain a copy of *H*. Denote by SAT(n, H) the set of all *H*-saturated graphs of order *n*. $$SAT(n, H) = \{G : G \text{ is } H - \text{saturated}, |V(G)| = n\}.$$ The maximum number of edges possible in a graph G on n vertices that is H-saturated is known as the $Tur\acute{a}n$ number [14] and is denoted ex(n, H). We use the notation ex(n, H) to indicate the extremal number for the target graph H with respect to H-saturated graphs of order n. That is $$ex(n,H) = max\{|E(G)| : G \in SAT(n,H)\}.$$ For a family of graphs \mathscr{F} , $ex(n,\mathscr{F})$ is the maximum number of edges in an H-saturated graph of order n for any $H \in \mathscr{F}$. The set of all H-saturated graphs of order n having size ex(n,H) is denoted EX(n,H). $$EX(n, H) = \{G \in SAT(n, H) : |E(G)| = ex(n, H)\}.$$ The *saturation number* of a target graph H with respect to host graphs of order n, denoted sat(n, H), is the minimum number of edges in an H-saturated graph on n vertices. That is, $$sat(n, H) = min\{|E(G)| : G \in SAT(n, H)\}.$$ For a family of graphs \mathscr{F} , $sat(n,\mathscr{F})$ is the minimum number of edges in an \mathscr{F} -saturated graph G of order n, that is G is H-saturated for every $H \in \mathscr{F}$. The set of all H-saturated graphs of order n having size sat(n,H) is denoted Sat(n,H). $$Sat(n,H) = \{G \in SAT(n,H) : |E(G)| = sat(n,H)\}.$$ The original paper established $sat(n, K_k)$ and the uniqueness of the graph in $Sat(n, K_k)$ by $Erd\ddot{o}s$, Hajnal and Moon in [7]. **Theorem 1.1.** ([7]) If $2 \le k \le n$, then $sat(n, K_k) = (k-2)(n-k+2) + \binom{k-2}{2} = \binom{n}{2} - \binom{n-k+2}{2}$ and $Sat(n, K_k)$ contains only one graph, $K_{k-2} + \overline{K_{n-k+2}}$. In 1986 *Kászonyi* and Tuza [11] found the best known general upper bound for sat(n, F), where F is a class of forbidden graphs. Since then, sat(n, F) and SAT(n, F) have been investigated for a range of graphs F, including unions of cliques [2], nearly complete graphs[10], tripartite graphs [13], and cycles [4]. For a summary of known results see [6]. Chen et al. [5] focused on the saturation numbers for the linear forests and obtained a series of interesting results and proposed a few conjectures, one of which is about the saturation number for linear forests $P_k \cup tP_2$. In [8], [12] they also discussed the saturation numbers for the linear forests. ### 2. Main Results In this work, we will focus on the saturation number of the linear forests $P_6 \cup tP_2$. Our main result is as follows. **Theorem 2.1.** Let n and t be two positive integers. And $n = 10q + r \ge \frac{10}{3}t + 10 - \left[\frac{r}{3}\right]/3$. Then (i) $sat(n, P_6 \cup tP_2) = min\{n - \left[\frac{n}{10}\right], 3t + 18\}$, and (ii) $Sat(n, P_6 \cup tP_2) = \{K_7 \cup (t-1)K_3 \cup \overline{K_{n-3t-4}}\}$ for $n > \frac{10}{3}t + 20$ and n = 10q + r, $1 \le r \le 9$ or $n \ge \frac{10}{3}t + 20$ and n = 10q. #### 2.1. Preliminaries Lemma 2.2. (The Berge-Tutte Formula, [1]) For a graph G, $$\alpha'(G) = \frac{1}{2}min\{|G| + |X| - o(G-X): X \subseteq V(G)\},$$ where o(G) denotes the number of odd components of G and $\alpha'(G)$ denotes the number of edges in a maximum matching of G. **Lemma 2.3.** Let G be a $(P_6 \cup tP_2)$ -saturated graph, where t is a positive integer. Then G has the following properties. (i) If $N_G(x) = \{u, v\}$, then $uv \in E(G)$.[5] - (ii) If $|V_0(G)| > 0$, then $V_1(G) = \emptyset$, $V_i(G)$ is the set of vertices of G with degree i. - (iii) If $|V_0(G)| > 0$, for any $x \in V(G) V_0(G)$, we have $N_G(x) \subseteq V(F)$ where F is some copy of $P_6 \cup tP_2$ in G + xy and $y \in V_0(G)$. *Proof.* (ii) If $V_1(G) \neq \emptyset$, let x_1 be one vertex in $V_1(G)$ and x_1x_2 be the edge incident to x_1 ($d_G(x_2) \geq 1$). Then the graph $G + x_2x_3$ contains a copy F of $P_6 \cup tP_2$ where $x_3 \in V_0(G)$ (obviously $x_1 \notin V(F)$). By replacing the edge x_2x_3 with x_1x_2 , we get a copy of $P_6 \cup tP_2$ in G, a contradiction. Therefore, $V_1(G) = \emptyset$. (iii) If there is one vertex $x \in V(G) - V_0(G)$ satisfying $N_G(x) \nsubseteq V(F)$ where F is any copy of $P_6 \cup tP_2$ in G + xy and $y \in V_0(G)$, then there exists a vertex $x' \in N_G(x)$ such that $x' \in N_G(x) - V(F)$. Since G is a $(P_6 \cup tP_2)$ -saturated graph, G + xy contains a copy of $P_6 \cup tP_2$, say F. Thus $xy \in E(F)$. Then by replacing the edge xy with xx' in F, we obtain a copy of $P_6 \cup tP_2$ in G, a contradiction. \square **Lemma 2.4.** Let G be a $(P_6 \cup tP_2)$ -saturated graph with $|V_0(G)| \ge 2$ and H be the graph spanned by all the nontrivial components H_1, \ldots, H_k of G, where k is the number of components of G. If $|V(H)| \ge 2t + 6$, $\delta(H) \ge 2$ and $|V(H_i)| \ge 5$ for $1 \le i \le k$, then - (i) G is a $(P_4 \cup (t+1)P_2)$ -saturated graph, and - (ii) |E(G)| > 3t + 18. *Proof.* (i) Since G is a $(P_6 \cup tP_2)$ -saturated graph, the additional edge $e \in E(\overline{G})$ will result in a $(P_6 \cup tP_2)$ in G + e. Hence, for any edge $e \in E(\overline{G})$, G + e contains a copy of $P_4 \cup (t+1)P_2$. If *G* is not a $(P_4 \cup (t+1)P_2)$ -saturated graph, then *G* contains a copy of a $P_4 \cup (t+1)P_2$. Let *M* be a copy of $P_4 \cup SP_2$ in *G* such that *s* is maximum. Then, $s \ge t+1$. Since $\delta(H) \ge 2$ and $|V(H_i)| \ge 5$ for $1 \le i \le k$, every component H_i of G contains a copy of P_4 . P_4 contains a copy of $2P_2$. We consider two cases depending on $|E(H_i) \cap M|$. **Case 1**. $\forall i, i \in [k], |E(H_i) \cap M| = 2$. H_i contains a copy of P_4 . Assume that $P_4 = x_1x_2x_3x_4$. Since $|V_0(G)| \ge 2$ and G is $(P_6 \cup tP_2)$ -saturated, there exists one component H_j $(j \in [k])$ such that $|V(H_j)| > 5$. By the choice of M, $V(H_j) - V(P_4)$ is independent. $\forall x \in V(H_j) - V(P_4)$, if x is adjacent to one end of P_4 , it is easily verified that $H_j[\{x, x_1, x_2, x_3, x_4, y\}]$ contains a copy of P_6 for $y \in V(H_j) - V(P_4)$, $y \ne x$, which together with the edges in $M - E(H_j[\{x, x_1, x_2, x_3, x_4, y\}])$ forms a copy of $(P_6 \cup tP_2)$, a contradiction. Therefore, $N(x) = \{x_2, x_3\}$, $\forall x \in V(H_j) - V(P_4)$. Then G + e will not contain P_6 for the additional edge $e = x_2\omega$ with $\omega \in V_0(G)$, a contradiction. **Case 2**. There exists one component H_i such that $|E(H_i) \cap M| > 2$ for $i \in [k]$. Since every component of G contains a copy of P_4 , H_i contains a copy of $P_4 \cup rP_2$. If r = 0, then $|E(H_i) \cap M| = 3$. If there exists one component H_j such that $|V(H_j)| > 5$ and $|E(H_j) \cap M| = 3$, we can obtain a contradiction through discussions similar to Case 1. Hence $|V(H_i)| = 5$ for $i \in [k]$. Then G + e will not contain P_6 for the additional edge $e = \omega_1 \omega_2$ with ω_1 , $\omega_2 \in V_0(G)$, a contradiction. Therefore we just discuss r > 1. Assume that $P_4 = x_1 x_2 x_3 x_4$. It is obvious that x_1 is not incident with any edge $e = u_i v_i \in rP_2$. **Subcase 2.1**. $V(H_i) - V(M) = \emptyset$. Since x_1 is not incident with any edge $e \in rP_2$, x_2 (or x_3) is incident with one edge $e = u_jv_j \in rP_2$. If $x_1x_4 \notin E(H_i)$, then $N(x_1) = N(x_4) = \{x_2, x_3\}$ for $\delta(H) \ge 2$. And $H_i[\{x_1, x_2, x_3, x_4, u_j, v_j\}]$ contains a copy of P_6 , which together with the edges in $M - E(P_4) - e$ forms a copy of $P_6 \cup P_2$, a contradiction. If $x_1x_4 \in E(H_i)$, we also obtain a contradiction by the similar arguments. **Subcase 2.2**. $V(H_i) - V(M) \neq \emptyset$. By the choice of M, $V(H_i) - V(M)$ is independent. We assume $x \in V(H_i) - V(M)$. By the above arguments, x_i is not incident with any edge in rP_2 for i = 1, 2, 3, 4. Therefore, x is incident with one edge $e = u_j v_j \in rP_2$ and x is adjacent to x_i for some $i \in \{1, 2, 3, 4\}$. Then $H_i[\{x, x_1, x_2, x_3, x_4, u_j, v_j\}]$ contains a copy of P_6 , which together with the edges in $M - E(P_4) - e$ forms a copy of $(P_6 \cup tP_2)$, a contradiction. (ii) Assume that $|E(G)| \le 3t + 18$. It follows from (i) that H is $(P_4 \cup (t+1)P_2)$ -saturated. And every component of H contains a copy of P_4 , $\alpha'(H) = t + 2$. By the Berge-Tutte Formula, we choose a subset S of V(H) such that $$t+2=\frac{1}{2}min\{|H|+|X|-o(H-X): X\subseteq V(H)\}=\frac{1}{2}\{|H|+|S|-o(H-S)\}$$ Let H'_1, H'_2, \dots, H'_l be the components of H - S. Claim 1. $H[S \cup V(H'_i)]$ is a clique for $i \in [l]$. *Proof.* If not, there exist $x, y \in S \cup V(H'_i)$ such that $xy \notin E(H)$. Set H' = H + xy. Then H' contains a copy of $(P_4 \cup (t+1)P_2)$ and $\alpha(H') \ge t+3$. Then o(H'-S) = o(H-S). Therefore $\frac{1}{2}\{|H|+|S|-o(H'-S)\} = \frac{1}{2}\{|H|+|S|-o(H-S)\} = t+2$. By the Berge-Tutte Formula, $\alpha(H') \le t+2$, a contradiction. \square Claim 2. $S \neq \emptyset$. *Proof.* If $S = \emptyset$, H_i is a complete graph by Claim 1 for $1 \le i \le k$. Since $|V_0(G)| \ge 2$, there exists one component H_i with $|V(H_i)| \ge 6$. Without loss of generality, we assume $|V(H_1)| \ge 6$. Then $$\begin{split} 2|E(H)| &= \sum_{u \in V(H)} d_H(u) = \sum_{i=1}^k |V(H_i)|(|V(H_i)| - 1) \\ &\geq 4|V(H)| + |V(H_1)|(|V(H_1)| - 5) + \sum_{|(H_i)| \ge 6, \ H_i \ne H_1} |V(H_i)|(|V(H_i)| - 5), \end{split}$$ This together with $|V(H)| \ge 2t + 6$ and $|E(H)| = |E(G)| \le 3t + 18$ implies that $|V(H_1)| = 6$, $|V(H_i)| = 5$ for $i \ne 1$ and $t \le 3$. Hence $|V(H)| = 5k + 1 \ge 2t + 6$. It implies that $k \ge 2$ and if k = 2, then t = 2. $|E(H)| = 10k + 5 \le 3t + 18$. implies that $k \le 2$ and if k = 2, then $k \le 2$ and if k = 2, then $k \le 3$ and if k = 3, a contradiction. \square Combining Claim 1 with Claim 2, $N_H(x) = V(H) - \{x\}$ for $x \in S$. For $y \in V_0(G)$, we have $\{x, y\} \cup N_G(x) \subseteq V(F)$ by Lemma 2.3(iii), where F is a copy of $P_6 \cup tP_2$ in G + xy. And $2t + 7 \le |H| + 1 = |\{x, y\} \cup N_H(x)| \le |V(F)| = 2t + 6$, a contradiction. \square **Lemma 2.5.** Let $G \in Sat(n, P_6 \cup tP_2)$ with $|V_0(G)| \ge 2$, where $n \ge 3t + 6$ and $t \ge 1$. If $|E(G)| \le 3t + 18$, then |E(G)| = 3t + 18 and $G \cong K_7 \cup (t - 1)K_3 \cup (n - 3t - 4)K_1$. *Proof.* It follows from Lemma 2.3 that $V_1(G) = \emptyset$. It is easily verified that the components of order 3 in G are complete. If there exists one component H of order 4 in G, it is clear that H is complete. G + xy does not contain a copy of $P_6 \cup tP_2$ for $x \in V(H)$, $y \in V_0(G)$. Therefore the components of order 4 in G are empty. Set $G' = G - t_3K_3$, where t_3 is the number of components of G with order 3. That is, $G \cong G' \cup t_3K_3$. Since $V_0(G') = V_0(G)$, G + xy contains a copy of $P_6 \cup tP_2$ where $x, y \in V_0(G)$, G' contains a copy of P_6 . Then $t_3 \le t - 1$. That is, $t - t_3 \ge 1$. Set $t'=t-t_3$. Then $G'\in Sat(n',P_6\cup t'P_2)$ where $n'=n-3t_3$. Let H' be the graph spanned by all nontrivial components of G'. It follows from Lemma 2.3 that $V_1(G')=\emptyset$. That is, $\delta(H')\geq 2$. This together with $|V_0(G')|\geq 2$ and $|E(G')|=|E(G)|-3t_3\leq 3t'+18$ implies that $|H'|\leq 2t+5$ by Lemma 2.4. It is obvious that $H'\cong K_{2t'+5}$. Since $|E(H')|=|E(G')|\leq 3t'+18$, it follows that t'=1 and t'=1. Therefore t'=1 and a #### 2.2. Proof of Theorem 2.1 In this section, we prove Theorem 2.1. For a graph F, let $SAT^*(n, F)$ be the set of F-saturated graphs G of order n with $V_0(G) = \emptyset$. The minimum number of edges in a graph in $SAT^*(n, F)$ is denoted by $sat^*(n, F)$. Recall that a perfect degree three tree is a tree such that every vertex has degree 3 or degree 1, and all vertices of degree 1 are the same distance from the center. For $k \ge 2$, we will let T_k denote the perfect degree three tree whose longest path contains k vertices. **Lemma 2.6.** Let G be a $(P_6 \cup tP_2)$ -saturated graph and H_1 , H_2 two nontrivial components of G. If both H_1 and H_2 are trees, then each tree component contains a copy of T_5 . Hence, $|V(H_1)| \ge 10$ and $|V(H_2)| \ge 10$. *Proof.* For i=1, 2, let v_i be a pendant vertex of H_i with $N_G(v_i)=\{\omega_i\}$. Then $G+\omega_1\omega_2$ contains a copy of $P_6\cup tP_2$, denoted by F. Then $\omega_1\omega_2\in E(F)$. If $\omega_1\omega_2$ is not in the P_6 of F, we obtain a copy of $P_6\cup tP_2$ in G by replacing the edge $\omega_1\omega_2$ with ω_1v_1 , a contradiction. Thus $\omega_1\omega_2$ is in the copy of P_6 of F. Without loss of generality, we may assume that H_1 contains a copy of $P_4=\omega_1u_2u_3u_4$ starting from ω_1 . Then $P=v_1\omega_1u_2u_3u_4$ is a copy of P_5 in H_1 . If $N_G(\omega_1)=\{v_1,\ u_2\}$, then by Lemma 2.3(i) $v_1u_2\in E(H_1)$ and H_1 contains a triangle, a contradiction. Thus, $d_G(\omega_1)\geq 3$. Similarly, $d_G(u_2)\geq 3$ and $d_G(u_3)\geq 3$. We assume that $\{v_1,\ u_2,\ x\}\subseteq N_G(\omega_1)$, $\{\omega_1,\ u_3,\ y\}\subseteq N_G(u_2)$ and $\{u_2,\ u_4,\ z\}\subseteq N_G(u_3)$ with $x\neq y\neq z$. If $d_G(y)=1$, then $G+\omega_1u_3$ contains a copy of $P_6\cup tP_2$ and ω_1u_3 is in the P_6 . We consider the following cases. **Case 1.** u_2 is a vertex of P_6 . Then there exists a subpath P' such that $u_2\omega_1u_3 \subseteq P' \subseteq P_6$ (or $u_2u_3\omega_1 \subseteq P' \subseteq P_6$). And we obtain a copy of $P_6 \cup tP_2$ in G by replacing P' with $v_1\omega_1u_2u_3$ or $\omega_1u_2u_3u_4$, a contradiction. **Case 2.** P_6 starts from ω_1 (or P_6 starts from u_3). Then we get a copy of $P_6 \cup tP_2$ in G by replacing $\omega_1 u_3$ with $u_2 \omega_1$ (or $u_2 u_3$), a contradiction. **Case 3.** P_6 starts from v_1 . By replacing $v_1\omega_1u_3$ with yu_2u_3 , we obtain a copy of $P_6 \cup tP_2$ in G, a contradiction. **Case 4.** P_6 starts from x (or P_6 starts from z or P_6 starts from u_4). If P_6 starts from x, we assume that $P_6 = x\omega_1u_3zz_1z_2$ (or $P_6 = x\omega_1u_3u_4t_1t_2$) where $z_1 \in N_G(z)$ and $z_2 \in N_G(z_1)$ (or $t_1 \in N_G(u_4)$ and $t_2 \in N_G(t_1)$). It follows from Lemma 2.3(i) that $d_G(z) \ge 3$ (or $d_G(u_4) \ge 3$). We assume that $\{u_3, z_1, z_1'\} \subseteq N_G(z)$ (or $\{u_3, t_1, t_1'\} \subseteq N_G(u_4)$). We replace P_6 by $v_1w_1u_2u_3zz_1$ (or $v_1w_1u_2u_3u_4t_1$), then we have a copy of $P_6 \cup tP_2$ in G, a contradiction. If P_6 starts from z or P_6 starts from u_4 , we obtain a copy of $P_6 \cup tP_2$ in G by similar arguments, a contradiction. **Case 5.** P_6 starts from x_1 where $x_1 \in N_G(x)$ (or P_6 starts from z_1 where $z_1 \in N_G(z)$ or P_6 starts from t_1 where $t_1 \in N_G(u_4)$). If P_6 starts from x_1 where $x_1 \in N_G(x)$, we assume that $P_6 = x_1x\omega_1u_3zz_1$ where $z_1 \in N_G(z)$ or $P_6 = x_1x\omega_1u_3u_4t_1$ where $t_1 \in N_G(u_4)$. Then G contains a copy of $P_6 \cup tP_2$ by replacing P_6 by $x\omega_1u_2u_3zz_1$ (or $x\omega_1u_2u_3u_4t_1$), a contradiction. If P_6 starts from z_1 where $z_1 \in N_G(z)$ or P_6 starts from t_1 where $t_1 \in N_G(u_4)$, we also obtain contradictions by similar arguments. Therefore, $d_G(y) \neq 1$. By Lemma 2.3(i), $d_G(y) \geq 3$. And we assume that $\{u_2, y_1, y_2\} \subseteq N_G(y)$. Then $H_1[\{v_1, x, \omega_1, u_2, u_3, u_4, z, y, y_1, y_2\}]$ is an induced T_5 in H_1 . This completes the proof of Lemma 2.6. \square **Theorem 2.7.** For $n = 10q + r \ge \frac{10}{3}t + 10 - \left[\frac{r}{3}\right]/3$, $sat^*(n, P_6 \cup tP_2) = n - \left[\frac{n}{10}\right]$. *Proof.* Denotes n = 10q + r, where $q = \left[\frac{n}{10}\right]$, $0 \le r \le 9$. If $0 \le r \le 2$, consider the graph $G_n = (q-1)T_5 \cup T_5^*$ where T_5^* denotes the graph obtained from by attaching r leaves to T_5 and maintaining the degree of the center 3. And T_5^* has r leaves more than T_5 . If $3 \le r \le 5$, consider the graph $G_n = (q-1)T_5 \cup T_5^{**}$ where T_5^{**} denotes the graph obtained from by attaching one vertex to the center of T_5 and attaching the remain r-1 leaves to the previous vertex. If $6 \le r \le 8$, consider the graph $G_n = (q-1)T_5 \cup T_5^{***}$ where T_5^{***} denotes the graph obtained from by attaching two vertices to the center of T_5 and attaching two leaves to one of the previous two vertices and attaching the remain r-4 leaves to the other one of the previous two vertices. If r = 9, consider the graph $G_n = (q-1)T_5 \cup T_5^{****}$ where T_5^{****} denotes the graph obtained from by attaching three vertices to the center of T_5 and attaching two leaves to each of the previous three vertices. Obviously, it contains no copy of P_6 , but the addition of any edge $e \in E(\overline{G_n})$ results in a copy of $P_6 \cup (3(q-1) + [\frac{r}{3}])P_2$. If $0 \le r \le 2$, we have $n = 10q + r \ge \frac{10}{3}t + 10$, $t \le 3(q - 1) = 3(q - 1) + \left[\frac{r}{3}\right]$. If $3 \le r \le 5$, we have $n = 10q + r \ge \frac{10}{3}t + \frac{29}{3}$, $t \le 3(q - 1) + 1 = 3(q - 1) + \left[\frac{r}{3}\right]$. If $6 \le r \le 8$, we have $n = 10q + r \ge \frac{10}{3}t + \frac{28}{3}$, $t \le 3(q - 1) + 2 = 3(q - 1) + \left[\frac{r}{3}\right]$. If r = 9, we have $r = 10q + r \ge \frac{10}{3}t + \frac{27}{3} = \frac{10}{3}t + 9$, $t \le 3(q - 1) + 3 = 3(q - 1) + \left[\frac{r}{3}\right]$. Hence G_n is $P_6 \cup tP_2$ -saturated. Since $V_0(G_n) = \emptyset$, $G_n \in SAT^*(n, P_6 \cup tP_2)$, $sat^*(n, P_6 \cup tP_2) \le |E(G_n)| = \frac{1}{3}t + +$ $n - q = n - \left[\frac{n}{10}\right].$ If $sat^*(n, P_6 \cup tP_2) < n - [\frac{n}{10}]$, then there is a graph $G \in SAT^*(n, P_6 \cup tP_2)$ with $|E(G)| < n - [\frac{n}{10}]$. Let $G_0 = G - (H_1 \cup H_2 \cup \cdots \cup H_k)$, where H_1, H_2, \cdots, H_k are all the tree components of G. By Lemma 2.6, $|V(H_1)| \ge 10$, $|V(H_2)| \ge 10$, ... and $|V(H_k)| \ge 10$. Hence $n \ge 10k$, $k \le \frac{n}{10}$. And $$|E(G)| = |E(G_0)| + \sum |E(H_i)| \ge |G_0| + \sum (|H_i| - 1) = n - k.$$ this together with $|E(G)| < n - [\frac{n}{10}]$ implies that $k > [\frac{n}{10}]$, a contradiction. \square Proof of Theorem 2.1. (i) By Lemma 2.5 and Theorem 2.7, we obtain that $sat(n, P_6 \cup tP_2) \le min\{n - \lfloor \frac{n}{10} \rfloor, 3t + 18\}$. Assume there exists a graph $G \in Sat(n, P_6 \cup tP_2)$ with $|E(G)| < min\{n - [\frac{n}{10}], 3t + 18\}$. By Lemma 2.5 and Theorem 2.7, it follows that $|V_0(G)| = 1$. By Lemma 2.3, $V_1(G) = \emptyset$. Hence $|E(G)| \ge (|G| - 1)$. Then $n \le |E(G)| + 1 < n - \lfloor \frac{n}{10} \rfloor$, a contradiction. Thus, Theorem 2.1(i) is true. (ii) By $n \ge \frac{10}{3}t + 20$ when n = 10q and $n > \frac{10}{3}t + 20$ when n = 10q + r, $1 \le r \le 9$, we have $n - \lfloor \frac{n}{10} \rfloor > 3t + 18$. Thus $sat(n, P_6 \cup tP_2) = 3t + 18$. If $G \in Sat(n, P_6 \cup tP_2)$ with |E(G)| = 3t + 18, by Theorem 2.7, $G \notin Sat^*(n, P_6 \cup tP_2)$. Thus $V_0(G) \neq \emptyset$. If $|V_0(G)| = 1$, then $|E(G)| \ge (|G| - 1) \ge \frac{10}{3}t + 19 > 3t + 18$, a contradiction. If $|V_0(G)| \ge 2$, $Sat(n, P_6 \cup tP_2) = K_7 \cup (t-1)K_3 \cup (n-3t-4)K_1$ by Lemma 2.5. Therefore, Theorem 2.1(ii) is true. ### References - [1] C. Berge, Sur Le couplage maximum d'un graphe, C. R. Acad. Sci. Paris 247(1958), 258–259. - [2] T. Bohman, M. Fonoberova and Oleg Pikhurko, The saturation function of complete partite graphs, J. Comb. 1(2)(2010),149–170. - $[3] \ \ J. \ Bondy \ and \ U. \ Murty, Graph \ theory \ with \ applications, American \ Elsevier, New \ York, 1976.$ - Y. Chen, All minimum C_5 -saturated graphs, J. Graph Theory **67(1)**(2011), 9–26. - [5] G. Chen, J. R. Faudree, R. J. Faudree, R. J. Gould, M. S. Jacobson and C. Magnant, Saturation number for linear forests, Bull. Inst. Combin. Appl. 75(2015), 29-46. - [6] B. Currie, J.R. Faudree, R.J. Faudree and J.R. Schmitt, A survey of minimum saturation graphs, Electron. J. Combin. 28(2021), DS19. - [7] P. Erdös, András Hajnal and John W. Moon, A problem in graph theory, Amer. Math. Monthly 71(1964), 1107–1110. - [8] Q. Fan and C. Wang, Saturation numbers for linear forests $P_5 \cup tP_2$, Graphs Combin. **31**(2015), 2193–2200. - [9] J, Faudree, R. Faudree and J. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18(2011), DS19. - [10] R. Faudree and R. Gould, Saturation numbers for nearly complete graphs, Graphs Combin. 29(3)(2013),429-448. - [11] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges. J. Graph Theory 10(1986), 203–210. - [12] F. Song, Y. Zou and H. Su, Saturation Numbers for Linear Forests $2P_4 \cup tP_2$, Math. Probl. Eng. (2021), Art. ID 6613393, 7 pp. - [13] E. Sullivan and P. Wenger, Saturation numbers in tripartite graphs, J. Graph Theory 84(2017), 428-442. - [14] P. Turán, Eine extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.