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Abstract. Given a graph H, we say a graph G is H-saturated if G does not contain H as a subgraph and the
addition of any edge e < E(G) results in H as a subgraph. The question of the minimum number of edges
of an H-saturated graph on n vertices, known as the saturation number.

In this paper, we mainly research the saturation number for linear forests and characterize the extremal
graphs.

1. Introduction

1.1. Basic Definitions
All graphs considered in this paper are simple, finite and undirected. Let G = (V(G),E(G)) be a nontrivial

graph with the vertex set V(G) and the edge set E(G) where each edge e ∈ E(G) is an unordered pair of
distinct vertices u, v ∈ V(G). We write e = uv when e = {u, v} and we say that u is adjacent to v in G. If u is
adjacent to exactly k vertices in G, we say that u has degree k, and we write dG(u) = k. The neighborhood of a
vertex u ∈ V(G) is the set of vertices which is adjacent to u, denoted by N(u). And we write N[u] = N(u)∪{u}.
The minimum (maximum) degree of a graph G is denoted by δ(G) (∆(G)). A set of vertices I ∈ V(G) is an
independent set if for all pairs u, v ∈ I the vertices u and v are not adjacent.

For X ⊆ V(G), G[X] denotes the subgraph of G induced by X. Pn, Kn denote the path on n vertices, the
complete graph on n vertices.

Given two disjoint graphs G1 and G2, the join of G1 and G2, denoted by G1 ∨ G2, is obtained from the
vertex-disjoint copies of G1 and G2 by adding all edges between V(G1) and V(G2).

Let G and H be graphs. If V(H) ⊂ V(G) and E(H) ⊂ E(G), we say that H is a sub1raph of G. If H is a
subgraph of G such that E(H) = {uv | u, v ∈ V(H) and uv ∈ E(G)}, we say that H is an induced subgraph of
G and we may write H = G[V(H)].

We say that two graphs G and H are isomorphic if there exists an adjacency-preserving bijection between
their vertex sets and we write G � H. If there exists a subset V′ ⊂ V(G) and a subset E′ ⊂ E(G) such that H
is isomorphic to the subgraph H′ = (V′,E′), we say that G contains a copy of H.

Note that by our definition above, when we say that G contains a copy of H, the subgraph H′ of G such
that H � H′ need not be an induced subgraph of G.
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If we obtain the graph G′ from G by adding the edge e < E(G), we have E(G′) = E(G) ∪ {e} and we write
G′ = G + e. If e = uv, we may write G′ = G + uv. For undefined notations and terminology, refer to [3]

1.2. Saturation Number

We say that G is H-saturated if G contains no copy of H and for all e ∈ E(Ḡ) the graph G + e does contain
a copy of H. Denote by SAT(n,H) the set of all H-saturated graphs of order n.

SAT(n,H) = {G : G is H − saturated, |V(G)| = n}.

The maximum number of edges possible in a graph G on n vertices that is H-saturated is known as the
Turán number [14] and is denoted ex(n,H). We use the notation ex(n,H) to indicate the extremal number
for the target graph H with respect to H-saturated graphs of order n. That is

ex(n,H) = max{|E(G)| : G ∈ SAT(n,H)}.

For a family of graphs F , ex(n,F ) is the maximum number of edges in an H-saturated graph of order
n for any H ∈ F . The set of all H-saturated graphs of order n having size ex(n,H) is denoted EX(n,H).

EX(n,H) = {G ∈ SAT(n,H) : |E(G)| = ex(n,H)}.

The saturation number of a target graph H with respect to host graphs of order n, denoted sat(n,H), is the
minimum number of edges in an H-saturated graph on n vertices. That is,

sat(n,H) = min{|E(G)| : G ∈ SAT(n,H)}.

For a family of graphs F , sat(n,F ) is the minimum number of edges in an F -saturated graph G of
order n, that is G is H-saturated for every H ∈ F . The set of all H-saturated graphs of order n having size
sat(n,H) is denoted Sat(n,H).

Sat(n,H) = {G ∈ SAT(n,H) : |E(G)| = sat(n,H)}.

The original paper established sat(n,Kk) and the uniqueness of the graph in Sat(n,Kk) by Erdös, Hajnal
and Moon in [7].

Theorem 1.1. ([7]) If 2 ≤ k ≤ n, then sat(n,Kk) = (k − 2)(n − k + 2) +
(k−2

2
)
=
(n

2
)
−
(n−k+2

2
)

and Sat(n,Kk) contains
only one graph, Kk−2 + Kn−k+2.

In 1986 Kászonyi and Tuza [11] found the best known general upper bound for sat(n,F), where F is a
class of forbidden graphs. Since then, sat(n,F) and SAT(n,F) have been investigated for a range of graphs
F, including unions of cliques [2], nearly complete graphs[10], tripartite graphs [13], and cycles [4]. For a
summary of known results see [6].

Chen et al. [5] focused on the saturation numbers for the linear forests and obtained a series of interesting
results and proposed a few conjectures, one of which is about the saturation number for linear forests Pk∪tP2.
In [8], [12] they also discussed the saturation numbers for the linear forests.

2. Main Results

In this work, we will focus on the saturation number of the linear forests P6 ∪ tP2. Our main result is as
follows.

Theorem 2.1. Let n and t be two positive integers. And n = 10q + r ≥ 10
3 t + 10 − [ r

3 ]/3 . Then
(i) sat(n,P6 ∪ tP2) = min{n − [ n

10 ], 3t + 18}, and
(ii) Sat(n,P6 ∪ tP2) = {K7 ∪ (t − 1)K3 ∪ Kn−3t−4} for n > 10

3 t + 20 and n = 10q + r, 1 ≤ r ≤ 9 or n ≥ 10
3 t + 20 and

n = 10q.
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2.1. Preliminaries
Lemma 2.2. (The Berge-Tutte Formula, [1])
For a graph G,

α′(G) =
1
2

min{|G| + |X| − o(G − X) : X ⊆ V(G)},

where o(G) denotes the number of odd components of G and α′(G) denotes the number of edges in a maximum matching
of G.

Lemma 2.3. Let G be a (P6 ∪ tP2)-saturated graph, where t is a positive integer. Then G has the following properties.
(i) If NG(x) = {u, v}, then uv ∈ E(G).[5]
(ii) If |V0(G)| > 0, then V1(G) = ∅, Vi(G) is the set of vertices of G with degree i.
(iii) If |V0(G)| > 0, for any x ∈ V(G) − V0(G), we have NG(x) ⊆ V(F) where F is some copy of P6 ∪ tP2 in G + xy
and y ∈ V0(G).

Proof. (ii) If V1(G) , ∅, let x1 be one vertex in V1(G) and x1x2 be the edge incident to x1 (dG(x2) ≥ 1). Then
the graph G + x2x3 contains a copy F of P6 ∪ tP2 where x3 ∈ V0(G) (obviously x1 < V(F)). By replacing the
edge x2x3 with x1x2, we get a copy of P6 ∪ tP2 in G, a contradiction. Therefore, V1(G) = ∅.
(iii) If there is one vertex x ∈ V(G)−V0(G) satisfying NG(x) ⊈ V(F) where F is any copy of P6∪tP2 in G+xy and
y ∈ V0(G), then there exists a vertex x′ ∈ NG(x) such that x′ ∈ NG(x) − V(F). Since G is a (P6 ∪ tP2)-saturated
graph, G + xy contains a copy of P6 ∪ tP2, say F. Thus xy ∈ E(F). Then by replacing the edge xy with xx′ in
F, we obtain a copy of P6 ∪ tP2 in G, a contradiction.

Lemma 2.4. Let G be a (P6∪ tP2)-saturated graph with |V0(G)| ≥ 2 and H be the graph spanned by all the nontrivial
components H1, . . . , Hk of G, where k is the number of components of G. If |V(H)| ≥ 2t+6, δ(H) ≥ 2 and |V(Hi)| ≥ 5
for 1 ≤ i ≤ k, then

(i) G is a (P4 ∪ (t + 1)P2)-saturated graph, and
(ii) |E(G)| > 3t + 18.

Proof. (i) Since G is a (P6 ∪ tP2)-saturated graph, the additional edge e ∈ E(G) will result in a (P6 ∪ tP2) in
G + e. Hence, for any edge e ∈ E(G), G + e contains a copy of P4 ∪ (t + 1)P2.

If G is not a (P4 ∪ (t + 1)P2)-saturated graph, then G contains a copy of a P4 ∪ (t + 1)P2. Let M be a copy
of P4 ∪ sP2 in G such that s is maximum. Then, s ≥ t + 1.

Since δ(H) ≥ 2 and |V(Hi)| ≥ 5 for 1 ≤ i ≤ k, every component Hi of G contains a copy of P4. P4 contains
a copy of 2P2. We consider two cases depending on |E(Hi) ∩M|.

Case 1. ∀i, i ∈ [k], |E(Hi) ∩M| = 2.
Hi contains a copy of P4. Assume that P4 = x1x2x3x4. Since |V0(G)| ≥ 2 and G is (P6∪ tP2)-saturated, there

exists one component H j ( j ∈ [k]) such that |V(H j)| > 5. By the choice of M, V(H j) − V(P4) is independent.
∀x ∈ V(H j) − V(P4), if x is adjacent to one end of P4, it is easily verified that H j[{x, x1, x2, x3, x4, y}] contains
a copy of P6 for y ∈ V(H j) − V(P4), y , x, which together with the edges in M − E(H j[{x, x1, x2, x3, x4, y}])
forms a copy of (P6 ∪ tP2), a contradiction. Therefore, N(x) = {x2, x3}, ∀x ∈ V(H j) − V(P4). Then G + e will
not contain P6 for the additional edge e = x2ωwith ω ∈ V0(G), a contradiction.

Case 2. There exists one component Hi such that |E(Hi) ∩M| > 2 for i ∈ [k].
Since every component of G contains a copy of P4, Hi contains a copy of P4 ∪ rP2. If r = 0, then

|E(Hi) ∩M| = 3. If there exists one component H j such that |V(H j)| > 5 and |E(H j) ∩M| = 3, we can obtain
a contradiction through discussions similar to Case 1. Hence |V(Hi)| = 5 for i ∈ [k]. Then G + e will not
contain P6 for the additional edge e = ω1ω2 with ω1, ω2 ∈ V0(G), a contradiction. Therefore we just discuss
r > 1. Assume that P4 = x1x2x3x4. It is obvious that x1 is not incident with any edge e = u jv j ∈ rP2.

Subcase 2.1. V(Hi) − V(M) = ∅.
Since x1 is not incident with any edge e ∈ rP2, x2 (or x3) is incident with one edge e = u jv j ∈ rP2. If

x1x4 < E(Hi), then N(x1) = N(x4) = {x2, x3} for δ(H) ≥ 2. And Hi[{x1, x2, x3, x4,u j, v j}] contains a copy of P6,
which together with the edges in M − E(P4) − e forms a copy of (P6 ∪ tP2), a contradiction. If x1x4 ∈ E(Hi),
we also obtain a contradiction by the similar arguments.

Subcase 2.2. V(Hi) − V(M) , ∅.
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By the choice of M, V(Hi)−V(M) is independent. We assume x ∈ V(Hi)−V(M). By the above arguments,
xi is not incident with any edge in rP2 for i = 1, 2, 3, 4. Therefore, x is incident with one edge e = u jv j ∈ rP2
and x is adjacent to xi for some i ∈ {1, 2, 3, 4}. Then Hi[{x, x1, x2, x3, x4,u j, v j}] contains a copy of P6, which
together with the edges in M − E(P4) − e forms a copy of (P6 ∪ tP2), a contradiction.

(ii) Assume that |E(G)| ≤ 3t + 18.
It follows from (i) that H is (P4 ∪ (t + 1)P2)-saturated. And every component of H contains a copy of P4,

α′(H) = t + 2. By the Berge-Tutte Formula, we choose a subset S of V(H) such that

t + 2 =
1
2

min{|H| + |X| − o(H − X) : X ⊆ V(H)} =
1
2
{|H| + |S| − o(H − S)}

.
Let H′1,H

′

2, · · · ,H
′

l be the components of H − S.
Claim 1. H[S ∪ V(H′i )] is a clique for i ∈ [l].

Proof. If not, there exist x, y ∈ S ∪ V(H′i ) such that xy < E(H). Set H′ = H + xy. Then H′ contains a
copy of (P4 ∪ (t + 1)P2) and α(H′) ≥ t + 3. Then o(H′ − S) = o(H − S). Therefore 1

2 {|H| + |S| − o(H′ − S)} =
1
2 {|H| + |S| − o(H − S)} = t + 2. By the Berge-Tutte Formula, α(H′) ≤ t + 2, a contradiction.

Claim 2. S , ∅.

Proof. If S = ∅, Hi is a complete graph by Claim 1 for 1 ≤ i ≤ k. Since |V0(G)| ≥ 2, there exists one component
Hi with |V(Hi)| ≥ 6. Without loss of generality, we assume |V(H1)| ≥ 6. Then

2|E(H)| =
∑

u∈V(H)

dH(u) =
k∑

i=1

|V(Hi)|(|V(Hi)| − 1)

≥ 4|V(H)| + |V(H1)|(|V(H1)| − 5) +
∑

|(Hi)|≥6, Hi,H1

|V(Hi)|(|V(Hi)| − 5),

This together with |V(H)| ≥ 2t + 6 and |E(H)| = |E(G)| ≤ 3t + 18 implies that |V(H1)| = 6, |V(Hi)| = 5
for i , 1 and t ≤ 3. Hence |V(H)| = 5k + 1 ≥ 2t + 6. It implies that k ≥ 2 and if k = 2, then t = 2.
|E(H)| = 10k + 5 ≤ 3t + 18. implies that k ≤ 2 and if k = 2, then t = 3, a contradiction.

Combining Claim 1 with Claim 2, NH(x) = V(H) − {x} for x ∈ S. For y ∈ V0(G), we have {x, y} ∪NG(x) ⊆
V(F) by Lemma 2.3(iii), where F is a copy of P6 ∪ tP2 in G + xy. And 2t + 7 ≤ |H| + 1 = |{x, y} ∪ NH(x)| ≤
|V(F)| = 2t + 6, a contradiction.

Lemma 2.5. Let G ∈ Sat(n,P6 ∪ tP2) with |V0(G)| ≥ 2, where n ≥ 3t + 6 and t ≥ 1. If |E(G)| ≤ 3t + 18, then
|E(G)| = 3t + 18 and G � K7 ∪ (t − 1)K3 ∪ (n − 3t − 4)K1.

Proof. It follows from Lemma 2.3 that V1(G) = ∅. It is easily verified that the components of order 3 in G are
complete. If there exists one component H of order 4 in G, it is clear that H is complete. G + xy does not
contain a copy of P6 ∪ tP2 for x ∈ V(H), y ∈ V0(G). Therefore the components of order 4 in G are empty.

Set G′ = G− t3K3, where t3 is the number of components of G with order 3. That is, G � G′ ∪ t3K3. Since
V0(G′) = V0(G), G + xy contains a copy of P6 ∪ tP2 where x, y ∈ V0(G), G′ contains a copy of P6. Then
t3 ≤ t − 1. That is, t − t3 ≥ 1.

Set t′ = t − t3. Then G′ ∈ Sat(n′,P6 ∪ t′P2) where n′ = n − 3t3. Let H′ be the graph spanned by all
nontrivial components of G′. It follows from Lemma 2.3 that V1(G′) = ∅. That is, δ(H′) ≥ 2. This together
with |V0(G′)| ≥ 2 and |E(G′)| = |E(G)|−3t3 ≤ 3t′+18 implies that |H′| ≤ 2t+5 by Lemma 2.4. It is obvious that
H′ � K2t′+5. Since |E(H′)| = |E(G′)| ≤ 3t′+18, it follows that t′ = 1 and H′ � K7. Therefore G′ � K7∪ (n′−7)K1
and t3 = t − 1. Then G � G′ ∪ t3K3 � K7 ∪ (t − 1)K3 ∪ (n − 3t − 4)K1.
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2.2. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. For a graph F, let SAT∗(n,F) be the set of F-saturated graphs G of
order n with V0(G) = ∅. The minimum number of edges in a graph in SAT∗(n,F) is denoted by sat∗(n,F).

Recall that a perfect degree three tree is a tree such that every vertex has degree 3 or degree 1, and all
vertices of degree 1 are the same distance from the center. For k ≥ 2, we will let Tk denote the perfect degree
three tree whose longest path contains k vertices.

Lemma 2.6. Let G be a (P6 ∪ tP2)-saturated graph and H1, H2 two nontrivial components of G. If both H1 and H2
are trees, then each tree component contains a copy of T5. Hence, |V(H1)| ≥ 10 and |V(H2)| ≥ 10.

Proof. For i = 1, 2, let υi be a pendant vertex of Hi with NG(υi) = {ωi}. Then G + ω1ω2 contains a copy of
P6 ∪ tP2, denoted by F. Then ω1ω2 ∈ E(F). If ω1ω2 is not in the P6 of F, we obtain a copy of P6 ∪ tP2 in G
by replacing the edge ω1ω2 with ω1υ1, a contradiction. Thus ω1ω2 is in the copy of P6 of F. Without loss of
generality, we may assume that H1 contains a copy of P4 = ω1u2u3u4 starting from ω1. Then P = υ1ω1u2u3u4
is a copy of P5 in H1. If NG(ω1) = {υ1, u2}, then by Lemma 2.3(i) υ1u2 ∈ E(H1) and H1 contains a triangle, a
contradiction. Thus, dG(ω1) ≥ 3. Similarly, dG(u2) ≥ 3 and dG(u3) ≥ 3. We assume that {υ1, u2, x} ⊆ NG(ω1),
{ω1, u3, y} ⊆ NG(u2) and {u2, u4, z} ⊆ NG(u3) with x , y , z. If dG(y) = 1, then G + ω1u3 contains a copy of
P6 ∪ tP2 and ω1u3 is in the P6. We consider the following cases.

Case 1. u2 is a vertex of P6.
Then there exists a subpath P′ such that u2ω1u3 ⊆ P′ ⊆ P6 (or u2u3ω1 ⊆ P′ ⊆ P6). And we obtain a copy

of P6 ∪ tP2 in G by replacing P′ with υ1ω1u2u3 or ω1u2u3u4, a contradiction.
Case 2. P6 starts from ω1 (or P6 starts from u3).
Then we get a copy of P6 ∪ tP2 in G by replacing ω1u3 with u2ω1 (or u2u3), a contradiction.
Case 3. P6 starts from υ1.
By replacing υ1ω1u3 with yu2u3, we obtain a copy of P6 ∪ tP2 in G, a contradiction.
Case 4. P6 starts from x (or P6 starts from z or P6 starts from u4).
If P6 starts from x, we assume that P6 = xω1u3zz1z2 (or P6 = xω1u3u4t1t2) where z1 ∈ NG(z) and z2 ∈ NG(z1)

(or t1 ∈ NG(u4) and t2 ∈ NG(t1)). It follows from Lemma 2.3(i) that dG(z) ≥ 3 (or dG(u4) ≥ 3). We assume that
{u3, z1, z′1} ⊆ NG(z) (or {u3, t1, t′1} ⊆ NG(u4)). We replace P6 by υ1ω1u2u3zz1 (or υ1ω1u2u3u4t1), then we have
a copy of P6 ∪ tP2 in G, a contradiction. If P6 starts from z or P6 starts from u4, we obtain a copy of P6 ∪ tP2
in G by similar arguments, a contradiction.

Case 5. P6 starts from x1 where x1 ∈ NG(x) (or P6 starts from z1 where z1 ∈ NG(z) or P6 starts from t1
where t1 ∈ NG(u4)).

If P6 starts from x1 where x1 ∈ NG(x), we assume that P6 = x1xω1u3zz1 where z1 ∈ NG(z) or P6 =
x1xω1u3u4t1 where t1 ∈ NG(u4). Then G contains a copy of P6 ∪ tP2 by replacing P6 by xω1u2u3zz1 (or
xω1u2u3u4t1), a contradiction. If P6 starts from z1 where z1 ∈ NG(z) or P6 starts from t1 where t1 ∈ NG(u4),
we also obtain contradictions by similar arguments.

Therefore, dG(y) , 1. By Lemma 2.3(i), dG(y) ≥ 3. And we assume that { u2, y1, y2} ⊆ NG(y). Then
H1[{υ1, x, ω1, u2, u3, u4, z, y, y1, y2}] is an induced T5 in H1. This completes the proof of Lemma 2.6.

Theorem 2.7. For n = 10q + r ≥ 10
3 t + 10 − [ r

3 ]/3 , sat∗(n,P6 ∪ tP2) = n − [ n
10 ].

Proof. Denotes n = 10q + r, where q = [ n
10 ], 0 ≤ r ≤ 9.

If 0 ≤ r ≤ 2, consider the graph Gn = (q − 1)T5 ∪ T∗5 where T∗5 denotes the graph obtained from by
attaching r leaves to T5 and maintaining the degree of the center 3. And T∗5 has r leaves more than T5.

If 3 ≤ r ≤ 5, consider the graph Gn = (q − 1)T5 ∪ T∗∗5 where T∗∗5 denotes the graph obtained from by
attaching one vertex to the center of T5 and attaching the remain r − 1 leaves to the previous vertex.

If 6 ≤ r ≤ 8, consider the graph Gn = (q − 1)T5 ∪ T∗∗∗5 where T∗∗∗5 denotes the graph obtained from by
attaching two vertices to the center of T5 and attaching two leaves to one of the previous two vertices and
attaching the remain r − 4 leaves to the other one of the previous two vertices.

If r = 9, consider the graph Gn = (q−1)T5∪T∗∗∗∗5 where T∗∗∗∗5 denotes the graph obtained from by attaching
three vertices to the center of T5 and attaching two leaves to each of the previous three vertices.
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Obviously, it contains no copy of P6, but the addition of any edge e ∈ E(Gn) results in a copy of
P6 ∪ (3(q − 1) + [ r

3 ])P2.
If 0 ≤ r ≤ 2, we have n = 10q + r ≥ 10

3 t + 10, t ≤ 3(q − 1) = 3(q − 1) + [ r
3 ].

If 3 ≤ r ≤ 5, we have n = 10q + r ≥ 10
3 t + 29

3 , t ≤ 3(q − 1) + 1 = 3(q − 1) + [ r
3 ].

If 6 ≤ r ≤ 8, we have n = 10q + r ≥ 10
3 t + 28

3 , t ≤ 3(q − 1) + 2 = 3(q − 1) + [ r
3 ].

If r = 9, we have n = 10q + 9 ≥ 10
3 t + 27

3 =
10
3 t + 9, t ≤ 3(q − 1) + 3 = 3(q − 1) + [ r

3 ].
Hence Gn is P6 ∪ tP2-saturated. Since V0(Gn) = ∅, Gn ∈ SAT∗(n,P6 ∪ tP2), sat∗(n,P6 ∪ tP2) ≤ |E(Gn)| =

n − q = n − [ n
10 ].

If sat∗(n,P6 ∪ tP2) < n − [ n
10 ], then there is a graph G ∈ SAT∗(n,P6 ∪ tP2) with |E(G)| < n − [ n

10 ]. Let
G0 = G − (H1 ∪ H2 ∪ · · · ∪ Hk), where H1, H2, · · · , Hk are all the tree components of G. By Lemma 2.6,
|V(H1)| ≥ 10, |V(H2)| ≥ 10, · · · and |V(Hk)| ≥ 10. Hence n ≥ 10k, k ≤ n

10 . And

|E(G)| = |E(G0)| +
∑
|E(Hi)| ≥ |G0| +

∑
(|Hi| − 1) = n − k.

this together with |E(G)| < n − [ n
10 ] implies that k > [ n

10 ], a contradiction.

Proo f o f Theorem 2.1.
(i) By Lemma 2.5 and Theorem 2.7, we obtain that sat(n,P6 ∪ tP2) ≤ min{n − [ n

10 ], 3t + 18}.
Assume there exists a graph G ∈ Sat(n,P6 ∪ tP2) with |E(G)| < min{n − [ n

10 ], 3t + 18}. By Lemma 2.5
and Theorem 2.7, it follows that |V0(G)| = 1. By Lemma 2.3, V1(G) = ∅. Hence |E(G)| ≥ (|G| − 1). Then
n ≤ |E(G)| + 1 < n − [ n

10 ], a contradiction. Thus, Theorem 2.1(i) is true.
(ii) By n ≥ 10

3 t+ 20 when n = 10q and n > 10
3 t+ 20 when n = 10q+ r, 1 ≤ r ≤ 9, we have n− [ n

10 ] > 3t+ 18.
Thus sat(n,P6∪tP2) = 3t+18. If G ∈ Sat(n,P6∪tP2) with |E(G)| = 3t+18, by Theorem 2.7, G < Sat∗(n,P6∪tP2).
Thus V0(G) , ∅.

If |V0(G)| = 1, then |E(G)| ≥ (|G| − 1) ≥ 10
3 t + 19 > 3t + 18, a contradiction.

If |V0(G)| ≥ 2, Sat(n,P6 ∪ tP2) = K7 ∪ (t − 1)K3 ∪ (n − 3t − 4)K1 by Lemma 2.5.
Therefore, Theorem 2.1(ii) is true.
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