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Abstract. A quantum injective frame is a frame that can be used to distinguish quantum systems by
measuring density operators. The quantum detection problem aims to characterize all such frames. Re-
cently, there has been significant attention on the problem of quantum detection in both finite and infinite
dimensional Hilbert spaces, for both continuous and discrete frames. This paper aims to present various
characterizations for injective continuous g-frames. The work solves the quantum detection problem in a
more general context and provides characterizations for a broader class of injective continuous g-frames.

1. Introduction

In 1952, Duffin and Schaeffer [8] first introduced frames in Hilbert spaces to handle nonharmonic
Fourier series. Since then, frames have been extensively studied, particularly after 1986, following the
influential work of Daubechies, Grossmann, and Meyer [7]. A frame is an overcomplete coordinate system
that contains more vectors than necessary to represent each vector in the Hilbert space. This concept can
be extended from discrete to continuous by integrating over a measure space instead of summing over a
countable set, resulting in what is known as continuous frames [2, 10]. In 2006, Sun [16] introduced g-frames,
or generalized frames, while Abdollahpour and Faroughi [1] presented and investigated continuous and
Riesz-type continuous g-frames.

In quantum theory, quantum state tomography [15] involves recovering a state (density operator)
by observing the probability of outcomes from a series of measurements performed on the system in
that state. Data from quantum systems is retrieved following quantum measurement theory [5, 15]. A
positive operator-valued measure (POVM)[13] plays a vital role in this process. Recall that a POVM is
informationally complete if it uniquely determines density operators [6, 9]. To solve the quantum detection
problem, it is necessary to find POVMs that are informationally complete. The quantum detection problem
with discrete frame coefficient measurements has been solved by Botelho-Andrade et al. for both finite
and infinite dimensional Hilbert spaces in [3, 4]. They characterized the spanning properties of some
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derived sequences from the frame vectors. Studying this problem and its results for frame extensions is
essential. Recently, Han et al. have explored the problem of quantum detection in its continuous frame
version [12]. In this paper, we will provide characterizations for trace class and Hilbert-Schmidt injective
continuous g-frames instead of continuous frames. Our research aims to deepen the understanding of
quantum detection problems within a broader context. The results of this research expand the scope of
solutions to the quantum detection problem and enhance related research. While some details may be
technical, the results are valuable for analyzing injective continuous g-frames and hold significant intrinsic
interest in quantum detection problems.

The rest of the paper is organized as follows. In Sect.2, we introduce continuous g-frames and POVMs
and review the fundamentals of the quantum detection problem. In Sect.3, we introduce L2-injective
(respectively, L1-injective) continuous g-frames and prove elementary facts. In Sect.4, we present multiple
characterizations for injective continuous g-frames.

2. Preliminaries

LetN be a separable Hilbert space. The set of linear bounded operators onN is denoted byB(N), while
the real linear space of self-adjoint bounded operators onN is denoted byB(N)sa. The real cone of positive
operators onN is denoted by B(N)+. The space of trace-class operators onN is denoted by L1(N), and the
Hilbert space of Hilbert-Schmidt operators with inner product ⟨A,B⟩2 = tr(AB∗) is denoted by L2(N). The
set of states or density operators on N , consisting of ρ: ρ ∈ L1(N) such that ρ ≥ 0 and tr(ρ) = 1, is denoted
by S(N). The index set, which can be countable, is denoted by L. Finally, the notation “ONS” denotes an
orthonormal basis.

For a given ONS {eℓ}ℓ∈L, an operator K ∈ L2(N) if

∥K∥2 :=

∑
ℓ∈L

∥Keℓ∥2


1
2

< ∞,

and K ∈ L1(N) if
∥K∥1 :=

∑
ℓ∈L

⟨|K|eℓ, eℓ⟩ < ∞.

In this case, the trace of K is given by tr(K) =
∑
ℓ∈L
⟨Keℓ, eℓ⟩, which is finite and independent of the ONS.

Additionally, L2(N) and L1(N) are both ideals in B(N) [17].
In this paper, we consider a measure space (∆, ν), where ν is a σ-finite positive measure. We assume that

{Mw}w∈∆ is a family of Hilbert spaces.
We say that H ∈

∏
w∈∆Mw is strongly measurable if H is a mapping of ∆ to ⊕w∈∆Mw and is measurable,

where ∏
w∈∆

Mw = {m : ∆→ ∪w∈∆Mw : m(w) ∈ Mw} .

We call E = {Ew ∈ B(N ,Mw) : w ∈ ∆} a continuous g-frame forN with respect to {Mw}w∈∆ if
(1) for any ζ ∈ N , {Ewζ : w ∈ ∆} is strongly measurable,
(2) there exist α, β > 0 such that

α∥ζ∥2 ≤

∫
∆

∥Ew(ζ)∥2dν(w) ≤ β∥ζ∥2, ζ ∈ N . (1)

E is called a Parseval continuous g-frame if α = β = 1. For simplicity, we use the term c-g-frame instead of a
continuous g-frame forN with respect to {Mw}w∈∆ when no confusion arises.

We consider the space (⊕w∈∆Mw, ν)L2 defined byH ∈
∏
w∈∆

Mw : H is strongly measurable,
∫
∆

∥H(w)∥2dν(w) < ∞

 .
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It is clear that (⊕w∈∆Mw, ν)L2 is a Hilbert space with the inner product given by

⟨H,G⟩ =
∫
∆

⟨H(w),G(w)⟩dν(w).

Associated with each c-g-frame E, there are three important linear bounded operators, i.e., the analysis
operator TE, the synthesis operator T∗

E
and the frame operator SE. They are defined as follows:

TE : N → (⊕w∈∆Mw, ν)L2 , (TE)(ζ)(w) = Ewζ, ∀ w ∈ ∆.

T∗
E

is the adjoint of TE, so explicitly, T∗
E

: (⊕w∈∆Mw, ν)L2 →N ,

⟨T∗
E

H, η⟩ =
∫
∆

⟨E
∗

wH(w), η⟩dν(w), H ∈ (⊕w∈∆Mw, ν)L2 , η ∈ N .

The frame operator SE : N → N is defined such that for each ζ, η ∈ N ,

⟨SEζ, η⟩ =
∫
∆

⟨ζ,E∗wEwη⟩dν(w).

It is easy to see that SE is invertible. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} andD = {Dw ∈ B(N ,Mw) : w ∈ ∆} be
c-g-frames such that

⟨ζ, η⟩ =

∫
∆

⟨ζ,D∗wEwη⟩dν(w), ζ, η ∈ N .

Then D is called a dual of E. Define Ẽ = {Ẽw = EwS−1
E

: w ∈ ∆}. Then Ẽ is also a c-g-frame with frame
operator S−1

E
and is a dual of E. It is called the canonical dual of E.

Two c-g-frames E = {Ew ∈ B(N ,Mw) : w ∈ ∆} and D = {Dw ∈ B(M,Mw) : w ∈ ∆} for N and M,
respectively, are said to be similar if there is an invertible operator S : N → M such that DwS = Ew for all
w ∈ ∆.

We define operator-valued measures for a locally compact Hausdorff space ∆ and its σ-algebra of Borel
sets, denoted by Σ. This definition is based on the one provided in [11].

Definition 2.1. A mapping π : Σ → B(N) is an operator-valued measure (OVM) if for every countable
collection {Fℓ}ℓ∈L ⊆ Σwith Fℓ ∩ F ȷ = ∅ for ℓ , ȷ, we have

π

⋃
ℓ∈L

Fℓ

 =∑
ℓ∈L

π(Fℓ).

Additionally, we say π is a positive operator-valued measure (POVM) if it is positive, i.e., π(F ) ∈ B(N)+ for all
F ∈ Σ and π(∆) = I.

If we have a state represented by the symbol τ, we can create a mapping denoted as p : Σ→ R based on
the quantum measurement performed by a POVM denoted as π. This mapping is defined as follows:

p(F ) = tr(τπ(F )), ∀ F ∈ Σ. (2)

The collection of bounded functions on Σ is symbolized as B(Σ,R). This set can be used in conjunction
with a quantum system N . The “quantum detection problem” aims to determine if there is a POVM π for
a given mapping P : S(N) → B(Σ,R) such that P(τ)(F ) = tr(τπ(F )) for all F ∈ Σ. The main challenge is
to find such a POVM and ensure that it is injective. Specifically, the question is whether a POVM π can
distinguish between quantum states in a measurement. This means that if for τ1, τ2 ∈ S(N),

tr(τ1π(F )) = tr(τ2π(F )), ∀ F ∈ Σ,
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it follows that τ1 = τ2.
For a c-g-frame E = {Ew ∈ B(N ,Mw) : w ∈ ∆}, we define

π : Σ→ B(N)+, π(F ) =
∫
F

E
∗

wEwdν(w)

in the sense of

⟨π(F )ζ, η⟩ =
∫
F

⟨Ewζ,Ewη⟩dν(w),

which naturally induces an OVM. In the case that E is a Parseval c-g-frame, then we also have π(∆) = I,
which induces a POVM.

Let {Mw}w∈∆ ba a family of finite dimensional subspaces ofN , π be an OVM associated with a c-g-frame
E = {Ew ∈ B(N ,Mw) : w ∈ ∆}. Then the quantum measurement for a state τ ∈ S(N) is given by the map
P : S(N)→ B(Σ,R)

P(τ)(F ) = tr(τπ(F )) =
∫
F

tr(EwτE
∗

w)dν(w). (3)

The quantum detection problem involves determining whether the mapping P is injective on the space
S(N). If this condition holds, we say that E is “quantum injective” or simply injective. We are interested in
defining injective c-g-frames.

3. Injective continuous g-frames

Let (∆,Σ, ν) be a measure space, where Σ is a σ-algebra over ∆ and ν is a σ-finite positive measure. In
this section until the end of this paper, we consider a family of finite dimensional subspaces {Mw}w∈∆, each
equipped with its own ONS {ew ȷ : ȷ ∈ Jw} for all w ∈ ∆.

Definition 3.1. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame. We say that E is L2-injective (respectively,
L1-injective) if whenever a self-adjoint Hilbert-Schmidt (respectively, self-adjoint trace-class) operator K
satisfies

tr(EwKE∗w) = 0, a.e. w ∈ ∆,

then K = 0.

Remark 3.2. It is known that the quantum injectivity of a c-g-frame E is equivalent to the condition that
if tr(EwKE∗w) = 0, a.e. w ∈ ∆ for a self-adjoint trace class operator K with trace zero, then K = 0. Thus,
Lk-injectivity implies quantum injectivity for k = 1, 2.

The following elementary facts are helpful in Lk-injective continuous g-frames, k = 1, 2.

Proposition 3.3. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame. If S ∈ B(N) is an invertible operator,
then ES = {EwS ∈ B(N ,Mw) : w ∈ ∆} is also a c-g-frame. Moreover, E is Lk-injective if and only if ES is
Lk-injective, k = 1, 2.

Proof. Clearly, ES is a c-g-frame. We now show that E is Lk-injective if and only if ES is Lk-injective for
k = 1, 2. Assume that E is Lk-injective for k = 1, 2. For any self-adjoint operator K ∈ Lk(N), k = 1, 2, if

tr(EwSK(EwS)∗) = tr(Ew(SKS∗)E∗w) = 0, a.e. w ∈ ∆,

then SKS∗ = 0 since SKS∗ ∈ Lk(N), k = 1, 2 and is self-adjoint. It follows that K = 0 because S is invertible.
To prove the converse direction, suppose that ES is injective. Let K ∈ Lk(N), k = 1, 2 be any self-adjoint

operator. If

tr(EwKE∗w) = tr(EwSS−1K(S∗)−1S∗E∗w)

= tr(EwS(S−1K(S∗)−1)(EwS)∗) = 0, a.e. w ∈ ∆,

then S−1K(S∗)−1 = 0, which implies that K = 0.
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More generally, the following theorem demonstrates that similar continuous g-frames preserve Lk-
injectivity, where k = 1, 2.

Corollary 3.4. Let E and D be c-g-frames. If E and D are similar, then E is Lk-injective if and only if D is
Lk-injective for k = 1, 2.

Corollary 3.5. Let E be a c-g-frame with frame operator SE. If E is Lk-injective, then the canonical Parseval

c-g-frame ES−
1
2
E

is also Lk-injective for k = 1, 2.

Remark 3.6. The previous corollary implies that finding Parseval c-g-frame is unnecessary for solving the
quantum detection problem. If a c-g-frame ensures injectivity, then its canonical Parseval c-g-frame will
also guarantee injectivity.

As demonstrated by the following theorem, it is not necessary to use positive operators.

Theorem 3.7. Given a c-g-frame E = {Ew ∈ B(N ,Mw) : w ∈ ∆}. For k = 1 or 2, the following are equivalent:
(1) If K,S ∈ Lk(N) are positive operators, and

tr(EwKE∗w) = tr(EwSE∗w), for a.e. w ∈ ∆,

then K = S.
(2) If K,S ∈ Lk(N) are self-adjoint, and

tr(EwKE∗w) = tr(EwSE∗w), for a.e. w ∈ ∆,

then K = S.
(3) E is Lk-injective.
(4) For any K ∈ Lk(N), the condition tr(EwKE∗w) = 0(a.e. w ∈ ∆) implies that K = 0.

Proof. Clearly, we have (4)⇒(3)⇒(2)⇒(1). For (1)⇒ (4), let K ∈ Lk(N) be such that tr(EwKE∗w) = 0(a.e.w ∈ ∆).
Write

K = (K+1 − K−1 ) + i(K+2 − K−2 ),

where K+1 ,K
−

1 ,K
+
2 ,K

−

2 are positive operators in Lk(N) [14]. Furthermore, the condition

tr(EwKE∗w) = 0

implies that tr(Ew(K+1 − K−1 )E∗w) = 0 and tr(Ew(K+2 − K−2 )E∗w) = 0. Then tr(EwK+1E
∗
w) = tr(EwK−1E

∗
w) and

tr(EwK+2E
∗
w) = tr(EwK−2E

∗
w). Thus, by (1), we get K+1 = K−1 ,K

+
2 = K−2 and so K = 0.

After considering the trace condition, the proof of the following fact is the same as that of Theorem 3.7.

Corollary 3.8. Given a c-g-frame E = {Ew ∈ B(N ,Mw) : w ∈ ∆}. The following are equivalent:
(1) E is quantum injective.
(2) If K,S ∈ L1(N) are self-adjoint and trace one, and

tr(EwKE∗w) = tr(EwSE∗w), for a.e. w ∈ ∆,

then K = S.
(3) If K is a self-adjoint trace class operator and trace zero, and

tr(EwKE∗w) = 0, for a.e. w ∈ ∆,

then K = 0.
(4) If K ∈ L1(N) is trace zero, and

tr(EwKE∗w) = 0, for a.e. w ∈ ∆,

then K = 0.



X. Chi et al. / Filomat 39:18 (2025), 6091–6101 6096

Clearly, we have “L2-injectivity⇒ L1-injectivity⇒ quantum injectivity”. In the case that E is a Parseval
c-g-frame, quantum injectivity also implies the L1-injectivity.

Proposition 3.9. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a Parseval c-g-frame. Then E is quantum injective if
and only if it is L1-injective.

Proof. Let E be a Parseval c-g-frame which is quantum injective. Therefore,

I =
∫
∆

E
∗

wEwdν(w),

and thus

tr(K) =
∫
∆

tr(EwKE∗w)dν(w).

Now suppose that
tr(EwKE∗w) = 0, a.e. w ∈ ∆,

for some self-adjoint trace-class operator K. Thus tr(K) = 0. By Corollary 3.8, we get K = 0. Hence E is
L1-injective.

4. Characterizations of injective continuous g-frames

The role of states or positive operators of trace one is vital in quantum theory. The following theorems
provide a classification of injectivity for such states. We have achieved the ability to derive various
characterizations of injective c-g-frames.

Denote byK the direct sum of the real Hilbert spaces l2:

K =

∑
ℓ∈L

⊕l2


l2

.

To avoid confusion with earlier notation, a vector in this direct sum will be written in the form: X = (xℓ)ℓ∈L,
and we have

⟨X,Y⟩K =
∑
ℓ∈L

⟨xℓ, yℓ⟩.

Theorem 4.1. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame with analysis operator TE. Let ιℓ = TEeℓ,∀ℓ ∈
L for some ONS {eℓ}ℓ∈L ofN . Then the following are equivalent:
(1) E is L2-injective.
(2)There exists a set F ⊆ ∆with ν(F ) = 0, if we set

S(w) = (∥ι1(w)∥2,Re⟨ι1(w), ι2(w)⟩, Im⟨ι1(w), ι2(w)⟩ · · · ,

∥ι2(w)∥2,Re⟨ι2(w), ι3(w)⟩, Im⟨ι2(w), ι3(w)⟩ · · · ,

∥ι3(w)∥2,Re⟨ι3(w), ι4(w)⟩, Im⟨ι3(w), ι4(w)⟩ · · · , · · · ),∀ w ∈ F C,

then spanw∈F C {S(w)} is dense inK.

Proof. Let K ∈ L2(N) be a self-adjoint operator and {eℓ}ℓ∈L be the ONS ofN . We set bℓ, ȷ = ⟨Keℓ, e ȷ⟩ and define

B = (B1,B2,B3, · · · ,Bℓ, · · · )ℓ∈L,

where

Bℓ = (bℓ,ℓ, 2Re(bℓ,ℓ+1),−2Im(bℓ,ℓ+1), 2Re(bℓ,ℓ+2),−2Im(bℓ,ℓ+2), · · · ).
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Then B ∈ K. In fact,

∥Bℓ∥ ≤

 ∑
ȷ≥ℓ, ȷ∈L

|2bℓ, ȷ|2


1
2

=

 ∑
ȷ≥ℓ, ȷ∈L

|2⟨Keℓ, e ȷ⟩|2


1
2

≤ 2∥Keℓ∥.

∥B∥K =

∑
ℓ∈L

∥Bℓ∥2


1
2

=

∑
ℓ∈L

(2∥Keℓ∥)2


1
2

= 2∥K∥2.

Consider ιℓ = TEeℓ for all ℓ ∈ L. Then

∑
ℓ∈L

∥ιℓ(w)∥2 =
∑
ℓ∈L

∥Eweℓ∥2 =
∑
ℓ∈L

∥∥∥∥∥∥∥∥
∑
ȷ∈Jw

⟨Eweℓ, ew ȷ⟩ew ȷ

∥∥∥∥∥∥∥∥
2

=
∑
ȷ∈Jw

∑
ℓ∈L

|⟨eℓ,E∗wew ȷ⟩|
2 =
∑
ȷ∈Jw

∥E
∗

wew ȷ∥
2 < ∞.

This implies that there exists F such that ν(F ) = 0 and
∑
ℓ∈L
∥ιℓ(w)∥2 < ∞ for all w ∈ F C. We set

S(w) = (S1(w),S2(w), · · · Sℓ(w), · · · )ℓ∈L,

where

Sℓ(w) = (∥ιℓ(w)∥2,Re⟨ιℓ(w), ιℓ+1(w)⟩, Im⟨ιℓ(w), ιℓ+1(w)⟩ · · · , · · · ), ∀ w ∈ F C.

We have

∥S(w)∥K =

∑
ℓ∈L

∥Sℓ(w)∥2


1
2

=

 ∑
ȷ≥ℓ,ℓ∈L

|⟨ιℓ(w), ι ȷ(w)⟩|2


1
2

≤

∑
ℓ∈L

∥ιℓ(w)∥2 < ∞.

Then S(w) is inK.
Now we have

tr(EwKE∗w) = tr(E∗wEwK) =
∑
ℓ∈L

⟨E
∗

wEwKeℓ, eℓ⟩

=
∑
ℓ∈L

⟨EwKeℓ,Eweℓ⟩ =
∑
ℓ∈L

〈∑
ȷ∈L

⟨Keℓ, e ȷ⟩Ewe ȷ,Eweℓ

〉
=
∑
ℓ∈L

∑
ȷ∈L

bℓ, ȷ⟨TEe ȷ(w),TEeℓ(w)⟩

=
∑
ℓ∈L

∑
ȷ∈L

bℓ, ȷ⟨ι ȷ(w), ιℓ(w)⟩ = ⟨B,S(w)⟩K.

Assume that E is L2-injective. Then tr(EωKE∗w) = 0, ∀w ∈ F C implies that K = 0, which in turn implies that
B = 0. Consequently, the orthogonal complement of spanw∈F C {S(w)} is 0. Hence spanw∈F C {S(w)} is dense in
K.

Conversely, if there exists a set F with ν(F ) = 0 and for all w ∈ F C,

tr(EwKE∗w) = ⟨B,S(w)⟩K = 0.

Since spanw∈FC {S(w)} is dense inK, we have B = 0, and hence K = 0. Thus E is L2-injective.



X. Chi et al. / Filomat 39:18 (2025), 6091–6101 6098

Theorem 4.2. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame with analysis operator TE. Let ιℓ = TEeℓ,∀ℓ ∈
L for some ONS {eℓ}ℓ∈L ofN . Then the following are equivalent:
(1) E is L2-injective.
(2) There exists a set F ⊆ ∆with ν(F ) = 0, if we set

M(w) = (⟨ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ

for all w ∈ F C, then spanw∈F C {M(w)} is dense in L2(l2(L))sa.

Proof. Consider ιℓ = TEeℓ for all ℓ ∈ L. Then there exists F such that ν(F ) = 0 and
∑
ℓ∈L
∥ιℓ(w)∥2 < ∞ for all

w ∈ F C. We define the following matrix for all w ∈ F C by

M(w) = (⟨ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ.

Obviously,M(w) is a self-adjoint operator on l2(L). Since

∥(⟨ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ∥2 =

∑
ℓ, ȷ∈L

|⟨ιℓ(w), ι ȷ(w)⟩|2


1
2

=
∑
ℓ

∥ιℓ(w)∥2 < ∞,

we haveM(w) ∈ L2(l2(L)) for all w ∈ F C. Let K ∈ L2(N) be a self-adjoint operator. We set bℓ, ȷ = ⟨Keℓ, e ȷ⟩ and
define the matrix (bℓ, ȷ)ℓ, ȷ on l2(L). Since K is self-adjoint, then

bℓ, ȷ = ⟨Keℓ, e ȷ⟩ = ⟨eℓ,Ke ȷ⟩ = ⟨Keℓ, e ȷ⟩ = bℓ, ȷ,

hence the matrix (bℓ, ȷ)ℓ, ȷ is self-adjoint. Moreover,

∥(bℓ, ȷ)ℓ, ȷ∥2 = ∥K∥2 < ∞,

which implies that (bℓ, ȷ)ℓ, ȷ is a Hilbert-Schmidt operator. Now,

tr(EwKE∗w) =
∑
ℓ∈L

⟨EwKeℓ,Eweℓ⟩

=
∑
ℓ∈L

〈∑
ȷ∈L

⟨Keℓ, e ȷ⟩Ewe ȷ,Eweℓ

〉
=
∑
ℓ∈L

∑
ȷ∈L

bℓ, ȷ⟨TEeℓ,TEe ȷ⟩

=
∑
ℓ∈L

∑
ȷ∈L

bℓ, ȷ⟨ιℓ(w), ι ȷ(w)⟩

=⟨(⟨ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ, (bℓ, ȷ)ℓ, ȷ⟩2.

By orthogonality, we conclude that ifE is L2-injective, then the orthogonal complement space of spanw∈F C {(⟨ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ}
is 0. Hence spanw∈F C {M(w)} is dense in L2(l2(L))sa.

Conversely, for any self-adjoint K ∈ L2(N) and if there exists a set F ⊆ ∆with ν(F ) = 0, if tr(EwKE∗w) = 0
for all w ∈ F C, then 〈

⟨(ιℓ(w), ι ȷ(w)⟩)ℓ, ȷ, (bℓ, ȷ)ℓ, ȷ
〉

2
= 0, ∀ w ∈ F C.

Since spanw∈F C {M(w)} is dense in L2(l2(L))sa, we have bℓ, ȷ = 0, hence bℓ, ȷ = 0 as well as K = 0. Thus E is
L2-injective.
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Theorem 4.3. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame with analysis operator TE. Let ιℓ = TEeℓ,∀ℓ ∈
L for some ONS {eℓ}ℓ∈L ofN . Then the following are equivalent:
(1) E is L2-injective.
(2) There exists a set F ⊆ ∆with ν(F ) = 0, if we set

ϕ(w) = (∥ι1(w)∥2, ∥ι2(w)∥2, . . . , ∥ιℓ(w)∥2, · · · ), ∀ w ∈ F C,

then spanw∈F C {ϕ(w)} is dense in the real Hilbert space l2(L).

Proof. We prove the contrapositive. Suppose that (2) fails. Then there exists F ⊆ ∆with ν(F ) = 0 such that
spanw∈F C {ϕ(w)} is not dense in the real Hilbert space l2(L). Consequently, there exists a non-zero vector
ϑ = (ϑ1, ϑ2, · · ·ϑℓ, · · · ) ∈ l2(L) such that ϑ⊥spanw∈F C {ϕ(w)}. Define

Keℓ = ϑℓeℓ, ∀ℓ ∈ L.

Then K is non-zero self-adjoint operator and satisfies

tr(EwKE∗w) =
∑
ℓ∈L

⟨EwKeℓ,Eωeℓ⟩

=
∑
ℓ∈L

〈∑
ȷ∈L

⟨Keℓ, e ȷ⟩Ewe ȷ,Eweℓ

〉
=
∑
ℓ∈L

∑
ȷ∈L

⟨Keℓ, e ȷ⟩⟨ι ȷ(w), ιℓ(w)⟩

=
∑
ℓ∈L

ϑℓ∥ιℓ(w)∥2 = 0, w ∈ F C.

This contradicts the L2-injectivity of E.
Conversely, let K ∈ L2(N) and hence compact operator. Then there exists an eigenbasis E = {eℓ}ℓ∈L for

K with respect to the eigenvalues {ϑℓ}ℓ∈L. Note that ϑℓ ∈ R since K is also self-adjoint. Meanwhile, since
K ∈ L2(N), we know ϑ = (ϑ1, ϑ2, · · ·ϑℓ, · · · ) ∈ l2(L) because∑

ℓ∈L

|ϑℓ|
2 =
∑
ℓ∈L

∥Keℓ∥2 < ∞.

If exists a set F ⊆ ∆with ν(F ) = 0, and let K ∈ L2(N) be a self-adjoint such that

tr(EwKE∗w) = 0, ∀ w ∈ F C.

Then
tr(EwKE∗w) =

∑
ℓ∈L

ϑℓ∥ιℓ(w)∥2 = ⟨ϑ, ϕ(w)⟩ = 0, ∀ w ∈ F C.

Since spanw∈F C {ϕ(w)} is dense in the real Hilbert space l2(L), we have ϑ = (ϑ1, ϑ2, · · ·ϑℓ, · · · ) = 0, and hence
K = 0. So E is L2-injective.

If we replace the l2(L) by co(L), then we obtain the following characterization for quantum injective
frames.

Theorem 4.4. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame with analysis operator TE. Let ιℓ = TEeℓ,∀ℓ ∈
L for some ONS {eℓ}ℓ∈L ofN . Then the following are equivalent:
(1) E is quantum injective.
(2) There exists a set F ⊆ ∆with ν(F ) = 0, if we set

ψ(w) = (∥ι1(w)∥2, ∥ι2(w)∥2, . . . , ∥ιℓ(w)∥2, · · · ), ∀ w ∈ F C,

then spanw∈F C {ψ(w)} is dense in the real Hilbert space co(L).
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Proof. By Corollary 3.8, we know that the quantum injectivity of E is equivalent to the injectivity for trace
class self-adjoint operators of trace zero.

(1)⇒(2) Consider ιℓ = TEeℓ for all ℓ ∈ L. Then there exists a set F such that ν(F ) = 0 and
∑
ℓ∈L
∥ιℓ(w)∥2 < ∞

for all w ∈ F C. If the span of {ψ(w)} for w ∈ F C is not dense in the real Hilbert space co(L), then there exists
a non-zero vector ϑ = (ϑℓ)ℓ∈L ∈ l1(L) (as a linear functional on co(L)) because co(L)∗ = l1(L) such that the
span of {ψ(w)} for w ∈ F C is in the kernel of ϑ. Define Keℓ = ϑℓeℓ. Then K is a non-zero self-adjoint trace
class operator of trace zero and

tr(EwKE∗w) =
∑
ℓ∈L

ϑℓ∥ιℓ(ω)∥2 = 0, ∀ w ∈ F C.

This leads to a contradiction. Hence spanw∈F C {ψ(w)} is dense in the real Hilbert space co(L).
(2)⇒(1) Let K ∈ L1(N) be a self-adjoint operator. Then from [17], there exists some ONS {eℓ}ℓ∈L such that

Kξ =
∑
ℓ∈L

ϑℓ⟨ξ, eℓ⟩eℓ, ∀ξ ∈ N ,

where ϑ = (ϑℓ)ℓ∈L ∈ l1(L). Then
tr(EwKE∗ω) =

∑
ℓ∈L

ϑℓ∥ιℓ(w)∥2.

Thus tr(EwKE∗w) = 0, ∀ w ∈ F C implies that (ϑℓ) = 0 since spanw∈F C {ψ(w)} is dense in the real Hilbert space
co(L). Therefore, we get that K = 0.

We define a subspace of the real space l1(L) as follows:

D :=

(ϑ1, ϑ2, . . .) ∈ l1(L) :
∑
ℓ∈L

ϑℓ = 0

 .
Theorem 4.5. Let E = {Ew ∈ B(N ,Mw) : w ∈ ∆} be a c-g-frame with analysis operator TE. Let ιℓ = TEeℓ,∀ℓ ∈ L
for some ONS {eℓ}ℓ∈L ofN . The following statements are equivalent:
(1) If K ∈ L1(N) and tr(EwKE∗w) = 0, a.e. w ∈ ∆, then K = 0.
(2) There exists a set F ⊆ ∆ with ν(F ) = 0, if ϑ ∈ D such that

∑
ℓ∈L
ϑℓ∥ιℓ(w)∥2 = 0, ∀ w ∈ F C, then ϑ = 0.

Proof. (1)⇒(2) Consider ιℓ = TEeℓ for all ℓ ∈ L. Then there exists F such that ν(F ) = 0 and
∑
ℓ∈L
∥ιℓ(w)∥2 < ∞

for all w ∈ F C. Suppose that there exists nonzero vector ϑ ∈ D such that
∑
ℓ∈L
ϑℓ∥ιℓ(w)∥2 = 0, ∀ w ∈ F C.

Define
Keℓ = ϑℓeℓ, ∀ℓ ∈ L.

Then K is non-zero and we have
tr(K) =

∑
ℓ∈L

ϑℓ < ∞, tr(K) = 0,

and

tr(EwKE∗w) =
∑
ℓ∈L

ϑℓ∥ιℓ(w)∥2 = 0⇒ ϑℓ = 0, ∀ w ∈ F C.

Thus we reach the contradiction that ϑ = 0.
(2)⇒(1) Assume that K ∈ L1(N) and tr(EwKE∗w) = 0, a.e. w ∈ ∆. Then we observe that the operator K

is compact. Therefore, by the spectral mapping theorem, there exists an ONS {eℓ}ℓ∈L and an eigenbasis
corresponding to {ϑℓ}ℓ∈L such that Keℓ = ϑℓeℓ. Consequently, we have

0 = tr(EwKE∗w) =
∑
ℓ∈L

ϑℓ∥ιℓ(w)∥2 = 0⇒ ϑℓ = 0, a.e. w ∈ ∆.

Hence K = 0.
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