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Abstract. In this paper, we introduce matrix weighted Bourgain-Morrey spaces and obtain two sufficient
conditions for precompact sets in matrix weighted Bourgain-Morrey spaces. We prove that the dyadic
average operator is bounded on some matrix weighted Bourgain-Morrey spaces. With this result, we
obtain the necessity for precompact sets in some matrix weighted Bourgain-Morrey spaces. The results are
new even for the unweighted Bourgain-Morrey spaces.

1. Introduction

In 1931, Kolmogorov [22] first discovered the characterization of precompact sets in Lp([0, 1]) for p ∈
(1,∞). After that, there are many criteria for compactness of sets in Lebesgue spaces, which are called the
Kolmogorov-Riesz compactness theorems on the Lebesgue spaces. More details and the history, we refer
the reader to [16].

Inspired by [16], Clop-Cruz [9] obtained a compactness criterion in scalar weighted Lebesgue spaces
Lp(ω) for 1 < p < ∞ with a scalar wight ω in Muckenhoupt class Ap. In [15], Guo and Zhao improved
the result in [9] and obtained a compactness criterion in Lp(ω) for p ∈ (0,∞) with locally integrable weight
ω. In [24], Liu, Yang and Zhuo proved the Kolmogorov-Riesz compactness theorem in matrix weighted
Lebesgue spaces Lp(W) with 1 < p < ∞.

The theory of matrix weighted function spaces goes back to [35]. Indeed, in 1958, Wiener and Masani [35,
Section 4] studied the matrix weighted L2(W) for the prediction theory for multivariate stochastic processes.
In [32], Treil and Volberg introduced matrix class A2. Nazarov and Treil [26] and Volberg [33] extended
A2 toAp with p ∈ (1,∞). In [13], Goldberg showed that the matrixAp condition leads to Lp boundedness
of a Hardy-Littlewood maximal function and obtained the boundedness of matrix weighted singular
integral operators in Lebesgue spaces Lp, 1 < p < ∞. In [27–29], Roudenko introduced the matrix-weighted
homogeneous Besov spaces Ḃs,q

p (W) and matrix-weighted sequence Besov spaces ḃs,q
p (W) and showed their

equivalence via φ-transform and wavelets. In [11], Frazier and Roudenko introduced the matrix class
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The corresponding author Jingshi Xu is supported by the National Natural Science Foundation of China (Grant No. 12161022)

and the Science and Technology Project of Guangxi (Guike AD23023002).
* Corresponding author: Jingshi Xu
Email addresses: 202311070100007@hainnu.edu.cn (Tengfei Bai), jingshixu@126.com (Jingshi Xu)
ORCID iDs: https://orcid.org/0009-0002-5187-1167 (Tengfei Bai), https://orcid.org/0000-0002-5345-8950 (Jingshi Xu)



T. Bai, J. Xu / Filomat 39:18 (2025), 6261–6280 6262

Ap, (0 < p ≤ 1) and studied the continuous and discrete matrix-weighted Besov spaces Ḃs,q
p (W) and ḃs,q

p (W)
with 0 < p ≤ 1. In [12], Frazier and Roudenko introduced the homogeneous matrix-weighted Triebel-
Lizorkin spaces Ḟs,q

p (W) for s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and obtained the Littlewood-Paley characterizations
of matrix-weighted Lebesgue spaces Lp(W) and matrix-weighted Sobolev space Lp

k(W) for k ∈N, 1 < p < ∞.
In [33], Volberg also introduced an analogue condition for the matrix class A∞. In [3–5], Bu, Hytönen,
Yang, Yuan studied the matrix weighted Besov-type and Triebel-Lizorkin-type spaces. Specifically, they
introduced a new concept of theAp-dimension d̃, which is useful to the proof of main results of this paper.
In [7], Bu, Hytönen, Yang, Yuan obtained several new characterizations ofAp,∞-matrix weights. In [8], Bu
et al. studied the inhomogeneous Besov-type and Triebel–Lizorkin-type spaces with the result in [7]. In
[2], Bu et al. introduced the matrix weighted Hardy spaces and obtained characterizations of these spaces
via maximal function, atom. As applications, they established the finite atomic characterization of matrix
weighted Hardy spaces and obtained a criterion on the boundedness of sublinear operators from matrix
weighted Hardy spaces to any γ-quasi-Banach space (γ ∈ (0, 1]). The boundedness of Calderón-Zygmund
operators on matrix weighted Hardy spaces was also obtained. In [23], Li, Yang and Yuan introduced
the matrix-weighted Besov-Triebel-Lizorkin spaces with logarithmic smoothness and characterize these
spaces via Peetre-type maximal functions. In [37, 38], Zhao et al. introduced (generalized grand) Besov-
Bourgain-Morrey spaces and explored various real-variable properties of these spaces, which are a bridge
connecting Bourgain-Morrey spaces with amalgam-type spaces. Moreover, some real-variable properties
and boundedness of classical operators were studied in their article. For many other results on the matrix
classAp and matrix weighted function spaces, we refer the reader to [6, 10–13, 28, 29, 34].

Bourgain [1] introduced a special case of Bourgain-Morrey spaces to study the Stein-Tomas (Strichartz)
estimate. In [18], Hatano, Nogayama, Sawano, and Hakim researched the Bourgain-Morrey spaces from the
viewpoints of harmonic analysis and functional analysis. In [21], Hu, Li and Yang introduced the Triebel-
Lizorkin-Bourgain-Morrey spaces which connect Bourgain-Morrey spaces and global Morrey spaces.

Motivated by above literature, we will introduce matrix weighted Bourgain-Morrey spaces and research
precompact sets in these spaces. The paper is organized as follows. In Section 2, dyadic cubes, the matrix
class Ap, Ap-dimension d̃, matrix weighted Bourgain-Morrey spaces are given. The first result lies in
Section 3. Specifically, a sufficient condition for totally bounded set in matrix weighted spaces Mt,r

p (W) with
1 ≤ p < r < ∞ or 1 ≤ p ≤ t < r = ∞ is obtained in Theorem 3.2. As a application, we get a criterion for
totally bounded set in degenerate Bourgain-Morrey spaces with matrix weight. The second result (Theorem
4.1) is replacing the translation operator by the average operator. Note that the translation operator is not
bounded on Lp(W) and Mt,r

p (W) in general. We prove that dyadic average operator is bounded on matrix
weighted Bourgain-Morrey spaces with some conditions in Theorem 4.6. Using this result, we obtain the
Kolmogorov-Riesz compactness theorem in matrix weighted Bourgain-Morrey spaces. These results are
new even for the unweighted Bourgain-Morrey spaces.

Throughout this paper, we let c,C denote constants that are independent of the main parameters involved
but whose value may differ from line to line. LetN = {1, 2, 3, . . .} andN0 = {0, 1, 2, 3, . . .}. LetZ be the set of
integers. Let χE be the characteristic function of the set E ⊂ Rn. By A ≲ B we mean that A ≤ CB with some
positive constant C independent of appropriate quantities. By A ≈ B, we mean that A ≲ B and B ≲ A.

2. Preliminaries

For j ∈ Z, m ∈ Zn, let Q j,m :=
∏n

i=1[2− jmi, 2− j(mi + 1)). For a cube Q, ℓ(Q) stands for the length of cube
Q. We denote by D the the family of all dyadic cubes in Rn, while D j is the set of all dyadic cubes with
ℓ(Q) = 2− j, j ∈ Z. Let xQ be the lower left corner of Q ∈ D. For λ > 0, let λQ be the cube with the same
center of Q and the edge length λℓ(Q). For k ∈ N, let kpaQ be the k-th dyadic parent of Q, which is the
dyadic cube inD satisfying Q ⊂ kpaQ and ℓ(kpaQ) = 2kℓ(Q).

2.1. Matrix weights

First, we recall some basic concepts and results from the theory of matrix weights.
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For any d,n ∈ N, denote by Md,n(C) the set of all d × n complex-valued matrices. Md,d(C) is simply
denoted by Md(C). The zero matrix in Md,n(C) (or Md(C)) is denoted by Od,n (or Od). Denote by A∗ the
conjugate transpose of A ∈ Md,n(C). A matrix A ∈ Md(C) is called a Hermitian matrix if A = A∗ and
is called a unitary matrix if A∗A = Id where Id is the identity matrix. We denote a diagonal matrix by
diag(λ1, . . . , λd) = diag(λi).

For a vector x ∈ Cd, let |x| = (
∑d

i=1 |xi|
2)1/2. For 1 ≤ p < ∞, let |x|p = (

∑d
i=1 |xi|

p)1/p. For p = ∞, let
|x|∞ = max(x1, . . . , xd). In the finite dimension space, the norms are equivalent. That is, for 1 ≤ p < q ≤ ∞,

|x|q ≤ |x|p ≤ d1/p
|x|∞ ≤ d1/p

|x|q. (1)

For A ∈Md(C), let

∥A∥ := sup
z⃗∈Cd,|⃗z|=1

∣∣∣Az⃗
∣∣∣ .

We say that a matrix A ∈Md(C) is positive definite if, for any x⃗ ∈ Cd
\{⃗0}, z⃗∗Az⃗ > 0.And a matrix A ∈Md(C)

is called nonnegative definite if, for any x⃗ ∈ Cd, z⃗∗Az⃗ ≥ 0.
From [20, Theorem 4.1.4], any nonnegative definite matrix is always Hermitian. Hence any nonnegative

definite matrix is self-adjoint.
Let A ∈ Md(C) be a positive definite matrix and have eigenvalues {λi}

d
i=1. From [20, Theorem 2.5.6(c)],

there exists a unitary matrix U ∈Md(C) such that

A = U diag (λ1, . . . , λd)U∗. (2)

Moreover, by [20, Theorem 4.1.8], we find {λi}
d
i=1 ⊂ (0,∞). The following definition is based on these

conclusions.

Definition 2.1. Let A ∈Md(C) be a positive definite matrix with positive eigenvalues {λi}
d
i=1. For any α ∈ R, define

Aα := U diag
(
λα1 , . . . , λ

α
m

)
U∗, (3)

where U is the same as in (2).

Remark 2.2. From [19, p. 408], we obtain that Aα is independent of the choices of the order of {λi}
m
i=1 and U, and

hence Aα is well defined.

Now, we recall some concepts of matrix wights.

Definition 2.3. A matrix-valued function W : Rn
→Md(C) is called a matrix weight if W satisfies that

(i) for any x ∈ Rn, W(x) is nonnegative definite;
(ii) for almost every x ∈ Rn, W(x) is invertible;
(iii) the entries of W is locally integrable.

Definition 2.4. Let p ∈ (0,∞), W be a matrix weight. Suppose that E ⊂ Rn is a bounded measurable set satisfying
0 < |E| < ∞. Then the matrix AE ∈Md(C) is called a reducing operator of order p for W if AE is positive definite and,
for any z⃗ ∈ Cd,

∣∣∣AEz⃗
∣∣∣ ≈ (

1
|E|

∫
E

∣∣∣∣W 1
p (x)⃗z

∣∣∣∣p dx
) 1

p

, (4)

where the positive equivalence constants depend only on d and p.

Next we recall the concepts of scalar weight class Ap (see [14, Definitions 7.1.1, 7.1.3]) and matrix weight
classAp (see [27] for 1 < p < ∞, [11] for 0 < p ≤ 1).
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Definition 2.5. A weight ω is a nonnegative locally integrable function on Rn such that 0 < ω(x) < ∞ for almost
all x ∈ Rn.

A weight ω is called an A1 weight ifM(ω)(x) ≤ cω(x) for almost all x ∈ Rn whereM is the Hardy-Littlewood
maximal operator.

For 1 < p < ∞, a weight ω is said to be of class Ap if

sup
Q cubes inRn

(
1
|Q|

∫
Q
ω(x)dx

) (
1
|Q|

∫
Q
ω(x)−1/(p−1)dx

)p−1

< ∞.

For 1 < p < ∞, a matrix weight W ∈ Ap(Rn) if and only if

sup
Q

1
|Q|

∫
Q

(
1
|Q|

∫
Q
∥W1/p(x)W−1/p(y)∥p

′

dy
)p/p′

dx < ∞,

where p′ = p/(p − 1) is the conjugate index of p, and the supremum is taken over all cubes Q ⊂ Rn.
For 0 < p ≤ 1, a matrix weight W ∈ Ap(Rn) if and only if

sup
Q

ess sup
y∈Q

1
|Q|

∫
Q
∥W1/p(x)W−1/p(y)∥pdx < ∞.

We writeAp := Ap(Rn) for brevity.

Given any matrix weight W and 0 < p < ∞, there exists (see e.g., [13, Proposition 1.2] for p > 1 and [11,
p.1237] for 0 < p ≤ 1) a sequence {AQ}Q∈D of positive definite d × d matrices such that

c1|AQ y⃗| ≤
( 1
|Q|

∫
Q
|W1/p(x)y⃗|pdx

)1/p
≤ c2|AQ y⃗|,

with positive constants c1, c2 independent of y⃗ ∈ Cd and Q ∈ D. In this case, we call {AQ}Q∈D a sequence of
reducing operators of order p for W.

Definition 2.6. A matrix weight W is called a doubling matrix weight of order p > 0 if the scalar measures
wy⃗(x) = |W1/p(x)y⃗|p, for y⃗ ∈ Cd, are uniformly doubling: there exists c > 0 such that for all cubes Q ⊂ Rn and all
y⃗ ∈ Cd,∫

2Q
wy⃗(x)dx ≤ c

∫
Q

wy⃗(x)dx.

If c = 2β is the smallest constant for which this inequality holds, we say that β is the doubling exponent of W.
From [17, Proposition 2.10], we know that β is always not less than n.

In [3], Bu, Hytönen, Yang and Yuan introduced theAp-dimension of matrix weights, which will be used
in Theorems 4.6 and 4.7.

Definition 2.7. Let 0 < p < ∞, d̃ ∈ R. A matrix weight W has theAp-dimension d̃, denoted by W ∈ Dp,d̃(Rn,Cn),
if there exists a positive constant C such that for any cube Q ⊂ Rn and any i ∈N0,

ess sup
y∈2iQ

1
|Q|

∫
Q

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p

dx ≤ C2id̃, for 0 < p ≤ 1, (5)

or,

1
|Q|

∫
Q

(
1
|2iQ|

∫
2iQ

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p′

dy
)p/p′

dx ≤ C2id̃, for 1 < p < ∞,

where 1/p + 1/p′ = 1.
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We denoteDp,d̃(Rn,Cn) simply byDp,d̃.
The following lemma says that if W ∈ Ap for p ∈ (0,∞), then W ∈ Dp,d̃(Rn,Cn).

Lemma 2.8 (Proposition 2.27, [3]). Let p ∈ (0,∞) and W ∈ Ap. Then there exists d̃ ∈ [0,n) such that W has the
Ap-dimension d̃.

Lemma 2.9 (Corollary 2.32, [3]). Let 0 < p < ∞, let W ∈ Ap with theAp-dimension d̃ ∈ [0,n), and let {AQ}cube Q

be the reducing operator of order p for W. (i) If 1 < p < ∞, let W̃ := W−1/(p−1) (which belongs to Ap′ ) with the
Ap′ -dimension ˜̃d. Then there exists a positive constant C such that, for any cubes Q and R of Rn,

∥AQA−1
R ∥ ≤ C max


[
ℓ(R)
ℓ(Q)

]d̃/p

,

[
ℓ(Q)
ℓ(R)

] ˜̃d/p′

[
1 +

|xQ − xR|

max(ℓ(Q), ℓ(R))

]d̃/p+ ˜̃d/p′

.

(ii) If 0 < p ≤ 1, then there exists a positive constant C such that, for any cubes Q and R of Rn,

∥AQA−1
R ∥ ≤ C max

[ ℓ(R)
ℓ(Q)

]d̃/p

, 1

 [1 + |xQ − xR|

max(ℓ(Q), ℓ(R))

]d̃/p

.

2.2. Matrix weighted Bourgain-Morrey spaces
Definition 2.10. Let 0 < p < ∞, d ∈ N and W : Rn

→ Md(C) be a matrix weight. The space Lp
loc(W) collects all

measurable functions f⃗ : Rn
→ Cd such that for each compact set K,

∥ f⃗χK∥Lp(W) =

(∫
K
|W1/p(x) f⃗ (x)|pdx

)1/p

< ∞.

Let Ω ⊂ Rn be an open set. The space Lp(W,Ω) collects all measurable functions f⃗ : Ω→ Cd such that

∥ f⃗ ∥Lp(W,Ω) =

(∫
Ω

|W1/p(x) f⃗ (x)|pdx
)1/p

< ∞.

Definition 2.11. LetD = {Q j,k} j∈Z,k∈Zn be the standard dyadic system. Let 0 < p < t < r < ∞ or 0 < p ≤ t < r = ∞.
Let W : Rn

→Md(C) be a matrix weight. Define Mt,r
p (W) as the set of all f⃗ ∈ Lp

loc(W) such that

∥ f⃗ ∥Mt,r
p (W) :=

∥∥∥∥∥∥∥∥
W(Q j,k)1/t−1/p

∫
Q j,k

|W1/p(y) f⃗ (y)|pdy

1/p
j∈Z,k∈Zn

∥∥∥∥∥∥∥∥
ℓr

< ∞,

where W(Q j,k) =
∫

Q j,k
∥W(y)∥dy.

Let {AQ}Q∈D be the reducing operator of order p for W. Define Mt,r
p ({AQ}) as the set of all f⃗ ∈ Lp

loc(W) such that

∥ f⃗ ∥Mt,r
p ({AQ}) :=

∥∥∥∥∥∥∥∥
(∥AQ j,k∥

p
|Q j,k|

)1/t−1/p
∫

Q j,k

|W1/p(x) f⃗ (y)|pdy

1/p
j∈Z,k∈Zn

∥∥∥∥∥∥∥∥
ℓr

< ∞.

Remark 2.12. By [3, Lemma 2.11] with M = Im, we conclude that, for any cube Q ⊂ Rn,

∥AQ∥
p
≈

1
|Q|

∫
Q

∥∥∥W1/p(x)
∥∥∥p

dx =
1
|Q|

∫
Q
∥W(x)∥dx =

1
|Q|

W(Q).

Thus Mt,r
p (W) is same with Mt,r

p ({AQ}) in meaning of the equivalent quasi-norms.
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If d = 1,W ≡ 1, Mt,r
p (W) is the classical Bourgain-Morrey space Mt,r

p in [18]. We define the scalar weighted
Bourgain-Morrey space Mt,r

p (ω) by

∥ f ∥Mt,r
p (ω) :=

∥∥∥∥∥∥∥∥
(ω(Q j,k))1/t−1/p

∫
Q j,k

| f (y)|pω(y)dy

1/p
j∈Z,k∈Zn

∥∥∥∥∥∥∥∥
ℓr

< ∞. (6)

That is Mt,r
p (ω) is the case d = 1 of matrix weighted Bourgain-Morrey space Mt,r

p (W).

The following lemma is proved in [25, 31].

Lemma 2.13. Let 1 ≤ p < ∞ and W : Rn
→ Md(C) be a matrix weight. Let Ω ⊂ Rn be an open set. Then matrix

weighted Lebesgue space Lp(W,Ω) is a Banach space.

Theorem 2.14. Let 1 ≤ p < ∞ and W : Rn
→Md(C) be a matrix weight. Then the space Lp

loc(W) is complete.

Proof. Let { f⃗k}∞k=1 be a Cauchy sequence in Lp
loc(W). That is, for any compact set K, any ϵ > 0, there exists

N > 0 such that if j, k > N, ∥( f⃗ j − f⃗k)χK∥Lp(W) < ϵ. Then for any compact set K, { f⃗kχK}
∞

k=1 is a Cauchy sequence

in Lp(W). Since Lp(W) is complete (Lemma 2.13), there exists f⃗χK in Lp(W) such that f⃗kχK → f⃗χK. By the
Fatou lemma, we have

∥ f⃗χK∥Lp(W) ≤ lim inf
k→∞

∥ f⃗kχK∥Lp(W) < ∞.

By the dominated convergence theorem, for j, k > N, we obtain

∥( f⃗ − f⃗k)χK∥Lp(W) = lim
j→∞
∥( f⃗ j − f⃗k)χK∥Lp(W) < ϵ.

Hence f⃗k → f⃗ in Lp
loc(W) and the space Lp

loc(W) is complete.

In what follows, the symbol ↪→ always stands for continuous embedding.

Proposition 2.15. Let W : Rn
→Md(C) be a matrix weight.

(i) If 0 < p < t < r1 < r2 ≤ ∞, then

Mt,r1
p (W) ↪→Mt,r2

p (W).

(ii) If 0 < p1 < p2 < t < r < ∞ or 0 < p1 < p2 ≤ t < r = ∞, then

Mt,r
p2

(W) ↪→Mt,r
p1

(W).

(iii) If 0 < p ≤ t < r = ∞, then

Lt(W) ↪→Mt,r
p (W) ↪→ Lp

loc(W).

Proof. (i) It comes from ℓr1 ↪→ ℓr2 since 0 < r1 < r2 ≤ ∞.
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(ii) It comes from the Hölder inequality. Indeed, for each Q ∈ D,(
1

W(Q)

∫
Q
|W1/p1 (y) f⃗ (y)|p1 dy

)1/p1

=

(
1

W(Q)

∫
Q
|W1/p1−1/p2 (y)W1/p2 (y) f⃗ (y)|p1 dy

)1/p1

≤

(
1

W(Q)

∫
Q
∥W1/p1−1/p2 (y)∥p1 |W1/p2 (y) f⃗ (y)|p1 dy

)1/p1

≤

(
1

W(Q)

∫
Q
∥W1/p1−1/p2 (y)∥p1p2/(p2−p1)dy

)1/p1−1/p2
(

1
W(Q)

∫
Q
|W1/p2 (y) f⃗ (y)|p2 dy

)1/p2

=

(
1

W(Q)

∫
Q
∥W(y)∥dy

)1/p1−1/p2
(

1
W(Q)

∫
Q
|W1/p2 (y) f⃗ (y)|p2 dy

)1/p2

=

(
1

W(Q)

∫
Q
|W1/p2 (y) f⃗ (y)|p2 dy

)1/p2

.

Hence,

∥ f⃗ ∥Mt,r
p1

(W) ≤ ∥ f⃗ ∥Mt,r
p2

(W).

Thus we prove (ii).
(iii) The first embedding comes from the fact that

Lt(W) =Mt,∞
t (W) ↪→Mt,∞

p (W).

For any compact set K ⊂ Rn, there exist at most 2n dyadic cubes Q j such that K ⊂
⋃2n

j=1 Q j. Hence

∥ f⃗χK∥Lp(W) ≤

2n∑
j=1

|Q j|
1/t−1/p

|Q j|
1/t−1/p ∥ f⃗χQ j∥Lp(W) ≤ ∥ f⃗ ∥Mt,∞

P (W)

2n∑
j=1

1
|Q j|

1/t−1/p < ∞.

This shows that Mt,r
p (W) ↪→ Lp

loc(W).

Proposition 2.16. The matrix weighted Bourgain-Morrey space Mt,r
p (W) is a Banach space when 1 ≤ p < t < r < ∞

or 1 ≤ p ≤ t < r = ∞.

Proof. The argument are standard, see, for example, [30, Theorem 2.4]. We only show that Mt,r
p (W) is

complete since others are simple.
Let { f⃗ j}

∞

j=1 be a Cauchy sequence in Mt,r
p (W). By Proposition 2.15, we have that { f⃗ j}

∞

j=1 is also a Cauchy

sequence in Lp
loc(W). Since Lp

loc(W) is complete, there exists a vector function f⃗ in Lp
loc(W) such that f⃗ j → f⃗ .

By the Fatou lemma,

∥ f⃗ ∥Mt,r
p (W) = ∥lim inf

j→∞
f⃗ j∥Mt,r

p (W) ≤ lim inf
j→∞

∥ f⃗ j∥Mt,r
p (W) < ∞.

Thus f⃗ ∈Mt,r
p (W). Therefore,

lim sup
j→∞

∥ f⃗ − f⃗ j∥Mt,r
p (W) ≤ lim sup

j→∞

(
lim inf

k→∞
∥ f⃗k − f⃗ j∥Mt,r

p (W)

)
= 0.

Thus, the sequence { f⃗ j}
∞

j=1 is convergent to f⃗ in Mt,r
p (W).
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Recall that a matrix weight W is almost everywhere invertible. Hereafter, we define w(x) := ∥W−1(x)∥−1

when a matrix weight W is invertible at x ∈ Rn.

Lemma 2.17 (Proposition 3.2,[10]). Let 1 ≤ p < ∞. For a matrix weight W : Rn
→ Md(C), we have 0 < w(x) ≤

∥W(x)∥ < ∞ for a.e. x ∈ Rn. Furthermore, W satisfies a two weight, degenerate ellipticity condition: for ξ ∈ Rd,

w(x)|ξ|p ≤ |W1/p(x)ξ|p ≤ ∥W(x)∥|ξ|p. (7)

Remark 2.18. In [10, Proposition 3.2], it is assumed that ξ ∈ Rd but it also works for ξ ∈ Cd.

Proposition 2.19. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. Let W be a matrix weight and f⃗ , 1⃗ ∈ Mt,r
p (W).

Then ∥ f⃗ − 1⃗∥Mt,r
p (W) = 0 if and only if f⃗ (x) = 1⃗(x) a.e..

Proof. Clearly, if f⃗ (x) = 1⃗(x) a.e., then ∥ f⃗ − 1⃗∥Mt,r
p (W) = 0. Then we apply Lemma 2.17 to prove the converse.

By the degenerate ellipticity condition (7), we have

0 = ∥ f⃗ − 1⃗∥Mt,r
p (W) ≥

∥∥∥∥∥∥∥∥
W(Q j,k)1/t−1/p

∫
Q j,k

| f⃗ (y) − 1⃗(y)|pw(y)dy

1/p
j∈Z,k∈Zn

∥∥∥∥∥∥∥∥
ℓr

.

Since w(y) > 0 a.e., it follows that f⃗ (y) − 1⃗(y) = 0 a.e..

3. Sufficient conditions for precompact sets

Definition 3.1. (i) Suppose that (X, ρ) is a metric space. Let A be a set of X and let ϵ > 0. A set E ⊂ X is called an
ϵ-net for A if every point a ∈ A, there exists a point e ∈ E such that ρ(a, e) < ϵ.

(ii) A set A is called totally bounded if, for each ϵ > 0, it possesses a finite ϵ-net.
(iii) A subset in a topological space is precompact if its closure is compact.

It is well known that in a complete metric space, a set is precompact if and only if it is totally bounded.

Theorem 3.2. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. Let W : Rn
→ Md(C) be a matrix weight. A subset

F ⊂Mt,r
p (W) is totally bounded if the following conditions are valid:

(i) F uniformly vanishes at infinity, that is,

lim
R→∞

sup
f⃗∈F

∥ f⃗χBc(0,R)∥Mt,r
p (W) = 0;

(ii) F is equicontinuous, that is,

lim
b→0

sup
f⃗∈F

sup
y∈B(0,b)

∥ f⃗ − τy f⃗ ∥Mt,r
p (W) = 0. (8)

Here and what follows, τy denotes the translation operator: τy f⃗ (x) := f⃗ (x − y).

Remark 3.3. In this Remark, we will prove that the conditions (i) and (ii) in Theorem 3.2 together imply that the set
F is bounded. Indeed, choose b > 0 such that for all h ∈ Rn, |h| ≤ b, all f⃗ ∈ F ,

∥ f⃗ − τy f⃗ ∥Mt,r
p (W) ≤ 1.

Choose R > 0 such that for all f⃗ ∈ F ,

∥ f⃗χBc(0,R)∥Mt,r
p (W) ≤ 1.
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Fix h with |h| = b. Then for all f⃗ ∈ F , x ∈ Rn, we have

∥ f⃗χB(x,R)∥Mt,r
p (W) ≤ ∥( f⃗ − τh f⃗ )χB(x,R)∥Mt,r

p (W) + ∥τh f⃗χB(x,R)∥Mt,r
p (W)

= ∥( f⃗ − τh f⃗ )χB(x,R)∥Mt,r
p (W) + ∥ f⃗χB(x+h,R)∥Mt,r

p (W)

≤ 1 + ∥ f⃗χB(x+h,R)∥Mt,r
p (W).

Hence, by induction,

∥ f⃗χB(0,R)∥Mt,r
p (W) ≤ N + ∥ f⃗χB(Nh,R)∥Mt,r

p (W).

Now choose N ≥ 1 such that Nb = N|h| > 2R. Then B(Nh,R) ⊂ Bc(0,R). Hence

∥ f⃗ ∥Mt,r
p (W) ≤ ∥ f⃗χB(0,R)∥Mt,r

p (W) + ∥ f⃗χBc(0,R)∥Mt,r
p (W) ≤ N + ∥ f⃗χB(Nh,R)∥Mt,r

p (W) + ∥ f⃗χBc(0,R)∥Mt,r
p (W) ≤ N + 2.

This proves that F is bounded.

Now we begin to show Theorem 3.2.

Proof. Assume that F ⊂ Mt,r
p (W) satisfies (i) and (ii). Given ϵ > 0 small enough, to prove the total

boundedness of F , it suffices to find a finite ϵ-net of F . Denote by Ri := [−2i, 2i)n for i ∈ Z. Then from
condition (i), there exist a positive integer m large enough such that

sup
f⃗∈F

∥ f⃗ − f⃗χRm∥Mt,r
p (W) < ϵ. (9)

Moreover, by condition (ii), there exists a negative integer a such that

sup
f⃗∈F

sup
y∈Ra

∥ f⃗ − τy f⃗ ∥Mt,r
p (W) < ϵ. (10)

There exists a sequence {Q j}
N
j=1 of disjoint cubes inD−a such that Rm =

⋃N
i=1 Q j, where N = 2(m+1−a)n. For any

f⃗ ∈ F and x ∈ Rn, let

Φ( f⃗ )(x) :=

 f⃗Q j := 1
|Q j |

∫
Q j

f⃗ (y)dy, x ∈ Q j, j = 1, 2, . . . ,N,

0⃗, otherwise .

Then for each fixed x ∈ Rn, we have

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗Q j

)∣∣∣∣χQ j (x) =

∣∣∣∣∣∣ 1
|Q j|

∫
Q j

W1/p(x)
(

f⃗ (x) − f⃗ (y)
)

dy

∣∣∣∣∣∣χQ j (x)

≤
1
|Q j|

∫
Q j

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣ dyχQ j (x). (11)
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We split ∥( f⃗ −Φ( f⃗ ))χRm∥Mt,r
p (W) into three parts:

∑
k∈Z

∑
Q∈Dk

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm −Φ( f⃗ )(x)
)∣∣∣∣p dx

)r/p


1/r

≤

∑
k>−a

∑
Q∈Dk

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm − f⃗Q j

)∣∣∣∣p dx
)r/p


1/r

+

 −a∑
k=−m

∑
Q∈Dk

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm −Φ( f⃗ )(x)
)∣∣∣∣p dx

)r/p


1/r

+

 ∑
k<−m

∑
Q∈Dk

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm −Φ( f⃗ )(x)
)∣∣∣∣p dx

)r/p


1/r

=: S1 + S2 + S3.

We first estimate S1. By (11), Jensen’s inequality (p ≥ 1), the Fubini theorem, we have

S1 ≤

∑
k>−a

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

∫
Q

∣∣∣∣∣∣ 1
|Q j|

∫
Q j

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣ dyχQ j (x)

∣∣∣∣∣∣p dx

r/p
1/r

≤

∑
k>−a

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

 1
|Q j|

∫
Q j

∫
Q

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣p dxdy

r/p
1/r

=

∑
k>−a

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

 1
|Q j|

∫
Q

∫
Q j

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣p dydx

r/p
1/r

= 2−an/p

∑
k>−a

∑
Q∈Dk,Q⊂Rm

W(Q)r/t−r/p

∫
Q

∫
x−Q j

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (x − y)
)∣∣∣∣p dydx

r/p
1/r

(12)

where x −Q j := {x − y : y ∈ Q j}. Since x ∈ Q ⊂ Q j for some j ∈ {1, 2, . . . ,N}, we have x −Q j ⊂ Ra. Hence by
(10), we obtain

(12) ≤ 2−an/p
|Q j|

1/p sup
y∈Ra

∑
k>−a

∑
Q∈Dk,Q⊂Rm

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)( f⃗ (x) − f⃗ (x − y))
∣∣∣∣p dx

)r/p


1/r

≤ ϵ.

As for S2, for each Q ∈ Dk where k = −m,−m+1, . . . ,−a, there are 2(−k−a)n cubes Q j ∈ D−a such that ∪Q j = Q.
Denote by Q jℓ , ℓ = 1, 2, . . . , 2(−k−a)n these cubes. Then by (11), Jensen’s inequality (p ≥ 1), and the Fubini
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theorem, we obtain

S2 =


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

∫
Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm − f⃗Q jℓ

)∣∣∣∣p dx


r/p

1/r

≤


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

∫
Q jℓ

∣∣∣∣∣∣ 1
|Q jℓ |

∫
Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣ dy

∣∣∣∣∣∣p dx


r/p

1/r

≤


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

1
|Q jℓ |

∫
Q jℓ

∫
Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣p dxdy


r/p

1/r

= 2−an/p


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

∫
Q jℓ

∫
Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (y)
)∣∣∣∣p dydx


r/p

1/r

= 2−an/p


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

∫
Q jℓ

∫
x−Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (x − y)
)∣∣∣∣p dydx


r/p

1/r

(13)

where x −Q jℓ := {x − y : y ∈ Q jℓ }. Note that x −Q jℓ ⊂ Ra when x ∈ Q jℓ . By (10), we have

(13) ≤ 2−an/p2an/p sup
y∈Ra


−a∑

k=−m

∑
Q∈Dk ,Q⊂Rm

W(Q)r/t−r/p

2(−k−a)n∑
ℓ=1

∫
Q jℓ

∣∣∣∣W1/p(x)
(

f⃗ (x) − f⃗ (x − y)
)∣∣∣∣p dx


r/p

1/r

≤ ϵ.

As for S3, for each set Dk, there are only 2n cubes Q ∈ Dk such that Q ∩ Rm , ∅. We denote by Qℓ,
ℓ = 1, 2, . . . , 2n these cubes. And for each cube Qℓ, there are 2(m−a)n cubes Q j ∈ D−a such that ∪ jQ j = Qℓ.
Then

S3 =

 ∑
k<−m

2n∑
ℓ=1

W(Qℓ)r/t−r/p
(∫

Qℓ

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm −Φ( f⃗ )(x)
)∣∣∣∣p dx

)r/p


1/r

=


∑

k<−m

2n∑
ℓ=1

W(Qℓ)r/t−r/p

2(m−a)n∑
j=1

∫
Q j

∣∣∣∣W1/p(x)
(

f⃗ (x)χRm − f⃗Q j

)∣∣∣∣p dx


r/p

1/r

.

Similarly as S2, from (11), Jensen’s inequality (p ≥ 1), the Fubini theorem, and (10), we get that S3 ≤ ϵ.
Together with the estimates of S1, S2, S3, we obtain∑

k∈Z

∑
Q∈Dk

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)( f⃗ (x)χRm −Φ( f⃗ )(x))
∣∣∣∣p dx

)r/p


1/r

≤ 3ϵ. (14)

Note that

∥ f⃗ −Φ( f⃗ )∥Mt,r
p (W) ≤ ∥( f⃗ −Φ( f⃗ ))χRm∥Mt,r

p (W) + ∥( f⃗ −Φ( f⃗ ))χRc
m∥Mt,r

p (W) = ∥( f⃗ −Φ( f⃗ ))χRm∥Mt,r
p (W) + ∥ f⃗χRc

m∥Mt,r
p (W).

Thus via (9) and (14), we have

sup
f⃗∈F

∥ f⃗ −Φ( f⃗ )∥Mt,r
p (W) ≤ 4ϵ. (15)
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From (15), it suffices to show that Φ(F ) is totally bounded in Mt,r
p (W).

From Remark 3.3, we have

sup
f⃗∈F

∥Φ( f⃗ )∥Mt,r
p (W) ≤ sup

f⃗∈F

∥Φ( f⃗ ) − f⃗ ∥Mt,r
p (W) + sup

f⃗∈F

∥ f⃗ ∥Mt,r
p (W) < ∞.

Thus, for any f⃗ ∈ F ,

|W1/p(x)Φ( f⃗ )(x)| < ∞ a.e. x ∈ Rn. (16)

Since W is a matrix weight, by (i), (ii) of Definition 2.3, we have for almost everywhere x ∈ Rn, W(x) is a
positive definite matrix. Therefore, we obtain

|Φ( f⃗ )(x)| < ∞ a.e. x ∈ Rn. (17)

which implies | f⃗Q j | < ∞, j = 1, 2, . . . ,N. From this and the entries of W is locally integrable, we see that Φ is
a map from F to B, a finite dimensional Banach subspace of Mt,r

p (W). Note that Φ(F ) ⊂ B is bounded, and
hence is totally bounded. The proof of Theorem 3.2 is complete.

Then we give an application in degenerate Bourgain-Morrey-Sobolev spaces with matrix weights.

Definition 3.4. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. Let W : Rn
→ Mn(C) be a matrix weight and set

the scalar weight ω := ∥W∥. We define the degenerate Bourgain-Morrey-Sobolev spacesW1,p,t,r(W) by the set of all
Lebesgue measurable functions on Rn such that

∥ f ∥W1,p,t,r(W) := ∥ f ∥Mt,r
p (ω) + ∥∇ f ∥Mt,r

p (W) < ∞

where ∇ f = (∂x1 f , . . . , ∂xn f )T is the gradient of f and

∥ f ∥Mt,r
p (ω) :=

∥∥∥∥∥∥∥∥
ω(Q j,k)1/t−1/p

∫
Q j,k

| f (y)|pω(y)dy

1/p
j∈Z,k∈Zn

∥∥∥∥∥∥∥∥
ℓr

,

is the norm of the scalar weighted Bourgain-Morrey space in (6).

Lemma 3.5 (p. 262, [36]). A set F in metric space X is totally bounded if and only if it is Cauchy-precompact, that
is, every sequence has a Cauchy subsequence.

Corollary 3.6. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. Let W : Rn
→ Mn(C) be a matrix weight. A subset

F ⊂W
1,p,t,r(W) is totally bounded if the following conditions are valid:

(i) F uniformly vanishes at infinity, that is,

lim
R→∞

sup
f⃗∈F

∥ f⃗χBc(0,R)∥W1,p,t,r(W) = 0;

(ii) F is equicontinuous, that is,

lim
a→0

sup
f⃗∈F

sup
y∈B(0,a)

∥ f⃗ − τy f⃗ ∥W1,p,t,r(W) = 0.

Proof. Note that F ⊂ W1,p,t,r(W) satisfies conditions (i)-(ii) if and only if F ⊂ Mt,r
p (ω) satisfies conditions

(i)-(ii) of Theorem 3.2 (d = 1) and ∇F := {∇ f : f ∈ F } ⊂ Mt,r
p (W) satisfies (i)-(ii) of Theorem 3.2 (d = n).

Hence by Theorem 3.2, we obtain that both F ⊂ Mt,r
p (ω) and ∇F ⊂ Mt,r

p (W) are totally bounded. Then
Corollary 3.6 follows from Lemma 3.5.
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4. Dyadic average operator conditions for precompact sets

In this section, we give a criterion for precompactness by dyadic average operator. Let F be a subset of
Mt,r

p (W). F is equicontinuous by means of the dyadic average operator if

lim
a→−∞,a∈Z

sup
f⃗∈F

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W) = 0, (18)

where

Ed,a f⃗ (x) :=
∑

Q∈D−a

χQ(x)
|Q|

∫
Q

f⃗ (y)dy. (19)

Recall that xQ is the lower left corner of Q ∈ D. Then for x ∈ Q ∈ D−a

Ed,a f⃗ (x) =
χQ−a,0 (x − xQ)
|Q−a,0|

∫
Q−a,0

f⃗ (y − xQ)dy.

Then we will prove that (8) is stronger than (18). Indeed, suppose that condition (8) holds. For any ϵ > 0,
there exists a cube R with center 0 and side length 2a+1 > 0 such that

sup
f⃗∈F

sup
y∈R
∥ f⃗ − τy f⃗ ∥Mt,r

p (W) < ϵ. (20)

If x, y ∈ Q ∈ D−a, then x − y ∈ R. By Jensen’s inequality (p ≥ 1), Hölder’s inequality (r/p ≥ 1), and (20), we
obtain

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W)

=

∑
Q∈D

W(Q)r/t−r/p
(∫

Q

∣∣∣∣∣∣ 1
|Q−a,0|

∫
Q−a,0

W1/p(x)
(

f⃗ (x) − χQ−a,0 (x − xQ) f⃗ (y − xQ)
)

dy

∣∣∣∣∣∣p dx
)r/p


1/r

≤

∑
Q∈D

W(Q)r/t−r/p
(

1
|Q−a,0|

∫
Q−a,0

∫
Q

∣∣∣∣W1/p(x)
(

f⃗ (x) − χQ−a,0 (x − xQ) f⃗ (y − xQ)
)∣∣∣∣p dxdy

)r/p


1/r

≤

∑
Q∈D

W(Q)r/t−r/p 1
|Q−a,0|

∫
Q−a,0

(∫
Q

∣∣∣∣W1/p(x)
(

f⃗ (x) − χQ−a,0 (x − xQ) f⃗ (y − xQ)
)∣∣∣∣p dx

)r/p

dy


1/r

≤
1

|Q−a,0|
1/r |Q−a,0|

1/r sup
y∈R

∑
Q∈D

W(Q)r/t−r/p
(∫

Q

∣∣∣∣W1/p(x)( f⃗ (x) − f⃗ (x − y))
∣∣∣∣p dx

)r/p


1/r

≤ ϵ,

modified when r = ∞. Hence we prove that (8) is stronger than (18).
Replacing the translation operator by the average operator, we have the following result.

Theorem 4.1. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. Let W : Rn
→ Md(C) be a matrix weight. A subset

F ⊂Mt,r
p (W) is totally bounded if the following conditions are valid:

(i) F is bounded, that is,

sup
f⃗∈F

∥ f⃗ ∥Mt,r
p (W) < ∞;

(ii) F uniformly vanishes at infinity, that is,

lim
R→∞

sup
f⃗∈F

∥ f⃗χBc(0,R)∥Mt,r
p (W) = 0;
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(iii) F is equicontinuous by means of the dyadic average operator, that is, for any

lim
a→−∞,a∈Z

sup
f⃗∈F

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W) = 0.

where Ed,a is same as (19).

Proof. Assume that F ⊂Mt,r
p (W) satisfies (i)-(iii). Given ϵ > 0 small enough, to prove the total boundedness

of F , it suffices to find a finite ϵ-net of F . Denote by Ri := [−2i, 2i)n for i ∈ Z. Then from condition (ii), there
exists a positive integer m large enough such that

sup
f⃗∈F

∥ f⃗ − f⃗χRm∥Mt,r
p (W) < ϵ. (21)

Moreover, by condition (iii), there exists an integer a < 0 such that

sup
f⃗∈F

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W) < ϵ. (22)

There exists a sequence {Q j}
N
j=1 of disjoint cubes inD−a such that Rm =

⋃N
i=1 Q j, where N = 2(m+1−a)n. For any

f⃗ ∈ F and x ∈ Rn, let

Φ( f⃗ )(x) :=

 f⃗Q j := 1
|Q j |

∫
Q j

f⃗ (y)dy, x ∈ Q j, j = 1, 2, . . . ,N,

0⃗, otherwise .

Note that for x ∈ Rm,

Φ( f⃗ )(x) = Ed,a f⃗ (x).

Hence via (21) and (22), we have

∥ f⃗ −Φ( f⃗ )∥Mt,r
p (W) ≤ ∥( f⃗ −Φ( f⃗ ))χRm∥Mt,r

p (W) + ∥( f⃗ −Φ( f⃗ ))χRc
m∥Mt,r

p (W) = ∥( f⃗ − Ed,a f⃗ )χRm∥Mt,r
p (W) + ∥ f⃗χRc

m∥Mt,r
p (W)

≤ ∥( f⃗ − Ed,a f⃗ )∥Mt,r
p (W) + ϵ ≤ 2ϵ. (23)

From (23), it suffices to show that Φ(F ) is totally bounded in Mt,r
p (W). And we have proved that Φ(F ) is

totally bounded in Mt,r
p (W) in Theorem 3.2. Thus the proof of Theorem 4.1 is complete.

Lemma 4.2 (Lemma 4.5, [10]). Let 1 ≤ p < ∞ and W ∈ Ap. Then ∥W∥ and ∥W−1
∥
−1 are scalar Ap weights.

The following is a vector-valued extension of the Lebesgue differentiation theorem on matrix weighted
spaces Mt,r

p (W). For any cube Q, f⃗ ∈ L1
loc(Rn), define

EQ( f⃗ )(x) =
1
|Q|

∫
Q

f⃗ (y)dy.

Theorem 4.3. Let 1 ≤ p < t < r < ∞ or 1 ≤ p ≤ t < r = ∞. If W ∈ Ap, then for any f⃗ ∈Mt,r
p (W),

lim
ℓ(Q)→0

∣∣∣∣EQ f⃗ (x) − f⃗ (x)
∣∣∣∣ = 0 a.e. x ∈ Rn.
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Proof. First, for any f⃗ = ( f1, f2, . . . , fd)T
∈Mt,r

p (W), it suffices to show that fi ∈ L1
loc(Rn) for each i = 1, 2, . . . , d.

Since W ∈ Ap, then by (3)

| f⃗ |p = |W−1/pW1/p f⃗ |p ≤ ∥W−1/p
∥

p
|W1/p f⃗ |p = ∥W−1

∥|W1/p f⃗ |p.

It follows that

| f⃗ |p∥W−1
∥
−1
≤ |W1/p f⃗ |p.

From Lemma 4.2, we conclude that ∥W−1
∥
−1 is a scalar Ap weight, hence | f⃗ | ∈ L1

loc(Rn). Indeed, since any
compact set K ⊂ Rn can be contained in a finite set of dyadic cubes, it suffices to show that for any Q ∈ D,
| f⃗ | ∈ L1(Q). By Hölder’s inequality, we have∫

Q
| f⃗ (x)|dx =

∫
Q
| f⃗ (x)|∥W−1(x)∥−1/p

∥W−1(x)∥1/pdx ≤
(∫

Q
| f⃗ (x)|p∥W−1(x)∥−1dx

)1/p (∫
Q
∥W−1(x)∥p

′/pdx
)1/p′

≤ CQ,W,p

(∫
Q
|W1/p(x) f⃗ (x)|pdx

)1/p

≲ ∥ f⃗ ∥Mt,r
p (W) < ∞.

Hence, fi ∈ L1
loc(Rn) for each i = 1, 2, . . . , d. By the classical Lebesgue differentiation theorem, for each

1 ≤ i ≤ d, we have

lim
ℓ(Q)→0

∣∣∣EQ fi(x) − fi(x)
∣∣∣ = 0 a.e. x ∈ Rn.

Theorem 4.3 comes from the fact that for any x ∈ Rn,∣∣∣∣EQ f⃗ (x) − f⃗ (x)
∣∣∣∣ ≤ d1/2 max

i

∣∣∣EQ fi(x) − fi(x)
∣∣∣ .

Thus the proof is finished.

Next we need the boundedness of dyadic average operator. Given any collection Q of pairwise disjoint
cubes Q ⊂ Rn, define the averaging operator AQ by

AQ f⃗ (x) =
∑
Q∈Q

χQ(x)
|Q|

∫
Q

f⃗ (y)dy.

Lemma 4.4 (Proposition 4.7,[10]). Let 1 ≤ p < ∞. Let W : Rn
→ Md(C) be a matrix weight. Then W ∈ Ap if

and only it satisfies

∥AQ f⃗ ∥Lp(W) ≤ Cn,d,p,W∥ f⃗ ∥Lp(W).

Remark 4.5. In the sequel, let p, p′,W, d̃, W̃, ˜̃d have the same meaning as in Lemma 2.9. Let

β̃ :=

n, if p = 1,
n + ˜̃dp/p′, if 1 < p < ∞.

(24)

Then we claim that for j + a ∈N0,

W(( j + a)paQ) ≲

2( j+a)nW(Q), if p = 1,

2( j+a)(n+ ˜̃dp/p′)W(Q), if 1 < p < ∞.
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Indeed, when p = 1, by Lemma 2.9, we have

W(( j + a)paQ) ≈ |( j + a)paQ|∥A( j+a)paQ∥ ≲ 2( j+a)n
|Q|∥AQ∥ ≈ 2( j+a)nW(Q).

When p ∈ (1,∞), by Lemma 2.9, we obtain

W(( j + a)paQ) ≈ |( j + a)paQ|∥A( j+a)paQ∥
p ≲ 2( j+a)n

|Q|2( j+a) ˜̃dp/p′
∥AQ∥

p
≈ 2( j+a)(n+ ˜̃dp/p′)W(Q).

Thus we prove the claim. Now we show this estimate is better than W(( j + a)paQ) ≲ 2( j+a)βW(Q). Indeed, when
p = 1, it is obvious since β ≥ n. If p > 1, from [3, Lemma 2.11 and Corollary 2.16], for i ∈N0, we deduce that

∥AipaQA−1
Q ∥

p
≈

1
|ipaQ|

∫
ipaQ

∥∥∥W1/p(x)A−1
Q

∥∥∥p
dx ≈

1
|ipaQ|

∫
ipaQ

(
1
|Q|

∫
Q

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p′

dy
)p/p′

dx.

From [12, Lemma 2.2], we have ∥AipaQA−1
Q ∥

p ≲ 2i(β−n). Hence

1
|ipaQ|

∫
ipaQ

(
1
|Q|

∫
Q

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p′

dy
)p/p′

dx ≲ 2i(β−n).

This, together with [3, Proposition 2.28(ii)], further implies that W−1/(p−1)
∈ Ap′ has the Ap′ -dimension ˜̃d :=

(β − n)/(p − 1) and hence

n + ˜̃dp/p′ = β.

Hence we show this estimate is better than W(( j + a)paQ) ≲ 2( j+a)βW(Q).

Theorem 4.6. Let W ∈ Ap has theAp-dimension d̃ ∈ [0,n). Let β̃ be the same with (24).
(i) Let 1 ≤ p < t < r < ∞ . If −nr/p + d̃r/p + n − β̃r(1/t − 1/p) < 0, then for each a ∈ Z, Ed,a is a bounded

operator on matrix weighted Bourgain-Morrey spaces Mt,r
p (W).

(ii) Let 1 ≤ p ≤ t < r = ∞ . If d̃/p − n/p − β̃(1/t − 1/p) ≤ 0, then for each a ∈ Z, Ed,a is a bounded operator on
matrix weighted Bourgain-Morrey spaces Mt,r

p (W).

Proof. (i) For a fixed a ∈ Z, we have

∥Ed,a f⃗ ∥Mt,r
p (W) ≤

∑
j≤−a

∑
Q∈D j

W(Q)r/t−r/p
(∫

Q
|W1/p(x)Ed,a f⃗ (x)|pdx

)r/p


1/r

+

∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p
(∫

Q
|W1/p(x)Ed,a f⃗ (x)|pdx

)r/p


1/r

=: S1 + S2.

By Lemma 4.4, we obtain

S1 ≤ Cn,d,p,W

∑
j≤−a

∑
Q∈D j

W(Q)r/t−r/p
(∫

Q
|W1/p(x) f⃗ (x)|pdx

)r/p


1/r

≲ ∥ f⃗ ∥Mt,r
p (W).

When j > −a, we denote by ( j + a)paQ ∈ D−a the ( j + a)-th dyadic parent of Q ∈ D j. Let {AQ}Q∈D be the
reducing operator of order p for W. By Lemmas 2.9, we have

∥AQA−1
( j+a)paQ∥ ≤ c2( j+a)d̃/p. (25)
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In S2, using (5) and (25) , we have

Sr
2 =

∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p
(∫

Q
|W1/p(x)Ed,a f⃗ (x)|pdx

)r/p

=
∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p

 |Q|
|Q|

∫
Q

∣∣∣∣∣∣W1/p(x)
1

|( j + a)paQ|

∫
( j+a)paQ

f⃗ (y)dy

∣∣∣∣∣∣p dx

r/p

≈

∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p
|Q|r/p

∣∣∣∣∣∣AQ
1

|( j + a)paQ|

∫
( j+a)paQ

f⃗ (y)dy

∣∣∣∣∣∣
r

≲
∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p
|Q|r/p

2( j+a)d̃/p

∣∣∣∣∣∣A( j+a)paQ
1

|( j + a)paQ|

∫
( j+a)paQ

f⃗ (y)dy

∣∣∣∣∣∣
r

≈

∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p
|Q|r/p2( j+a)d̃r/p

 1
|( j + a)paQ|

∫
( j+a)paQ

|W1/p(x)
1

|( j + a)paQ|

∫
( j+a)paQ

f⃗ (y)dy|pdx

r/p

=
∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p2− jnr/p2( j+a)d̃r/p

 1
|( j + a)paQ|

∫
( j+a)paQ

|W1/p(x)Ed,a f⃗ (x)|pdx

r/p

=
∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p2− jnr/p2( j+a)d̃r/p2−anr/p

∫
( j+a)paQ

|W1/p(x)Ed,a f⃗ (x)|pdx

r/p

.

Remark that given S ∈ D−a, there are 2( j+a)n cubes R such that ( j + a)paR = S. From Remark 4.5 and
1/t − 1/p < 0, we have

W(Q)1/t−1/p ≲

2−( j+a)n(1/t−1)W(( j + a)paQ)1/t−1, if p = 1,

2−( j+a)(n+ ˜̃dp/p′)(1/t−1/p)W(( j + a)paQ)1/t−1/p, if 1 < p < ∞.

That is W(Q)1/t−1/p ≲ 2−( j+a)β̃(1/t−1/p)W(( j+ a)paQ)1/t−1/p. Hence, by Lemma 4.4 and −nr/p+ d̃r/p+ n− β̃r(1/t−
1/p) < 0, we have

∑
j>−a

∑
Q∈D j

W(Q)r/t−r/p2− jnr/p2( j+a)d̃r/p2−anr/p

∫
( j+a)paQ

|W1/p(x)Ed,a f⃗ (x)|pdx

r/p

=
∑
j>−a

2− jnr/p2( j+a)d̃r/p2−anr/p
∑

Q∈D j

W(Q)r/t−r/p

∫
( j+a)paQ

|W1/p(x)Ed,a f⃗ (x)|pdx

r/p

≤

∑
j>−a

2− jnr/p2( j+a)d̃r/p2−anr/p2( j+a)n2−( j+a)β̃(r/t−r/p)
∑

S∈D−a

W(S)r/t−r/p
(∫

S
|W1/p(x)Ed,a f⃗ (x)|pdx

)r/p

≲ ∥ f⃗ ∥r
Mt,r

p (W)
.

(ii) Fix Q j,k ∈ D. If j ≤ −a, then by Lemma 4.4, we have

W(Q j,k)1/t−1/p

∫
Q j,k

|W1/p(x)Ed,a f⃗ (x)|pdx

1/p

≲W(Q j,k)1/t−1/p

∫
Q j,k

|W1/p(x) f⃗ (x)|pdx

1/p

.
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If j > −a, we denote by ( j + a)paQ j,k ∈ D−a the ( j + a)-th dyadic parent of Q j,k ∈ D j.

W(Q j,k)1/t−1/p

∫
Q j,k

|W1/p(x)Ed,a f⃗ (x)|pdx

1/p

=W(Q j,k)1/t−1/p

 |Q j,k|

|Q j,k|

∫
Q j,k

∣∣∣∣∣∣W1/p(x)
1

|( j + a)paQ j,k|

∫
( j+a)paQ j,k

f⃗ (y)dy

∣∣∣∣∣∣p dx

1/p

≈W(Q j,k)1/t−1/p
|Q j,k|

1/p

∣∣∣∣∣∣AQ j,k

1
|( j + a)paQ j,k|

∫
( j+a)paQ j,k

f⃗ (y)dy

∣∣∣∣∣∣
≲W(Q j,k)1/t−1/p

|Q j,k|
1/p2( j+a)d̃/p

∣∣∣∣∣∣A( j+a)paQ j,k

1
|( j + a)paQ j,k|

∫
( j+a)paQ j,k

f⃗ (y)dy

∣∣∣∣∣∣
≈W(Q j,k)1/t−1/p2− jn/p2( j+a)d̃/p

 1
|( j + a)paQ j,k|

∫
( j+a)paQ j,k

∣∣∣∣∣∣W1/p(x)
1

|( j + a)paQ j,k|

∫
( j+a)paQ j,k

f⃗ (y)dy

∣∣∣∣∣∣p dx

1/p

.

Then by Lemma 4.4 and d̃/p − n/p − β̃(1/t − 1/p) ≤ 0, we obtain

W(Q j,k)1/t−1/p

∫
Q j,k

|W1/p(x)Ed,a f⃗ (x)|pdx

1/p

≲W(Q j,k)1/t−1/p2− jn/p2( j+a)d̃/p

 1
|( j + a)paQ j,k|

∫
( j+a)paQ j,k

∣∣∣∣W1/p(x) f⃗ (x)
∣∣∣∣p dx

1/p

=W(Q j,k)1/t−1/p2− jn/p2( j+a)d̃/p2−an/p

∫
( j+a)paQ j,k

∣∣∣∣W1/p(x) f⃗ (x)
∣∣∣∣p dx

1/p

≲ 2( j+a)(d̃/p−n/p)2−( j+a)β̃(1/t−1/p)W(( j + a)paQ j,k)1/t−1/p

∫
( j+a)paQ j,k

∣∣∣∣W1/p(x) f⃗ (x)
∣∣∣∣p dx

1/p

≲W(( j + a)paQ j,k)1/t−1/p

∫
( j+a)paQ j,k

∣∣∣∣W1/p(x) f⃗ (x)
∣∣∣∣p dx

1/p

.

Finally, take the supremum over the cubes Q j,k ∈ D, we obtain

∥Ed,a f⃗ ∥Mt,∞
p (W) ≲ ∥ f⃗ ∥Mt,∞

p (W).

Hence we finish the proof.

Finally, we have the following Kolmogorov-Riesz compactness theorem for matrix weighted Bourgain-
Morrey spaces.

Theorem 4.7. Let 1 ≤ p < t < r < ∞ . Let W ∈ Ap with theAp-dimension d̃ ∈ [0,n). Let β̃ be the same with (24).
Let −nr/p + d̃r/p + n − β̃r(1/t − 1/p) < 0. A subset F of Mt,r

p (W) is totally bounded if and only if the following
conditions hold:

(i) F is bounded, that is,

sup
f⃗∈F

∥ f⃗ ∥Mt,r
p (W) < ∞;

(ii) F uniformly vanishes at infinity, that is,

lim
R→∞

sup
f⃗∈F

∥ f⃗χBc(0,R)∥Mt,r
p (W) = 0;
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(iii) F is equicontinuous by means of the dyadic average operator, that is, for any

lim
a→−∞,a∈Z

sup
f⃗∈F

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W) = 0.

where Ed,a is same as (19).

Proof. The sufficiency is due to Theorem 4.1. Now we prove the necessity. Assume that F of Mt,r
p (W) is

totally bounded. For any given ϵ > 0, there exists { f⃗k}
N0
k=1 ⊂ F such that { f⃗k}

N0
k=1 is an ϵ-net of F , that is, for

any f⃗ ∈ F , there exists f⃗k, k ∈ {1, 2, . . . ,N0} such that ∥ f⃗ − f⃗k∥Mt,r
p (W) < ϵ.

Clearly, (i) is true.
For any ϵ > 0 and k ∈ {1, 2, . . . ,N0}, since r < ∞, there exists Rk > 0 such that

∥ f⃗kχBc(0,Rk)∥Mt,r
p (W) < ϵ.

Taking R = maxk∈{1,...,N0}{Rk}, we have ∥ f⃗kχBc(0,R)∥Mt,r
p (W) < ϵ. Then for any f⃗ ∈ F ,

∥ f⃗χBc(0,R)∥Mt,r
p (W) ≤ ∥( f⃗ − f⃗k)χBc(0,R)∥Mt,r

p (W) + ∥ f⃗kχBc(0,R)∥Mt,r
p (W) < 2ϵ.

Thus we prove that

lim
R→∞

sup
f⃗∈F

∥ f⃗χBc(0,R)∥Mt,r
p (W) = 0.

Therefore, we prove that F satisfies condition (ii).
As for (iii), for each 1 ≤ k ≤ N0, by Theorem 4.6, we have for each a ∈ Z,

∥ f⃗k − Ed,a f⃗k∥Mt,r
p (W) ≤ (1 + c)∥ f⃗k∥Mt,r

p (W).

Thus using the dominated convergence theorem to obtain that there exists a0 ∈ Z such that for any a ≤ a0,

max
1≤k≤N0

∥ f⃗k − Ed,a f⃗k∥Mt,r
p (W) < ϵ.

Now if a ≤ a0, then

∥ f⃗ − Ed,a f⃗ ∥Mt,r
p (W) ≤ ∥Ed,a f⃗ − Ed,a f⃗k∥Mt,r

p (W) + ∥Ed,a f⃗k − f⃗k∥Mt,r
p (W) + ∥ f⃗k − f⃗ ∥Mt,r

p (W)

≤ c∥ f⃗ − f⃗k∥Mt,r
p (W) + ϵ + ϵ ≲ ϵ.

Then the proof is complete.

Remark 4.8. Theorem 4.7 is not true for 1 < p < t < r = ∞. Indeed, let d = 1,W ≡ 1, 0 < p < t < r = ∞. Let
f (x) = |x|−n/t. Then

∥ f ∥Mt,∞
p
= sup

Q∈D
|Q|1/t−1/p

(∫
Q
|y|−np/tdy

)1/p

≈ 1.

Let f j = χB(0,2 j) f for j ∈ N. Note that f and f j are radial and symmetric functions. Let x = (x1, 0, . . . , 0) where
x1 = 2 j + 2 × 2 j. Let s = x1/10 . Then B(x, s) ⊂ B(0, 2 j)c. Then

∥ f − f j∥Mt,∞
p
≥ cs−n(1/t−1/p)

(∫
B(x,s)
|y|−np/tdy

)1/p

≥ cs−n(1/t−1/p)
(∫

|x|+|s|

|x|−|s|
η−np/tηn−1dη

)1/p

= c
(
|x|
10

)−n(1/t−1/p) ((
1 +

1
10

)n−np/t

−

(
1 −

1
10

)n−np/t)1/p

|x|n(1/t−1/p)

= c > 0.

This shows that the totally bounded set F = { f } of Mt,∞
p is not uniformly vanishes at infinity.
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