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aFaculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11,
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Abstract. The Sturm-Liouville-Stockwell transform (SLST) is a novel addition to the class of Stockwell
transforms, which has gained a respectable status in the realm of time-frequency signal analysis within a
short span of time. Knowing the fact that the study of the time-frequency analysis is both theoretically
interesting and practically useful, this article aims to explore two other aspects of time-frequency analysis
associated with SLST, namely spectral analysis associated with concentration operators and spectrogram
analysis.

1. Introduction

The Fourier transform stands out as a significant discovery in mathematical sciences, that plays a
crucial role in modern scientific and technological advancements. In signal processing, extensive research
has utilized the Fourier transform to analyze stationary signals or processes with statistically invariant
properties over time. However, many signals exhibit non-stationary characteristics, requiring a time-
frequency analysis for a comprehensive representation.

Although, Fourier transforms have many successful applications that fascinated the mathematical,
physical and engineering communities over decades, they still have numerous shortcomings. One of the
significant disadvantages of the Fourier transforms is that they do not give any information about the
occurrence of the frequency component at a particular time. They only enable us to analyse the signals
either in time domain or frequency domain, but not simultaneously in both domains [12, 33]. A suitable
redress of these limitations was given by Gabor [20] in the form of windowed Fourier transform using a
Gaussian distribution function as a window function in order to construct efficient time-frequency localized
expansions of finite energy signals f ∈ L2(R) as

V1( f )(ξ, b) :=
∫
R

f (x)1(x − b)e−iξxdx, ξ, b ∈ R.
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The spectral contents of non-transient signals in localized neighbourhoods of time can be analyzed. This
astonishing feature of the Stockwell transform provides the local characteristics of the Fourier transform
with a time resolution equal to the size of the window. The Stockwell transform (ST), also known as the short-
time Fourier transform (STFT), see [5, 13], marked a breakthrough in time-frequency analysis. This method
involves decomposing non-transient signals using time and frequency-shifted basis functions, termed
Stockwell window functions. The ST, with its clear resemblance to the classical Fourier transform, has
gained considerable attention in the past few decades. Soon after its inception in quantum mechanics, the
Stockwell transform profound influenced diverse branches of science and engineering including harmonic
analysis, signal and image processing, pseudo-differential operators, sampling theory, wave propagation,
quantum optics, geophysics, astrophysics, medicine [7, 20, 21, 41], and others. Besides its applications,
the theoretical skeleton of Stockwell transform has likewise been extensively studied and investigated in
other groups including the locally compact Abelian and non-Abelian groups [15, 16, 18], hypergroups [10],
Gelfand pairs [40] and so on. For more about Stockwell transforms and their applications, we allude to
[17, 22, 23]. Many extensions of the Stockwell transform have been proposed in recent years, see for example
[2, 3, 21, 37, 38] and others. Recently, the study of integral transforms in harmonic analysis has known
remarkable development (see [25–27, 29, 30]). Another fundamental tool in time-frequency analysis is the
Sturm-Liouville-Stockwell transform (SLST), which is the focus of this paper.

We consider the Sturm-Liouville operator defined on R∗+ by

∆ :=
d2

dx2 +
A′(x)
A(x)

d
dx
,

where A is a nonnegative function satisfying certain conditions. This operator is the goal of many works in
harmonic analysis [4, 8, 28, 39, 44]. Specifically, we consider the Sturm-Liouville transform (SLT)

F ( f )(λ) :=
∫
R+

φλ(x) f (x)A(x)dx, λ ∈ R+,

where φλ is the Sturm-Liouville function given in Section 2 below. The SLT can be considered as a
generalization of certain generalized Fourier transforms [2, 19, 21, 31]. Many results have already been
demonstrated for the Sturm-Liouville transform F (see [6, 24, 34–38]).

The Sturm-Liouville function φλ satisfies the product formula (see [8, 39])

φλ(x)φλ(y) =
∫
R+

φλ(z)w(x, y, z)A(z)dz, for x, y ∈ R+,

where w(x, y, .) is a positive measurable function on R+, with support in [|x − y|, x + y].
We introduce the Sturm-Liouville translation operators for f ∈ L2(R+,A(z)dz) by

τy f (x) :=
∫
R+

f (z)w(x, y, z)A(z)dz, x, y ∈ R+.

Let 1 ∈ L2(R+, dt
2π|c(t)|2 ), where c(t) is the Harish-Chandra function defined in Section 2. The modulation

1y of 1 by y ∈ R+ is defined by

1y := F
(√
τy|F−1(1)|2

)
,

where F−1 is the inverse of the transform F .
Let 1 ∈ L2(R+, dt

2π|c(t)|2 ). The Sturm-Liouville-Stockwell transform (see [37, 38]) is the mapping S1 defined

for f ∈ L2(R+, dt
2π|c(t)|2 ) by

S1( f )(λ, y) =
∫
R+

f (t)σλ1y(t)
dt

2π|c(t)|2
, λ, y ∈ R+,
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where σλ is the operator defined by

F−1(σλ f )(x) = φλ(x)F−1( f )(x).

In this paper, we continue the study of some harmonic analysis problems associated with the Sturm-
Liouville-Stockwell transform started in [37, 38]. The aim of this paper is to explore some topics of
time-frequency analysis associated with SLST, viz, the spectral analysis for the concentration operators and
the spectrogram analysis.

Motivated by Wong’s approaches, the aim of the first part of this paper is to study the boundedness
and compactness of Toeplitz operators associated with SLST. Our second endeavour is to study the spectral
analysis associated with the generalized concentration operator. In particular, we introduce and we study
the spectrogram analysis associated with SLST.

The theory of Toeplitz operators was initiated by Daubechies in [11], developed by Wong [42, 43]. Nowa-
days, Toeplitz operators have found many applications in time-frequency analysis, differential equation
theory, quantum mechanics. Arguing from this point of view, many works have been done on them, we
refer in particular to the article of Balazs [1], (see also [9, 14, 23, 43]).

The paper is organized as follows. In Section 2, we recall some results about the Sturm-Liouville-
Stockwell transform SLST. In Section 3, we recall some boundedness and compactness results for the
localization and concentration operators associated with SLST. Section 4 is devoted to introduce and study
the boundedness and compactness of the Toeplitz operators associated with SLST. Next, in Section 5, we
study the spectrogram analysis associated with SLST. In the last section, we summarize the obtained results
and we describe the future work.

2. Sturm-Liouville-Stockwell transform (SLST)

We consider the second-order differential operator ∆ defined on R∗+ by

∆ :=
d2

dx2 +
A′(x)
A(x)

d
dx
,

where
A(x) = x2α+1B(x), α > −1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover, we assume that
A satisfies the following conditions:

(i) A is increasing and lim
x→∞

A(x) = ∞.

(ii)
A′

A
is decreasing and lim

x→∞

A′(x)
A(x)

= 2ρ ≥ 0.

(iii) There exists a constant δ > 0, such that

A′(x)
A(x)

= 2ρ + e−δxD(x), if ρ > 0,

A′(x)
A(x)

=
2α + 1

x
+ e−δxD(x), if ρ = 0,

where D is an infinitely differentiable function on R∗+, bounded and with bounded derivatives on all
intervals [x0,∞), for x0 > 0.
This operator was studied in [8, 39], and the following results have been established:

(I) For all λ ∈ C, the equation

∆(u) = −(λ2 + ρ2)u, u(0) = 1, u′(0) = 0,

admits a unique solution, denoted by φλ, with the following properties:
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• for x ∈ R+, the function λ→ φλ(x) is analytic on C;
• for λ ∈ C, the function x→ φλ(x) is even and infinitely differentiable on R.
(II) For nonzero λ ∈ C, the equation

∆(u) = −(λ2 + ρ2)u,

has a solution Φλ satisfying

Φλ(x) =
eiλx√
A(x)

V(x, λ),

with
lim
x→∞

V(x, λ) = 1.

Consequently there exists a function (spectral function) λ −→ c(λ), such that

φλ(x) = c(λ)Φλ(x) + c(−λ)Φ−λ(x), x ∈ R+,

for nonzero λ ∈ C.
Moreover, there exist positive constants k1, k2, k, such that

k1|λ|
2α+1
≤ |c(λ)|−2

≤ k2|λ|
2α+1,

for all λ such that Imλ ≤ 0 and |λ| ≥ k.
(III) The Sturm-Liouville kernel φλ(x) possesses the following property (see [6, 24]):

|φλ(x)| ≤ 1, λ, x ∈ R+.

Examples. 1) (The Bessel case, see [2, 21]). In this case A(x) = x2α+1, α > −1/2 and ρ = 0. The SL-operator ∆
is the Bessel operator denoted by ∆α:

∆α =
d2

dx2 +
2α + 1

x
d
dx
.

The SL-function φλ(x) is the spherical Bessel function jα(λx).
2) (The Jacobi case, see [19, 31]). In this case A(x) = sinh2α+1(x) cosh2β+1(x), α > β ≥ −1/2 and ρ =

α + β + 1 > 0. The SL-operator ∆ is the Jacobi operator denoted by ∆α,β:

∆α,β =
d2

dx2 + [(2α + 1) coth(x) + (2β + 1) tanh(x)]
d
dx
.

The SL-function φλ(x) is the Jacobi function denoted by ϕ(α,β)
λ (x):

ϕ
(α,β)
λ (x) = 2F1(

1
2

(ρ − iλ),
1
2

(ρ + iλ), α + 1,− sinh2(x)),

where 2F1(a, b, c, z) is the hypergeometric function.
We denote by
• µ the measure defined on R+ by dµ(x) := A(x)dx; and by Lp(µ), p ∈ [1,∞], the space of measurable

functions f on R+, such that

∥ f ∥Lp(µ) :=
[∫
R+

| f (x)|pdµ(x)
]1/p
< ∞, p ∈ [1,∞),

∥ f ∥L∞(µ) := ess sup
x∈R+
| f (x)| < ∞;

• ν the measure defined on R+ by dν(λ) :=
dλ

2π|c(λ)|2
; and by Lp(ν), p ∈ [1,∞], the space of measurable

functions f on R+, such that ∥ f ∥Lp(ν) < ∞.
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The Sturm-Liouville transform is the Fourier transform associated with the operator ∆ and is defined
for f ∈ L1(µ) by

F ( f )(λ) :=
∫
R+

φλ(x) f (x)dµ(x), λ ∈ R+.

Some of the properties of the Sturm-Liouville transform F are collected bellow (see [4, 8, 39]).
Theorem 2.1. (i) L1

− L∞-boundedness for F . For all f ∈ L1(µ), F ( f ) ∈ L∞(ν) and

∥F ( f )∥L∞(ν) ≤ ∥ f ∥L1(µ).

(ii) Plancherel formula for F . The Sturm-Liouville transform F extends uniquely to an isometric
isomorphism of L2(µ) onto L2(ν). In particular,

∥ f ∥L2(µ) = ∥F ( f )∥L2(ν).

(iii) Inversion formula for F . Let f ∈ L1(µ), such that F ( f ) ∈ L1(ν). Then

f (x) =
∫
R+

φλ(x)F ( f )(λ)dν(λ), a.e. x ∈ R+.

The Sturm-Liouville kernel φλ satisfies the product formula [8, 39]

φλ(x)φλ(y) =
∫
R+

φλ(z)w(x, y, z)dµ(z) for x, y ∈ R+; (2.1)

where w(x, y, .) is a measurable positive function on R+, with support in [|x − y|, x + y], satisfying∫
R+

w(x, y, z)dµ(z) = 1, (2.2)

w(x, y, z) = w(y, x, z) for z ≥ 0, (2.3)

w(x, y, z) = w(x, z, y) for z > 0. (2.4)

We now define the generalized translation operator induced by (2.1). For f ∈ L1(µ), the linear operator

τy f (x) :=
∫
R+

f (z)w(x, y, z)dµ(z), x, y ∈ R+,

will be called Sturm-Liouville translation.
As a first remark, we note that the relations (2.2), (2.3) and (2.4) mean that

τy f (x) = τx f (y), x, y ∈ R+,

and ∫
R+

τy f (x)dµ(x) =
∫
R+

f (x)dµ(x), f ∈ L1(µ). (2.5)

Theorem 2.2. (See [28, 35, 37]).
(i) For all y ≥ 0 and f ∈ Lp(µ), p ∈ [1,∞], we have

∥τy f ∥Lp(µ) ≤ ∥ f ∥Lp(µ).

(ii) For f ∈ L2(µ) and y ∈ R+, we have

F (τy f )(λ) = φλ(y)F ( f )(λ), λ ∈ R+.
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Let f , 1 ∈ L2(ν). We define the convolution product f ♯1 of f and 1 by

f ♯1(λ) := F (F−1( f )F−1(1))(λ), (2.6)

where F−1 is the inverse of the transform F .
Let f , 1 ∈ L2(ν). Then ∫

R+

| f ♯1(λ)|2dν(λ) =
∫
R+

|F−1( f )(x)|2|F−1(1)(x)|2dµ(x),

where both sides are finite or infinite.
We assume that 1 ∈ L2(ν) and y ∈ R+. The modulation of 1 by y is the function

1y := F
(√
τy|F−1(1)|2

)
.

From (2.5) and Theorem 2.1 (ii) we have

∥1y∥L2(ν) = ∥1∥L2(ν). (2.7)

Let 1 ∈ L2(ν). The Sturm-Liouville-Stockwell transform (SLST) is the mapping S1 defined for f ∈ L2(ν)
by

S1( f )(λ, y) := f ♯1y(λ), λ, y ∈ R+.

From (2.6) and (2.7) we have
∥S1( f )∥L∞(ν⊗µ) ≤ ∥1∥L2(ν)∥ f ∥L2(ν).

Theorem 2.3. (See [37]). (Plancherel formula for S1). Let 1 ∈ L2(ν) be a non-zero function. Then, for all
f ∈ L2(ν), we have

∥S1( f )∥L2(ν⊗µ) = ∥1∥L2(ν)∥ f ∥L2(ν).

Let f ∈ L2(ν) and λ ∈ R+. We define the operator σλ by

F−1(σλ f )(x) = φλ(x)F−1( f )(x).

The operator σλ satisfies
σλ f (y) = σy f (λ), ∥σλ f ∥L2(ν) ≤ ∥ f ∥L2(ν). (2.8)

Theorem 2.4. (See [38]). Let f , 1 ∈ L2(ν). Then

S1( f )(λ, y) =
∫
R+

f (t)σλ1y(t)dν(t), λ, y ∈ R+.

For f , 1 ∈ L2(ν) and F ∈ L2(ν ⊗ µ) we define S ∗
1 by

⟨S1( f ),F⟩L2(ν⊗µ) = ⟨ f ,S ∗

1 (F)⟩L2(ν). (2.9)

Then by Theorem 2.4 and Fubini’s theorem we obtain

S ∗

1 (F)(t) =
∫
R+

∫
R+

F(λ, y)σλ1y(t)dν(λ)dµ(y), t ∈ R+. (2.10)

Theorem 2.5. (See [38]). Let 1 ∈ L2(ν) be a non-zero function. Then S1(L2(ν)) is a reproducing kernel Hilbert
space in L2(ν ⊗ µ) with kernel function

W1((λ, y); (t, x)) := S1(σλ1y)(t, x). (2.11)
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3. Concentration operators associated with SLST

In this section, we define the concentration operators for SLST and we prove that they are bounded and
compact operators in the so-called Schatten-von Neumann classes.

We denote by B(L2(ν)) the space of all bounded operators Ψ from L2(ν) into itself, equipped with the
norm

∥Ψ∥ := sup
∥ f ∥L2(ν)=1

∥Ψ( f )∥L2(ν).

For a compact operatorΨ ∈ B(L2(ν)), the eigenvalues of the positive self-adjoint operator |Ψ| :=
√
Ψ∗Ψ are

called the singular values ofΨ and denoted by {sn(Ψ)}n∈N.
The Schatten-von Neumann class Sp, p ∈ [1,∞) is the space of all compact operators Ψ whose singular

values sn(Ψ) lie in lp(N). The class Sp is provided with the norm

∥Ψ∥Sp :=

 ∞∑
n=1

(sn(Ψ))p


1
p

.

The Schatten-von Neumann class S∞ is the class of all compact operators with the norm

∥Ψ∥S∞ := ∥Ψ∥.

We note that the space S1 is the space of trace-class operators. We define the trace of an operator Ψ in
S1 by

Tr(Ψ) :=
∞∑

n=1

⟨Ψ(vn), vn⟩L2(ν), (3.1)

where {vn}n∈N is any orthonormal basis of L2(ν). Moreover, ifΨ is positive, then

Tr(Ψ) = ∥Ψ∥S1 . (3.2)

We note that the space S2 is the space of Hilbert-Schmidt operators. A compact operatorΨ on the Hilbert
space L2(ν) is called the Hilbert-Schmidt operator, if the positive operatorΨ∗Ψ is in the trace-class S1. Then
for any orthonormal basis {vn}n∈N of L2(ν), we have

∥Ψ∥2HS = ∥Ψ∥
2
S2
= ∥Ψ∗Ψ∥S1 = Tr(Ψ∗Ψ) =

∞∑
n=1

∥Ψ(vn)∥2L2(ν).

Now we are in a position to state the definition of the localization operators associated with SLST. In the
following, the function 1 will be in L2(ν) such that ∥1∥L2(ν) = 1 and U be a subset of R2

+ with ν ⊗ µ(U) < ∞.
In this sense, we have the following definition.

Let ξ ∈ L1
∪L∞(ν⊗µ). We define the localization operators associated with the Sturm-Liouville-Stockwell

transform S1, for f ∈ L2(ν) by

L1,ξ( f )(λ) :=
∫
R+

∫
R+

ξ(t, y)S1( f )(t, y)σλ1y(t)dν(t)dµ(y), λ ∈ R+.

For all f , h ∈ L2(ν), we have

⟨L1,ξ( f ), h⟩L2(ν) =

∫
R+

∫
R+

ξ(t, y)S1( f )(t, y)S1(h)(t, y)dν(t)dµ(y).

Therefore, the adjoint of L1,ξ is the operator L∗
1,ξ given by

L∗
1,ξ = L

1,ξ : L2(ν)→ L2(ν).
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Theorem 3.1. (See [38]).
(i) Let ξ ∈ Lp(ν ⊗ µ), p ∈ [1,∞]. Then the localization operator L1,ξ is bounded from L2(ν) into itself, and

∥L1,ξ∥S∞ ≤ ∥ξ∥Lp(ν⊗µ).

(ii) Let ξ ∈ Lp(ν ⊗ µ), p ∈ [1,∞). Then the localization operator L1,ξ : L2(ν)→ L2(ν) is compact.
(iii) Let ξ ∈ L1(ν ⊗ µ). We have

Tr(L1,ξ) =
∫
R+

∫
R+

ξ(t, y)∥σt1y∥
2
L2(ν)dν(t)dµ(y),

and
|Tr(L1,ξ)| ≤ ∥ξ∥L1(ν⊗µ).

The Sturm-Liouville-Stockwell concentration operator (SLSCO) is defined for f ∈ L2(ν), by

L1,U( f )(λ) :=
∫

U
S1( f )(t, y)σλ1y(t)dν(t)dµ(y), λ ∈ R+.

By (2.10) we have

L1,U( f )(λ) = S ∗

1

(
χUS1( f )

)
(λ), λ ∈ R+, (3.3)

where χU is the characteristic function of the set U.
For all f , h ∈ L2(ν), we have

〈
L1,U( f ), h

〉
L2(ν)
=

∫
U

S1( f )(t, y)S1(h)(t, y)dν(t)dµ(y). (3.4)

Theorem 3.2. (i) The concentration operator L1,U is in S∞ and we have

∥L1,U∥S∞ ≤ 1

(ii) The concentration operator L1,U is in S1 with

Tr(L1,U) =
∫

U
∥σt1y∥

2
L2(ν)dν(t)dµ(y),

and
|Tr(L1,U)| ≤ ν ⊗ µ(U).

Proof. (i) For all functions f and h in L2(ν), we have from Hölder’s inequality

∣∣∣⟨L1,U( f ), h⟩L2(ν)

∣∣∣ ≤ ∫
R+

∫
R+

∣∣∣∣S1( f )(t, y)S1(h)(t, y)
∣∣∣∣dν(t)dµ(y)

≤ ∥S1( f )∥L2(ν⊗µ)∥S1(h)∥L2(ν⊗µ).

Using Theorem 2.3, we get ∣∣∣∣〈L1,U( f ), h
〉

L2(ν)

∣∣∣∣ ≤ ∥ f ∥L2(ν)∥h∥L2(ν).

Thus,
∥L1,U∥S∞ ≤ 1.
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(ii) Let {vn}
∞

n=1 be an orthonormal basis of L2(ν). Using (3.4), Fubini’s theorem and Theorem 2.4, we
obtain

∞∑
n=1

⟨L1,U(vn), vn⟩L2(ν⊗µ) =

∞∑
n=1

∫
U
|S1(vn)(t, y)|2dν(t)dµ(y)

=

∫
U

∞∑
n=1

|S1(vn)(t, y)|2dν(t)dµ(y)

=

∫
U

∞∑
n=1

|⟨vn, σt1y⟩L2(ν)|
2dν(t)dµ(y)

=

∫
U
∥σt1y∥

2
L2(ν)dν(t)dµ(y).

Thus from (2.7) and (2.8) we get
∞∑

n=1

⟨L1,U(vn), vn⟩L2(ν⊗µ) ≤ ν ⊗ µ(U).

Then, the operator L1,U is in S1 and by relation (3.1) we have

Tr(L1,U) =
∫

U
∥σt1y∥

2
L2(ν)dν(t)dµ(y),

and
|Tr(L1,U)| ≤ ν ⊗ µ(U).

The theorem is proved. □

4. Toeplitz operators associated with SLST

The first application in this paper is the study of the Toeplitz operators associated with SLST. In the
following, the function 1will be in L2(ν) such that ∥1∥L2(ν) = 1 and U be a subset of R2

+ with ν ⊗ µ(U) < ∞.
We define the orthogonal projection P1 : L2(ν ⊗ µ) −→ L2(ν ⊗ µ), by

P1(F)(λ, y) :=
∫
R+

∫
R+

F(t, x)W1((λ, y); (t, x))dν(t)dµ(x),

where W1 is the kernel given by (2.11).
We define the orthogonal projection PU : L2(ν ⊗ µ) −→ L2(ν ⊗ µ), by

PU(F)(λ, y) := χU(λ, y)F(λ, y).

We define the Sturm-Liouville-Stockwell Toeplitz operator (SLSTO), T1,U : S1(L2(ν))→ S1(L2(ν)), by

T1,U(F) := P1PU(F). (4.1)

We have the following theorem.
Theorem 4.1. The operator T1,U : S1(L2(ν))→ S1(L2(ν)) satisfies

0 ≤ T1,U ≤ PU ≤ I and T1,U = S1L1,US ∗

1 .

Proof. Let F ∈ S1
(
L2(ν)

)
. From (4.1), we have〈
T1,U(F),F

〉
L2(ν⊗µ)

=
〈
P1 (PU(F)) ,F

〉
L2(ν⊗µ)

= ⟨PU(F),F⟩L2(ν⊗µ) .
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Then 〈
T1,U(F),F

〉
L2(ν⊗µ)

=

∫
U
|F(t, y)|2dν(t)dµ(y).

Thus we deduce that 0 ≤ T1,U ≤ PU ≤ I and T1,U is bounded and positive.
On the other hand, from (3.3) an by using the fact that S1S ∗

1 = P1, for F ∈ S1
(
L2(ν)

)
we have

S1L1,US ∗

1 (F) = P1PUP1(F) = P1PU(F) = T1,U(F).

Therefore the concentration operator L1,U and the Sturm-Liouville-Stockwell Toeplitz operator T1,U are
related by

T1,U = S1L1,US ∗

1 .

The theorem is proved. □
We denote by M1,U the quantity

M1,U :=
∫

U

∥∥∥σt1y

∥∥∥2
L2(ν)

dν(t)dµ(y). (4.2)

We also have the following theorem.
Theorem 4.2. The Sturm-Liouville-Stockwell Toeplitz operator T1,U is compact and of trace-class with

Tr
(
T1,U
)
= Tr

(
L1,U
)
=M1,U.

Proof. From Theorem 4.1, the operator T1,U : S1(L2(ν)) → S1(L2(ν)) is bounded and positive. Now, let
{ϕn}

∞

n=1 be an arbitrary orthonormal basis for S1(L2(ν)).
If we denote by vn = S ∗

1 (ϕn), then {vn}
∞

n=1 is an orthonormal basis for L2(ν). Thus by Theorem 4.1, (2.9) and
(3.1) we have

∞∑
n=1

⟨T1,U(ϕn), ϕn⟩L2(ν⊗µ) =

∞∑
n=1

⟨L1,U(S ∗

1 (ϕn)),S ∗

1 (ϕn)⟩L2(ν)

=

∞∑
n=1

⟨L1,U(vn), vn⟩L2(ν) = Tr
(
L1,U
)
.

Therefore, by (3.1), (3.2) and Theorem 3.2 (ii), the operator T1,U is trace-class with∥∥∥T1,U∥∥∥S1
= Tr

(
T1,U
)
=M1,U.

The theorem is proved. □
Remark 4.3. Since the concentration operator L1,U = S ∗

1PUS1 is a compact and self-adjoint operator, the
spectral theorem gives the following spectral representation

L1,U( f ) =
∞∑

n=1

sn(U)
〈

f , vU
n

〉
L2(ν)

vU
n , f ∈ L2(ν),

where {sn(U)}∞n=1 are the positive eigenvalues arranged in a decreasing manner and {vU
n }
∞

n=1 is the corre-
sponding orthonormal set of eigenfunctions. According to Theorem 3.2 (i), we have

sn(U) ≤ s1(U) ≤ 1, n ≥ 1.

Then by Theorem 4.1, we deduce that the Sturm-Liouville-Stockwell Toeplitz operator T1,U : S1(L2(ν)) →
S1(L2(ν)) can be diagonalized as

T1,U(F) =
∞∑

n=1

sn(U)
〈
F, ϕU

n

〉
L2(ν⊗µ)

ϕU
n , F ∈ S1(L2(ν)),
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where ϕU
n = S1(vU

n ).
In the context of this remark, let θ be the function defined by

θ(t, x) :=
∫

U
|W1((λ, y); (t, x))|2dν(λ)dµ(y), (t, x) ∈ R2

+, (4.3)

where W1 is the kernel given by (2.11). Then we obtain the following result.
Theorem 4.4. For all (t, x) ∈ R2

+, we have

θ(t, x) =
∞∑

n=1

sn(U)
∣∣∣ϕU

n (t, x)
∣∣∣2 .

Proof. From Theorem 2.5, we have for all (t, x) ∈ R2
+, the function W1(.; (t, x)) is in S1(L2(ν)). Therefore

using the properties of the reproducing kernel Hilbert space, we get〈
T1,U(W1(.; (t, x))),W1(.; (t, x))

〉
L2(ν⊗µ)

=
〈
PU(W1(.; (t, x))),W1(.; (t, x))

〉
L2(ν⊗µ)

=

∫
U

∣∣∣W1((λ, y); (t, x))
∣∣∣2 dν(λ)dµ(y)

= θ(t, x).

Let
{
wU

n

}∞
n=1
⊂ S1(L2(ν)) be an orthonormal basis of Ker

(
T1,U
)
. Hence,

{
ϕU

n

}∞
n=1
∪

{
wU

n

}∞
n=1

is an orthonormal
basis of S1(L2(ν)) and therefore the reproducing kernel W1 can be written as

W1

(
(λ, y); (t, x)

)
=

∞∑
n=1

ϕU
n (t, x)ϕU

n
(
λ, y
)
+

∞∑
n=1

wU
n (t, x)wU

n
(
λ, y
)
.

Using this, we compute again

θ(t, x) =
〈
T1,U(W1(.; (t, x))),W1(.; (t, x))

〉
L2(ν⊗µ)

=

〈
T1,U

 ∞∑
n=1

ϕU
n (t, x)ϕU

n

 , ∞∑
k=1

ϕU
k (t, x)ϕU

k

〉
L2(ν⊗µ)

=

∞∑
n,k=1

ϕU
n (t, x)ϕU

k (t, x)
〈
T1,U(ϕU

n ), ϕU
k

〉
L2(ν⊗µ)

=

∞∑
n=1

sn(U)
∣∣∣ϕU

n (t, x)
∣∣∣2 .

The theorem is proved. □

5. Spectrogram analysis associated with SLST

The second application in this paper is the study of the spectrogram analysis associated with SLST. In
the following, the function 1will be in L2(ν) such that ∥1∥L2(ν) = 1 and U be a subset ofR2

+ with ν⊗µ(U) < ∞.
Let f ∈ L2(ν). We define the Sturm-Liouville-Stockwell spectrogram (SLSS) of f as

S1( f )(t, y) :=
∣∣∣S1( f )(t, y)

∣∣∣2 , (t, y) ∈ R2
+.

Note that Stockwell spectrograms are a powerful tool for the analysis of non-stationary signals. They are
used in a wide variety of applications, including speech recognition, music analysis and medical signal
analysis and so on.
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From Theorem 2.3, we have ∫
R+

∫
R+

S1( f )(t, y)dν(t)dµ(y) = ∥ f ∥2L2(ν),

which explains the interpretation of a spectrogram as a time-frequency energy density. Note that also by
(3.4), we have 〈

L1,U f , f
〉

L2(ν)
=

∫
U

S1( f )(t, y)dν(t)dµ(y).

Let V be an N-dimensional subspace of L2(ν). We define the orthogonal projection PV onto V with
projection kernel KV, i.e.

PV f (r) :=
∫
R+

KV(r, x) f (x)dν(x), r ∈ R+.

Recall that if {vn}
N
n=1 is an orthonormal basis of V, then

KV(r, x) =
N∑

n=1

vn(r)vn(x), r, x ∈ R+.

The kernel KV is independent of the choice of orthonormal basis for V.
The spectrogram of the space V with respect 1 is defined as

Spec
1
V(t, y) :=

∫
R+

∫
R+

KV(r, x)σt1y(r)σt1y(x)dν(r)dν(x).

Then we have the following result.
Theorem 5.1. The spectrogram Spec

1
V is given by

Spec
1
V =

N∑
n=1

S1(vn).

Proof. We have

Spec
1
V(t, y) =

∫
R+

∫
R+

N∑
n=1

vn(r)vn(x)σt1y(r)σt1y(x)dν(r)dν(x)

=

N∑
n=1

⟨vn, σt1y⟩L2(ν)⟨vn, σt1y⟩L2(ν)

=

N∑
n=1

S1(vn)(t, y)S1(vn)(t, y)

=

N∑
n=1

|S1(vn)(t, y)|2 =
N∑

n=1

S1(vn)(t, y).

This allows us to conclude. □
We define the time-frequency concentration of a subspace V in U as

Z1,U(V) :=
1
N

∫
U

Spec
1
V(t, y)dν(t)dµ(y).

Then from Theorem 5.1, we have

Z1,U(V) =
1
N

N∑
n=1

∫
U

S1(vn)(t, y)dν(t)dµ(y).
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Theorem 5.2. The N-dimensional signal space VN = span
{
vU

n

}N
n=1

consisting of the first N eigenfunctions of

L1,U corresponding to the N largest eigenvalues {sn(U)}Nn=1 maximize the regional concentration Z1,U(V) and

Z1,U (VN) =
1
N

N∑
n=1

sn(U).

Proof. We have

Z1,U(VN) =
1
N

N∑
n=1

∫
U

S1
(
vU

n

)
(t, y)dν(t)dµ(y).

Moreover, the min-max lemma for self-adjoint operators (see [32], Section 95) states that

sn(U) =
∫

U
S1
(
vU

n

)
(t, y)dν(t)dµ(y)

= max
{〈

L1,U( f ), f
〉

L2(ν)
: ∥ f ∥L2(ν) = 1, f ⊥ vU

1 , . . . , v
U
n−1

}
.

The eigenvalues of L1,U therefore determine the number of orthogonal functions that have a well-concentrated
spectrogram in U. So,

Z1,U (VN) =
1
N

N∑
n=1

sn(U).

The min-max characterization of the eigenvalues of compact operators implies that the first N eigenfunctions
of the concentration operator L1,U have optimal cumulative time-frequency concentration inside U, in the
sense that

N∑
n=1

〈
L1,U
(
vU

n

)
, vU

n

〉
L2(ν)
= max

 N∑
n=1

〈
L1,U(vn), vn

〉
L2(ν)

: {vn}
N
n=1 orthonormal

 .
Consequently no N-dimensional subset V of L2(ν) can be better concentrated in U than VN, i.e

Z1,U(V) ≤ Z1,U (VN) .

The proof is complete. □
Remark 5.3. The above result, has important implications for signal processing and time-frequency analysis.
It means that the first N eigenfunctions of L1,U can be used to efficiently represent signals that are localized
in U. This is because the eigenfunctions are concentrated in U, so they can be used to reconstruct the signal
with high accuracy.
The time-frequency concentration of a subspace VN in U satisfies,

sN(U) ≤ Z1,U (VN) ≤ s1(U) ≤ 1.

Let A1,U := Spec
1
VN1,U , called the accumulated spectrogram, where we assume that N1,U =

[
M1,U

]
is the

smallest integer greater than or equal to M1,U (the quantity given by (4.2)) and

VN1,U = span
{
vU

n

}N1,U
n=1
.

Then

A1,U(t, y) =
N1,U∑
n=1

∣∣∣∣S1 (vU
n

)
(t, y)
∣∣∣∣2 = N1,U∑

n=1

∣∣∣ϕU
n (t, y)

∣∣∣2 .
Note that ∥∥∥A1,U∥∥∥L1(ν⊗µ)

= N1,U =M1,U +O(1).
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Moreover, since
N1,U∑
n=1

sn(U) ≤ Tr
(
L1,U
)
=M1,U,

then we can define the quantity

E1,U := 1 −
N1,U∑
n=1

sn(U)
M1,U

which satisfies,
0 ≤ E1,U ≤ 1.

Theorem 5.4. We have ∥∥∥A1,U − θ∥∥∥L1(ν⊗µ)
≤ 1 + 2M1,UE1,U,

where θ is the function given by (4.3).
Proof. From Theorem 4.4, for all (t, y) ∈ U, we have,

A1,U(t, y) − θ(t, y) =
∞∑

n=1

(tn − sn(U))
∣∣∣ϕU

n (t, y)
∣∣∣2 ,

where tn = 1 if n ≤ N1,U and 0 otherwise. Now since∥∥∥|ϕU
n |

2
∥∥∥

L1(ν⊗µ
= 1 and

∞∑
n=1

sn(U) =M1,U,

we obtain

∥A1,U − θ∥L1(ν⊗µ) ≤

∞∑
n=1

|tn − sn(U)|

=

N1,U∑
n=1

(1 − sn(U)) +
∑

n>N1,U

sn(U)

= N1,U +
∞∑

n=1

sn(U) − 2
N1,U∑
n=1

sn(U)

= N1,U +M1,U − 2
N1,U∑
n=1

sn(U)

=
(
N1,U −M1,U

)
+ 2M1,UE1,U

≤ 1 + 2M1,UE1,U.

The theorem is proved. □

6. Conclusion and perspective

In this paper, we have examined the Toeplitz operators related to SLST and studied their trace-class and
Schatten-von Neumann class properties. The spectrogram analysis associated with SLST is also studied in
detail. Finally, we indicate that in our future work, we will study the Benedicks-type uncertainty principles
for SLST.
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[9] E. Cordero, K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205(1) (2003), 107–131.

[10] W. Czaja, G. Gigante, Continuous Gabor transform for strong hypergroups, J. Fourier Anal. Appl. 9(4) (2003), 321–339.
[11] I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inf. Theory 34(4) (1988), 605–612.
[12] L. Debnath, D. Bhatta, Integral transforms and their applications, Third Edition, Chapman and Hall, CRC Press, Boca Raton, Florida,

2015.
[13] B. Demange, Uncertainty principles for the ambiguity function, J. Lond. Math. Soc. 72 (2005), 717–730.
[14] F. De Mari, H. G. Feichtinger, K. Nowak, Uniform eigenvalue estimates for time-frequency Toeplitz operators, J. London Math. Soc.

65(3) (2002), 720–732.
[15] A. G. Farashahi, R. Kamyabi-Gol, Continuous Gabor transform for a class of non-Abelian groups, Bull. Belg. Math. Soc. 19(4) (2012),

683–701.
[16] A. G. Farashahi, Continuous partial Gabor transform for semi-direct product of locally compact groups, Bull. Malaysian Math. Soc. 38(2)

(2015), 779–803.
[17] H. G. Feichtinger, T. Strohmer, Advances in Gabor analysis, Birkhäuser, Boston, 2003.
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[23] K. Gröchenig, Foundation of time-frequency analysis, Birkhäuser, Boston, 2001.
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