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Abstract. Let S be a commutative ring with unity (CRU) and W(S) be the set of annihilating-ideals of
S. The strong annihilating-ideal graph of S, denoted by SAG(S), is an undirected graph with vertex set
W(S)∗. Two vertices m and n are adjacent if and only if m ∩ Ann(n) , (0) and n ∩ Ann(m) , (0). In this
paper, we first characterize the Artinian commutative rings S for which SAG(S) has outerplanarity index
2. Then, we classify Artinian commutative rings S for which SAG(S) is double toroidal or Klein-bottle.
Finally, we determine the book thickness of SAG(S) for genus at most one.

1. Introduction

In this paper, unless stated otherwise, we use S to refer to a commutative ring with identity, and we
assume that S is not a field. We denote all commutative rings with unity as CRU. For the commutative
ring S, we define I(S) as the set of ideals of S, and we let I(S)∗ = I(S) \ {0}, which excludes the zero ideal.
An ideal m of S is called an annihilator ideal if there exists a nonzero ideal n in S such that mn = (0). For
anym ∈ I(S), we define the annihilator ofm as Ann(m) = {r ∈ S : rm = (0)}. We denote the set of annihilator
ideals in S by W(S), and we define W(S)∗ =W(S) \ {0} to exclude the zero ideal. The sets of zero-divisors,
nilpotent elements, minimal prime ideals, and unit elements ofS are represented by Z(S), Nil(S), Min(S),
and U(S), respectively. A ring (S,A) is considered local if A is the only maximal ideal in S. The ideal
Ei ∈ S1 ×S2 × · · · ×Sn is defined as Ei = (0)× (0)× · · · × (0)×Si × (0)× · · · × (0) for each 1 ≤ i ≤ n. For further
details, we refer the reader to [5].

A graph, denoted as G(V,E), consists of a collection of vertices V and a collection of edges E. A graph
is called complete when there is an edge connecting every pair of distinct vertices. A complete graph with n
vertices is represented as Kn. A k-partite graph is one where the vertices can be divided into k separate sets,
called independent sets, such that no two vertices within the same set are connected by an edge. When
k = 2, the graph is referred to as a bipartite graph. A complete k-partite graph is a k-partite graph in which
every pair of vertices from different independent sets is connected by an edge. We denote a complete
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bipartite graph as Km,n, where m and n indicate the sizes of the two independent sets. For more information
on graph theory, we recommend the work of [24].

A graph G is referred to as planar if it can be represented on a plane in such a way that its edges only
intersect at their endpoints. A subdivision of a graph is created by replacing its edges with non-intersecting
paths. In 1930, Kuratowski introduced a straightforward method to determine whether a graph is planar.
Kuratowski’s Theorem states that a graph G is planar if and only if it does not contain a subdivision of K5
(the complete graph with five vertices) or K3,3 (the complete bipartite graph formed by two groups of three
vertices each). An embedding ϕ of a planar graph is called 1-outerplanar if it shows outerplanarity, which
means all vertices are connected to the outer face of the embedding. This concept can be generalized: an
embedding is termed k-outerplanar if, after removing all vertices on the outer face and their connecting
edges, the resulting graph has a (k − 1)-outerplanar embedding. A graph is considered k-outerplanar if it
supports such a k-outerplanar embedding. The outerplanarity index of a graph G is the smallest integer k
for which G is k-outerplanar. For a planar graph G, the inner vertex number i(G) is defined as the smallest
number of vertices that are not on the boundary of the outer region in any planar embedding of G. A graph
G is known as minimally non-outerplanar if i(G) = 1. For a deeper understanding of k-outerplanarity, refer
to the works of [11, 14].

The genus of a graph G, denoted as γ(G), is the smallest integer k for which the graph can be drawn
on a surface with k handles (think of a surface with k “loops”). A graph is planar if it can be drawn on a
sphere without any lines crossing each other, which means its genus is 0. Graphs with genus 1 are known
as toroidal graphs (imagine a doughnut shape), while those with genus 2 are called double-toroidal graphs. For
a non-negative integer k, we can create a surface by taking a sphere and attaching k crosscaps to it. Every
connected compact surface can be thought of as being similar to this surface, denoted as Nk. The crosscap
number (also known as non-orientable genus) γ(G) is the smallest integer k such that G can be drawn on
the surface Nk. Graphs with a crosscap number of 1 are known as projective plane graphs, while those with a
crosscap number of 2 are referred to as Klein-bottle graphs. It’s important to note that if H is a subgraph of
G, then γ(H) is always less than or equal to γ(G), and γ(H) is always less than or equal to γ(G). For more
information on graph theory, we recommend consulting works by [25].

An n-book embedding is defined as a collection of n half-planes, referred to as pages, which are all
connected along a single line known as the spine. When the vertices of a graph can be arranged along the
spine, and its edges can be allocated across r pages such that each edge resides in exactly one page and
no two edges intersect within any given page, the arrangement is termed an r-book embedding. The book
thickness of a graph G, denoted as bt(G), is the minimum integer n such that G can be represented with an
n-book embedding. For further information on graph embeddings in surfaces and book embeddings, one
may consult [9, 22, 25].

Beck [6] introduced the concept of the zero-divisor graph of a commutative ring in 1988, focusing
primarily on colorings. In his work, he proposed that χ(S) = ω(S) for any commutative ring S [6]. He
validated this conjecture for certain types of rings, such as reduced rings and principal ideal rings. However,
this assertion does not hold true in general. This was demonstrated in 1993 by Anderson and Naseer, who
provided a compelling counterexample (see Theorem 2.1 in [3]), disproving Beck’s conjecture for general
rings. Anderson and Naseer continued their exploration of colorings in commutative rings, defining a
graph where the vertex set consists of the ring elements and an edge is established between vertices a and b
if and only if ab = 0. In [2], Anderson and Livingston defined the zero-divisor graph ofS, denoted by Γ(S),
with the vertex set Z(S)∗. For distinct a, b ∈ Z(S)∗, the vertices a and b are connected by an edge if and only
if ab = 0.

In 2011, Behboodi and Rakeei [7, 8] introduced a new graph called the annihilating-ideal graph AG(S) on
S, with the vertex set W(S)∗. Two distinct verticesm and n are adjacent if and only ifmn = 0 (see [16–18, 21]
for more details).

Tohidi and collaborators [19, 20] introduced and investigated the strong annihilating-ideal graph of a
commutative ring S, denoted by SAG(S), where the vertex set is W(S)∗. Two vertices m and n are
connected by an edge if and only ifm∩Ann(n) , (0) and n∩Ann(m) , (0). In [16], Rehman and coauthors
characterized the Artinian commutative ring S for which SAG(S) is a planar or outerplanar graph. They
also classified the rings S for which SAG(S) is a toroidal or projective plane graph. Besides research on
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various graphs associated to commutative rings, which is vast, as it can be seen from [4], there have also
been studies on various graphs associated to not necessarily commutative rings, and the reader may consult
[1, 10, 12, 13, 23, 24] and their references for more details.

In this paper, we begin by characterizing the Artinian commutative rings S for which the strong
annihilating-ideal graph SAG(S) has an outerplanarity index of 2. Next, we classify the Artinian commu-
tative rings S for which SAG(S) is double toroidal or resembles a Klein bottle. Lastly, we investigate the
book thickness of SAG(S) for graphs with genus at most one.

The results listed below are important for the upcoming sections.

Lemma 1.1. [19, Lemma 2.1] Let S be a CRU and m, n ∈W(S)∗. The following assertions are valid:

1. If m − n is not an edge of SAG(S), then Ann(mn) = Ann(m) or Ann(mn) = Ann(n). Moreover, if S is a
reduced ring, then the converse also holds.

2. Ifm− n is an edge of the annihilating-ideal graph AG(S), thenm− n is also an edge of the strong annihilating-
ideal graph SAG(S).

3. If Ann(m) ⊈ Ann(n) and Ann(n) ⊈ Ann(m), then m − n is an edge of the strong annihilating-ideal graph
SAG(S). Moreover, if S is a reduced ring, then the converse is also

4. Let n ≥ 1 be a positive integer. Suppose that S � S1 ×S2 × · · · ×Sn, where Si is a ring for every 1 ≤ i ≤ n,
and let m = m1 ×m2 × · · · ×mn and n = n1 × n2 × · · · × nn be two vertices of SAG(S). If mi ∩ Ann(ni) , (0)
and n j ∩Ann(m j) , (0), for some 1 ≤ i, j ≤ n, then m − n is an edge of SAG(S). In particular, if mi − ni is an
edge of SAG(Si) or mi = ni, and mi ∩ Ann(mi) , (0), for some 1 ≤ i ≤ n, then m − n is an edge of SAG(S).

5. If m and n belong to the essential ideals of S, denoted by Ess(S), or if the annihilators of m and n, that is,
Ann(m) and Ann(n), belong to Ess(S), then m is adjacent to n.

6. If the distance between m and n in the annihilating-ideal graph AG(S), denoted by dAG(S)(m, n), is 3 for some
distinct m, n ∈W(S)∗, then the pair m − n forms an edge in the strong annihilating-ideal graph SAG(S).

7. If m and n are distinct elements of W(S)∗ and there is no edge between m and n in SAG(S), then the distance
between m and n in AG(S), denoted by dAG(S)(m, n), is 2.

Theorem 1.2. [16, Theorem 2.1] For the local ring (S,A) the graph SAG(S) is a complete graph.

2. Outerplanarity of SAG(S)

In this section, we classify the Artinian CRU for which SAG(S) has outerplanarity index 2. Also, we
find the inner vertex number of SAG(S) for Artinian CRU.

In the following results, Rehman et al. [16] characterized the Artinian CRU for SAG(S) is planar or
outerplanar.

Theorem 2.1. [16, Theorems 3.2 and 3.3] Let S be an Artinian CRU. Then SAG(S) is planar ⇐⇒ one of the
following conditions is satisfied:

1. S is a local ring that contains no more than four non-trivial ideals.
2. S � D1 ×D2, where D1 and D2 are fields.
3. S � D1 ×D2 ×D3, where each Di is a field.
4. S � D ×S1, where D is a field and (S1,A) is a local ring having a unique non-trivial ideal A.

Theorem 2.2. [16, Theorem 3.5] LetS be an Artinian CRU. Then SAG(S) is outerplanar⇐⇒ one of the following
conditions is satisfied:

1. S is a local ring that contains no more than three non-trivial ideals.
2. S � D1 ×D2, where D1 and D2 are fields.
3. S � D ×S1, where D is a field and (S1,A) is a local ring having a unique non-trivial ideal A.

We are prepared to demonstrate the main result of this section.
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Theorem 2.3. Let S be an Artinian CRU. Then SAG(S) has outerplanarity index 2 ⇐⇒ one of the following
conditions is satisfied:

1. S � D1 ×D2, where D1 and D2 are fields.
2. S is a local ring possessing exactly four non-trivial ideals.

Proof. We understand that all 2-outerplanar graphs are also planar graphs. Thus, we have to consider the
rings given in Theorem 2.1. If S is one of the rings given in Theorem 2.2, then SAG(S) is 1-outerplanar.
If S � D1 × D2 × D3, where each Di is a field, then SAG(S) is given in Figure 1. If we delete the vertices
from the outer faces of the drawing, the resultant graph is K2, which is 1-outerplanar. Hence SAG(S) has
outerplanarity index 2. If S is a local ring with |I(S)∗| = 4, then SAG(S) � K4 by Theorem 1.2. Again if we
delete the vertices from the outer faces of the drawing, the resultant graph is K1, which is 1-outerplanar.
Hence SAG(S) is again a 2-outerplanar graph.

Figure 1. The graph SAG(D1 ×D2 ×D3)

(D1 × (0) × (0) (0) ×D2 × (0)

(0) ×D2 ×D3 D1 × (0) ×D3

(0) × (0) ×D3

D1 ×D2 × (0)

Corollary 2.4. Let S be an Artinian CRU. Then SAG(S) has an outerplanarity index that does not exceed two.

Lastly, we determine the inner vertex number of SAG(S) for the class of Artinian rings S in the
subsequent result.

Theorem 2.5. Let S be an Artinian CRU. Then the inner vertex number of SAG(S) is determined by:

i(SAG(S)) =


2 if S � D1 ×D2 ×D3, where each Di is a field;
1 if S is a local ring with |I(S)∗| = 4;
0 otherwise.

Proof. The proof is derived directly from Theorems 2.2 and 2.3 as well as Figure 1.

Corollary 2.6. LetS be an Artinian CRU. Then SAG(S) is minimally non-outerplanar⇐⇒ eitherS is a local ring
featuring exactly four non-trivial ideals.

3. Embedding of SAG(S) on double torus

In this section, we classify the Artinian CRU for which SAG(S) is double toroidal, i.e., γ(SAG(S)) = 2.
The following results provide the genus of Kn and Km,n, which will assist us in proving the main result of
this section.

Lemma 3.1. [25] If r ≥ 3, then

γ(Kr) =
⌈

(r − 3)(r − 4)
12

⌉
.

Lemma 3.2. [25] If r, s ≥ 2, then

γ(Kr,s) =
⌈

(r − 2)(s − 2)
4

⌉
.
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Lemma 3.3. [15, Proposition 4.4.4] Let G be a connected graph having r edges and at least s ≥ 3 vertices. Then,

γ(G) ≥
⌈

r
6 −

s
2 + 1

⌉
.

In the following result, Rehman et al. [16] characterized Artinian CRU for which SAG(S) is toroidal
graph i.e., γ(SAG(S)) = 1.

Theorem 3.4. [16, Theorems 4.1 and 4.2] Let S be a non-local Artinian CRU. Then γ(SAG(S)) = 1⇐⇒ one of
the following conditions is satisfied:

1. S � S1 ×S2, where each (Si,Ai) is local ring with unique non-trivial ideal Ai.
2. S � D ×S1, where D is a field and (S1,A) is a local ring featuring the non-trivial ideals A and A2.
3. S � D ×S1, where D is a field and (S1,A) is local ring featuring the non-trivial ideals A, A2 and A3.

In the following result, we classify local rings for which SAG(S) is double-toroidal.

Lemma 3.5. Let S be an Artinian local CRU. Then γ(SAG(S)) = 2⇐⇒ S has exactly 8 non-trivial ideals.

Proof. The conclusion of the proof comes from Theorem 1.2 and Lemma 3.1.

In the following results, we classify non-local rings for which SAG(S) is double-toroidal.

Lemma 3.6. LetS = D1×D2×· · ·×Dm be a CRU, where eachDi represents a field and m ≥ 4. Then γ(SAG(S)) > 2.

Proof. Consider the case when m = 4 i.e.,S = D1×D2×D3×D4. The vertices of SAG(S) are given by x1 = E1,
x2 = E2, x3 = E3, x4 = E4, x5 = E1 + E2, x6 = E1 + E3, x7 = E1 + E4, x8 = E2 + E3, x8 = E2 + E4, x9 = E3 + E4,
x10 = E1+E2+E3, x11 = E1+E2+E4, x12 = E1+E3+E+4, x13 = E1+E2+E4 and x14 = E2+E3+E4. The graph
generated by the set {x1, . . . , x14} contains 14 vertices and 55 edges. Thus, by Lemma 3.3, γ(SAG(S)) > 2.

Lemma 3.7. Let S = S1 ×S2 × · · · ×Sn be a CRU, where (Si,Ai) is an Artinian local ring with Ai , 0 for each
1 ≤ i ≤ n and n ≥ 2. Then γ(SAG(S)) , 2.

Proof. Suppose n ≥ 3. Consider x1 = A1×(0)×· · ·×(0), x2 = (0)×A2×(0)×· · ·×(0), x3 = (0)×(0)×A3×(0)×· · ·×(0),
x4 = E1, y1 = E2, y2 = E3, y3 = E1 + E2, y4 = A1 × S2 × (0) × · · · × (0), y5 = A1 × (0) × S3 × (0) × · · · × (0),
y6 = A1 × S2 × S3 × (0) × · · · × (0) and y7 = (0) × A2 × A3 × (0) × · · · × (0) ∈ W(S)∗. Since xi ∩ Ann(y j) , 0
and y j ∩Ann(xi) , 0, then K4,7 is a subset of SAG(S) generated by the set {x1, . . . , x4} ∪ {y1, . . . , y7}. Thus, by
using of Lemma 3.2, γ(SAG(S)) > 2. Hence n = 2.

Define ηi as the nilpotency index ofAi for i = 1, 2. Suppose η2 ≥ 3. Consider a1 = (0)×A2, a2 = (0)×Aη2−1
2 ,

a3 = A1 × A
η2−1
2 , a4 = (0) ×S2, a5 = A1 ×S2, b1 = S1 × (0), b2 = S1 × A2, b3 = S1 × A

η2−1
2 , b4 = A1 × (0) and

b5 = A1 × A2 ∈ W(S)∗. Since ai ∩ Ann(b j) , 0 and b j ∩ Ann(ai) , 0, K5,5 is a subgraph of SAG(S) generated
by the set {a1, . . . , a5} ∪ {b1, . . . , b5}. Thus, γ(SAG(S)) > 2 by the use of Lemma 3.2. Hence η2 = 2. Similarly,
we can show that η1 = 2.

Let I ∈ I(S1)∗ such that I , A1. Consider c1 = (0)×A2, c2 = (0)× I, c3 = A1 × I, c4 = (0)×S2, c5 = A1 ×S2,
d1 = S1 × (0), d2 = S1 × A2, d3 = S1 × I, d4 = A1 × (0) and d5 = A1 × A2 ∈ W(S)∗. Since ci ∩ Ann(d j) , 0
and d j ∩ Ann(ci) , 0, K5,5 is a subgraph of SAG(S) generated by the set {c1, . . . , c5} ∪ {d1, . . . , d5}. Thus,
γ(SAG(S)) > 2 by the use of Lemma 3.2. Hence S1 has only one non-trivial ideal A1. Analogously, we can
prove that A2 is the unique non-trivial ideal of S2. Thus, again by using of Theorem 3.4, γ(SAG(S)) = 1.
Hence, considering all the cases, we can conclude that γ(SAG(S)) , 2.

Lemma 3.8. LetS = D1 ×D2 × · · · ×Dm ×S1 ×S2 × · · · ×Sn be a CRU, whereDi is a field, (S j,A j) is an Artinian
local ring with A j , 0 and m,n ≥ 1. Then γ(SAG(S)) = 2⇐⇒ m = 2, n = 1 and A1 represents the only non-trivial
ideal of S1.
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Proof. Suppose that γ(SAG(S)) = 2. If m ≥ 3, then by Lemma 3.6, γ(SAG(S)) > 2. Thus, m ≤ 2. Similarly,
n ≤ 2. Take the following cases into consideration:

Case (1): Suppose m = 2 and n = 2. Again by Lemma 3.6, γ(SAG(S)) > 2, a contradiction.

Case (2): Suppose m = 1 and n = 2. Consider a1 = (0) × A1 × (0), a2 = (0) × S1 × (0), a3 = (0) × S1 × S2,
a4 = (0)×S1×A2, a5 = (0)×A1×A2, b1 = D1× (0)× (0), b2 = D1× (0)×S2, b3 = D1×A1× (0), b4 = D1× (0)×A2,
b5 = D1 ×A1 ×A2 ∈W(S)∗. Since ai ∩Ann(b j) , 0) and b j ∩Ann(ai) for each i, j, K5,5 is a subgraph of SAG(S)
generated by {a1, . . . , a5} ∪ {b1 . . . , b5}. Thus, by Lemma 3.2, γ(SAG(S)) > 2, a contradiction.

Case (3): Suppose m = 2 and n = 1. Let η1 be the nilpotency index of A1. Suppose η1 ≥ 3. Consider
x1 = (0) × (0) × S1, x2 = (0) × D2 × A1, x3 = (0) × (0) × A1, x4 = (0) × (0) × Aη1−1

1 , x5 = (0) × D2 × S1,
y1 = D1×D2×(0), y2 = D1×(0)×A1, y3 = D1×(0)×Aη1−1

1 , y4 = D1×D2×A1 and y5 = D1×D2×A
η1−1
1 ∈W(S)∗.

Since xi ∩ Ann(y j) , 0 and y j ∩ Ann(xi) ,, the graph K5,5 is a subgraph of SAG(S) generated by the set
{x1, . . . , x5} ∪ {y1, . . . , y5}. Thus, by using of Lemma 3.2, γ(SAG(S)) > 2, a contradiction. Hence η1 = 2.

Let I ∈ I(S1)∗ such that I , A1. Then the graph K3,3 is a subgraph of the graph generated by the set
{(0)× (0)×S1, (0)×D2 ×A1, (0)× (0)×A1, (0)× (0)× I, (0)×D2 ×S1} ∪ {D1 ×D2 × (0),D1 × (0)×A1,D1 × (0)×
I,D1 ×D2 ×A1,D1 ×D2 × I}, which leads to a contradiction by employing Lemma 3.2. Hence A1 is the only
non-trivial ideal of S1.

Case (4): Suppose m = 1 = n. Suppose η1 ≥ 5. Consider c1 = (0) × Aη1−1
1 , c2 = (0) × Aη1−2

1 , c3 = (0) × Aη1−3
1 ,

c4 = (0)×Aη1−4
1 , c5 = D1×A

η1−1
1 , c6 = D1×A

η1−2
1 , c7 = D1×A

η1−3
1 , c8 = D1×A

η1−4
1 ∈W(S)∗. Since ci∩Ann(c j) , 0

and Ann(ci) ∩ c j , 0 for each i, j, the graph K8 is a subgraph of SAG(S) generated by the set {c1, . . . , c8}.
Thus, by using of Lemma 3.1, γ(SAG(S)) > 2, a contradiction. Hence η1 ≤ 4. Then by Theorems 2.1 and 3.4,
γ(SAG(S)) ≤ 1, a contradiction.

The converse is derived from Figure 2.
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Figure 2. Embedding of SAG(D1 ×D2 ×S1) on double torus,

where A being the unique non-trivial ideal of S1.

D1 × (0) × A D1 × (0) × A

D1 × (0) × A

D1 × (0) × A

D1 × (0) × AD1 × (0) × A

D1 × (0) × A

D1 × (0) × A

(0) ×D2 × (0)

(0) ×D2 × (0)

(0) × (0) × A

(0) × (0) × A

D1 × (0) × (0)

D1 × (0) × (0)

(0) ×D2 ×S1

(0) ×D2 ×S1

D1 ×D2 × (0)

D1 ×D2 × (0)

D1 × (0) ×S1

D1 × (0) ×S1

D1 ×D2 × A

D1 ×D2 × A

(0) × (0) ×S1

(0) × (0) ×S1

(0) ×D2 × A

(0) ×D2 × A

In conclusion, we can state the main result of this section.

Theorem 3.9. Let S be an Artinian CRU. Then γ(SAG(S)) = 2⇐⇒ one of the following conditions is satisfied:

1. S is a local ring that possesses 7 non-trivial ideals.
2. S � D1 × D2 × S1, where D1 and D2 are fields, and (S1,A) denotes a local ring with A being the unique

non-trivial ideal of S1.

Proof. The assertion follows from Lemmas 3.5, 3.6, 3.7, and 3.8.

4. Embedding of SAG(S) on Klein-bottle

In this section, we classify the Artinian CRU for which SAG(S) is Klein-bottle i.e., γ(SAG(S)) = 2. The
following results give the crosscap of Kr and Kr,s, which help us to prove the main result of this section.

Theorem 4.1. (1) Let r ≥ 3. Then

γ(Kr) =


⌈

(r−3)(r−4)
6

⌉
if r ≥ 3 and r , 7;

3 if r = 7.

(2) Let r, s ≥ 2. Then

γ(Kr,s) =
⌈

(r − 2)(s − 2)
2

⌉
.

Lemma 4.2. [15] Consider a connected graph G that contains r ≥ 3 vertices and s edges. Then
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γ(G) ≥
⌈

s
3 − r + 2

⌉
.

In the following result, Rehman et al. [16] characterized Artinian CRU for which SAG(S) is projective
plane i.e., γ(SAG(S)) = 1.

Theorem 4.3. [16, Theorems 5.2 and 5.3] Let S be a non-local Artinian CRU. Then γ(SAG(S)) = 1⇐⇒ one of
the following hold:

1. S � S1 ×S2, where each (Si,Ai) forms a local ring that has exactly one non-trivial ideal Ai.
2. S � D ×S1, where D is a field and (S1,A) denotes a local ring that has non-trivial ideals A and A2.

In the following result, we characterize local Artinian CRU for which SAG(S) is a Kline bottle, i.e.,
γ(SAG(S)) = 2.

Lemma 4.4. Let S be an Artinian local CRU. Then γ(SAG(S)) , 2.

Proof. The conclusion is derived from Theorem 1.2 and Lemma 4.1.

In the subsequent result, we identify the properties of non-local Artinian CRU for which SAG(S) takes
the form of a Kline bottle, indicating that γ(SAG(S)) = 2.

Lemma 4.5. Let S = D1 ×D2 × · · · ×Dm be a CRU, where each Di is a field and m ≥ 4. Then γ(SAG(S)) , 2.

Proof. The conclusion is obtained from Lemmas 3.6 and 4.2.

Lemma 4.6. For the ringS = S1×S2×· · ·×Sn, where (Si,Ai) is Artinian local ring withAi , 0 for each 1 ≤ i ≤ n
and n ≥ 2, γ(SAG(S)) , 2.

Proof. Suppose n ≥ 3. Consider a1 = A1×(0)×· · ·×(0), a2 = (0)×A2×(0)×· · ·×(0), a3 = (0)×(0)×A3×(0)×· · ·×(0),
b1 = E2, b2 = E3, b3 = E1 + E2, b4 = A1 × S2 × (0) × · · · × (0), b5 = A1 × (0) × S3 × (0) × · · · × (0),
b6 = A1 ×S2 ×S3 × (0) × · · · × (0) and b7 = (0) × A2 × A3 × (0) × · · · × (0) ∈W(S)∗. Since ai ∩Ann(b j) , 0 and
b j ∩Ann(ai) , 0, then K3,7 is a subset of SAG(S) generated by the set {a1, . . . , a3} ∪ {b1, . . . , b7}. Thus, by using
of Lemma 4.1, γ(SAG(S)) > 2. Hence n = 2.

Let ηi denote the nilpotency index associated with Ai for i = 1, 2. Suppose η2 ≥ 3. Consider x1 = A1× (0),
x2 = (0) × A2, x3 = A1 × A2, x4 = (0) × Aη−1

2 , y1 = S1 × (0), y2 = (0) × S2, y3 = A1 × S2, y4 = S1 × A2 and
y5 = S1 ×A

η−1
2 ∈W(S)∗. Since xi ∩Ann(y j) , 0 and y j ∩Ann(xi) , 0, K4,5 is a subgraph of SAG(S) generated

by the set {x1, . . . , a4} ∪ {y1, . . . , y5}. Thus, by using of Lemma 4.1, γ(SAG(S)) > 2. Hence η2 = 2. Similarly,
we can show that η1 = 2.

Let J ∈ I(S)∗ such that J , A1. u1 = A1 × (0), u2 = (0) × A2, u3 = A1 × A2, u4 = (0) × J, u5 = A1 × J,
v1 = S1 × (0), v2 = (0)×S2, v3 = A1 ×S2, v4 = S1 ×A2 ∈W(S)∗. Since ui ∩Ann(v j) , 0 and v j ∩Ann(ui) , 0,
K5,4 is a subgraph of SAG(S) generated by the set {u1, . . . ,u5} ∪ {v1, . . . , v4}. Thus, by using of Lemma 4.1,
γ(SAG(S)) > 2. Hence S1 has only one non-trivial ideal A1. In a similar manner, it can be demonstrated
that A2 is the only non-trivial ideal of S2. Thus, again by using of Theorem 4.3, γ(SAG(S)) = 1. Hence,
considering all the cases, we can conclude that γ(SAG(S)) , 2.

Lemma 4.7. Let S = D1 ×D2 × · · · ×Dm ×S1 ×S2 × · · · ×Sn be a CRU, where Di is a field, (S j,A j) is Artinian
local ring with A j , 0 and m,n ≥ 1. Then γ(SAG(S)) = 2⇐⇒ one of the following conditions is satisfied:

1. S = D1 ×S1, where A1, A2
1, and A3

1 constitute the only non-trivial ideals of S1.

Proof. Suppose γ(SAG(S)) = 2. If n ≥ 2, then by Lemma 4.6, γ(SAG(S)) , 2, a contradiction. Hence n = 1.
If m ≥ 3, then by Lemma 4.5, again γ(SAG(S)) > 2. Hence m ≤ 2. Let us examine the following cases:

Case(1): Suppose m = 2 and n = 1. Consider a1 = D1 × (0) × A1, a2 = (0) × (0) × A1, a3 = (0) × (0) × S1,
a4 = D1 × (0) × S1, b1 = D1 × D2 × (0), b2 = D1 × D2 × A1, b3 = (0) × D2 × (0), b4 = (0) × D2 × A1,
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b5 = (0) × D2 × S1 ∈ W(S)∗. Since ai ∩ Ann(b j) , (0) and Ann(ai) ∩ v j , (0), the graph K5,4 is a subgraph
of SAG(S) generated by the set {a1, . . . , a5} ∪ {b1, . . . , b4}. Thus, by using of Lemma 4.1, γ(SAG(S)) > 2, a
contradiction.

Case(2): Suppose n = m = 1. Set η1 to be the nilpotency index of S1. Suppose η1 ≥ 5. Consider
x1 = (0)×Aη1−1

1 , x2 = (0)×Aη1−2
1 , x3 = (0)×Aη1−3

1 , x4 = (0)×Aη1−4
1 , y1 = D1 × (0), y2 = (0)×S1, y3 = D1 ×A

η1−1
1 ,

y4 = D1 × A
η1−2
1 , y5 = D1 × A

η1−3
1 ∈ W(S)∗. Since xi ∩ Ann(y j) , 0 and y j ∩ Ann(xi) , 0, the graph K4,5

is a subgraph of SAG(S) generated by the set {x1, . . . , x4} ∪ {y1, . . . , y5}. Thus, by using of Lemma 4.1,
γ(SAG(S)) > 2, a contradiction. Hence η1 ≤ 4. If η1 ≤ 3, then by Theorems 2.1 and 4.3, γ(SAG(S)) ≤ 1, a
contradiction. Hence η1 = 4.

Let I ∈ I(S)∗ such that I , A1,A2
1,A

3
1. Consider c1 = (0) × A1, c2 = (0) × A2

1, c3 = (0) × A3
1, c4 = (0) × I,

d1 = D1 × (0), d2 = (0) ×S1, d3 = D1 × A1, d4 = D1 × A
2
1, d5 = D1 × A

3
1 ∈ W(S)∗. Since ci ∩ Ann(d j) , 0 and

d j ∩Ann(ci) , 0, the graph K4,5 is a subgraph of SAG(S) generated by the set {c1, . . . , c4} ∪ {d1, . . . , d5}. Thus,
by using of Lemma 4.1, γ(SAG(S)) > 2, a contradiction. Consequently, A1, A2

1, and A3
1 represent the only

non-trivial ideals of S1.
The converse follows from Figure 3.

Figure 3. Embedding of SAG(D ×S1) on Klein-bottle,

where the non-trivial ideals of S1 are exclusively A, A2, and A3.

(0) × A

(0) × AD × A D × A

D × AD × A (0) ×S1

(0) ×S1

D × (0)

D × (0)

D × A2

D × A2D × A3

D × A3(0) × A2

(0) × A3

In conclusion, we can summarize the main result of this section.

Theorem 4.8. Let S be an Artinian CRU. Then γ(SAG(S)) = 2⇐⇒ one of the following conditions is satisfied:
1. S � D×S1, whereD is a field and (S1,A) represents a local ring with A, A2, and A3 being the only non-trivial

ideals of S1.

Proof. The proof follows from Lemmas 4.4, 4.5, 4.6 and 4.7.

5. Book thickness of SAG(S)

In this section, we investigate the book thickness of the graph SAG(S) with a genus of at most one.
Firstly, we determine the book thickness of planar SAG(S) derived from the rings presented in Theorems
2.1, and we demonstrate that all planar SAG(S) have a book thickness of at most two.

The results presented in [9] will assist us in proving the main results of this section.
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Lemma 5.1. [9, Theorem 2.5] Let G be a connected graph. The following equivalences are valid:

1. G has book thickness zero if and only if it is a path.
2. G has book thickness less than or equal to 1 if and only if it is outerplanar.

Lemma 5.2. [9, Theorems 3.4, 3.5, 3.6]

1. bt(Kp) is given by
⌈ p

2

⌉
, where p ≥ 3.

2. bt(Kp,q) = p, where p ≤ q with q ≥ p2
− p + 1.

3. bt(K3,3) = 3 and bt(Kp,p) = p − 1, where p ≥ 4.

In the subsequent result, we assess the book thickness of SAG(S) in the context of planar graphs.

Theorem 5.3. Let S be an Artinian CRU such that SAG(S) is planar. Then the following hold:

1. bt(SAG(S)) = 0⇐⇒ either S is a local ring that has no more than two non-trivial ideals or S � D1 × D2,
where D1 and D2 are fields.

2. bt(SAG(S)) = 1⇐⇒ eitherS is either a local ring with three non-trivial ideals or isomorphic toD×S1, where
D is a field and (S1,A) is a local ring with a unique non-trivial ideal A.

3. bt(SAG(S)) = 2⇐⇒ either S is a local ring that has precisely four non-trivial ideals or S � D1 ×D2 ×D3,
where each Di is a field.

Proof. We will consider the rings identified in Theorem 2.1. IfS is a local ring with |I(S)∗| ≤ 4. If |I(S)∗| ≤ 2,
then SAG(S) � K1 or K2(= P2). Thus, by Lemma 5.1, bt(SAG(S)) = 0. If |I(S)∗| = 3, then SAG(S) � K3. Thus,
by Lemma 5.2, bt(SAG(S)) = 1. If |I(S)∗| = 4, then SAG(S) � K4. Thus, by Lemma 5.2, bt(SAG(S)) = 2. If
S � D1 ×D2, whereD1 andD2 are fields, then SAG(S) � K2(= P2). Thus, by Lemma 5.1, bt(SAG(S)) = 0. If
S � D×S1, whereDdenotes a field and (S1,A) represents a local ring with its only non-trivial ideal beingA,
then SAG(S) � C4 and hence 1-book embedding of SAG(S) is given in Figure 4. Finally, ifS � D1×D2×D3,
where each Di is a field, then 2-book embedding of SAG(S) is given in Figure 5.

Figure 4. 1-book embedding of SAG(D ×S1),

where A is the only non-trivial ideal associated with S1.

(0) ×S1 D × A D × (0) D × A

Figure 5. 2-book embedding of SAG(D1 ×D2 ×D3).

(0) ×D2 × (0) D1 × (0) × (0) (0) × (0) ×D3 D1 ×D2 × (0) (0) ×D2 ×D3 D1 × (0) ×D3

In the upcoming result, we establish the book thickness of SAG(S) with respect to the toroidal graph.

Theorem 5.4. Let S be an Artinian CRU with γ(SAG(S)) = 1. Then the following conditions is satisfied:

1. bt(SAG(S)) = 3⇐⇒ one of the following conditions is satisfied:
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(a) S is a local ring with 5 ≤ |I(S)∗| ≤ 6.

(b) S � S1 × S2, where each (Si,Ai) represents a local ring that has exactly one non-trivial ideal, denoted
by Ai.

(c) S � D×S1, whereD denotes a field and (S1,A) represents a local ring that has non-trivial ideals A and
A2.

2. bt(SAG(S)) = 4 ⇐⇒ S is either a local ring with 7 non-trivial ideals or isomorphic to D × S1, where D
represents a field and (S1,A) is a local ring having non-trivial ideals A, A2, and A3.

Proof. We need to examine the rings specified in Theorem 3.4. If S is a local ring with 5 ≤ |I(S)∗| ≤ 6,
then by Theorem 1.2, SAG(S) � K5 or K6. Thus, by Lemma 5.2, bt(SAG(S)) = 3. If S is a local ring with
|I(S)∗| = 7, then by Theorem 1.2, SAG(S) � K7. Thus, by Lemma 5.2, bt(SAG(S)) = 4.If S � S1 ×S2, where
each (Si,Ai) is local ring with unique non-trivial ideal Ai, then 3-book embedding of SAG(S) is given in
Figure 6. S � D × S1, where D denotes a field, and (S1,A) represents a local ring characterized by its
non-trivial ideals A and A2, then 3-book embedding of SAG(S) is given in Figure 7. IfS � D×S1, whereD
denotes a field and (S1,A) is a local ring characterized by its non-trivial ideals A, A2, and A3, then 4-book
embedding of SAG(S) is shown in Figure 8.

Figure 6. 3-book embedding of SAG(S1 ×S2),

where Ai is the only non-trivial ideal associated with Si.

S1 × (0) A1 ×S2 (0) × A2 A1 × A2 A1 × (0) S1 × A2 (0) ×S2

Figure 7. 3-book embedding of SAG(D ×S1),

where the only non-trivial ideals present in S1 are A and A2.

D × A2 D × A (0) × A (0) × A2 D × (0) (0) ×S1
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Figure 8. 4-book embedding of SAG(D ×S1),

where the non-trivial ideals of S1 are exclusively A, A2, and A3.

(0) × A (0) × A2 (0) × A3 D × A (0) ×S1 D × A2 D × A3 D × (0)

Conclusion

In this article, we have explored various aspects of graph theory as applied to the study of commutative
Artinian rings with identity. In the first section, we established some foundational definitions related to rings
and graph theory, introducing key graph concepts such as the zero-divisor graphΓ(S), the annihilating-ideal
graph AG(S), and the strong annihilating-ideal graph SAG(S). Subsequently, we classified the Artinian
CRU for which SAG(S) has an outerplanarity index of 2, while also determining the inner vertex number
of SAG(S) for these rings. In another section, we focused on identifying the Artinian CRU for which
SAG(S) is double toroidal, establishing that γ(SAG(S)) = 2. Further, we classified the Artinian CRU for
which SAG(S) corresponds to a Klein bottle, showing that γ(SAG(S)) = 2. Finally, we investigated the
book thickness of the graph SAG(S) with a genus of at most one, providing a comprehensive analysis of
its structural properties. The findings in this paper contribute to the understanding of the relationships
between algebraic structures and their corresponding graph representations, paving the way for future
research in this area.
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[10] D. Dolžan, The Wiener index and the Wiener complexity of the zero-divisor graph of a ring, Bull. Iran. Math. Soc. 51, (2025) article
number 10.

[11] K. Frank, Determining the smallest k such that G is k-outerplanar, Lecture Notes Comput. Sci. 4698 (2007) 359–370.
[12] Hsin-Ju Wang, Co-maximal graph of non-commutative rings, Linear Algebra and its Applica- tions, 430 (2–3), (2009) 633-641.
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