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Abstract. We are going to explore neutrosophic quasi-normed space. We will define what a neutrosophic
quasi-norm is and show an example. As we know, for p ∈ (0,∞) space (ℓP, d) is a paratopological vector
space but it does not possess a norm such that topology generated by this norm is compatible with
topology generated by metric d. We give an example that topology generated by neutrosophic quasi norm
is compatible with topology generated by metric d. In this paper, we will prove the open mapping theorem
and the closed graph theorem for neutrosophic quasi-normed space.

1. Introduction

In 1965, L. A. Zadeh unveiled a pioneering theory that revolutionized the understanding of sets, in-
troducing the innovative concept of fuzzy sets which expanded the traditional crisp set theory [38]. The
exploration of fuzzy norms within linear spaces began with Katsaras’ initial proposition [19], later aug-
mented by Felbin’s alternative definition in 1992, which incorporated a metric of the Kaleva and Seikkala
type [13, 18]. Cheng and Mordeson [12] further delved into this realm in 1994, while recent studies by
Xiao et al. [37] delved into the intricate relationships between the axioms of KM fuzzy normed spaces and
KM(Kramosil and Michalek) fuzzy metric spaces.

Building upon this foundation, Bag and Samanta [8], Cheng and Mordeson[12] introduced a nuanced
variation of fuzzy norms tailored for specific applications. The evolution of fuzzy functional analysis,
as discussed in references [1] to [32], has been heavily influenced by these advancements. Alegre and
Romaguera [2, 8] proposed the concept of fuzzy quasi-norms with a general t-norm, diverging from the
traditional symmetry of fuzzy norms. Furthermore, they extended the application o f fuzzy quasi-norms
to characterize paratopological vector spaces [3].

In their work cited in [4], Alegre and Romaguera presented notable findings, including the uniform
boundedness theorem, within fuzzy quasi-normed fields. Gao et al. recently contributed a decomposition
t heorem for fuzzy quasi-norms [14]. Hussein and Al-Basri explored the completion of quasi-fuzzy normed
algebras over fuzzy fields [17]. As noted in [2], fuzzy quasi-normed spaces provide a fitting framework for
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analyzing the complexity of various exponential time algorithms and are pivotal in discussions concerning
approximation theory and theoretical computer science.

The pursuit of further exploration into fuzzy quasi-normed spaces remains imperative. The open
mapping theorem in functional analysis holds profound significance, a fact underscored by Wu and Li
recent discussion of it within the context of fuzzy quasi-normed spaces [36].

In 1984, Atanassov [7] made a significant contribution to the realm of fuzzy sets by introducing in-
tuitionistic fuzzy sets. This groundbreaking concept introduced a novel membership function designed
to quantify degrees of non-belongingness . Following this pivotal development, the exploration of intu-
itionistic fuzzy structures continued to evolve. In 2004, Park delved into the exploration of intuitionistic
fuzzy metric spaces, further expanding the scope and applications of these fuzzy structures [30]. Building
upon Park’s work, Saddati and Park made significant strides in 2006 with their groundbreaking research
on intuitionistic fuzzy normed spaces, pushing the boundaries of this domain and opening new avenues
for exploration [31].

Neutrosophic set theory, as a paradigm distinct from fuzzy set theory, introduces a revolutionary
extension by incorporating the notion of neutrality as a third indeterminent component alongside truth and
falsehood. In contrast to the binary nature of traditional set theory and gradation of membership degrees
in fuzzy sets, neutrosophic sets provide a richer framework that acknowledges the inherent ambiguity and
uncertainty in data and decision making processes. Within, this framework, elements can exhibit varying
degrees of inclusion, exclusion, or neutrality, enabling a more nuanced representation complex phenomena.
This expansion not only enhances our ability to model analyze real-world system but also opens up new
avenues for exploring indeterminacy and vagueness in diverse fields ranging from artificial intelligence
and decision sciences to engineering and social sciences. Recent studies by Aral, Kandemir and Et M [5, 6]
and Chandan et al. [11] have further advanced the understanding of neutrosophic normed space.

Expanding beyond intuitionistic fuzzy sets, the concept of neutrosophic sets emerged as a generalization
of fuzzy structures. Introduced by Smarandache et al., neutrosophic sets provided a broader framework for
dealing with uncertainty and imprecision [35], [34]. Furthering the study of neutrosophic sets, Kirişci and
Şimşek defined a metric and a norm tailored specifically for neutrosophic sets, alongside an exploration
of their topological properties [24], [25]. These developments expanded the toolkit available for handling
complex and uncertain data, offering new perspectives on fuzzy systems.

Recent studies by Khan and Faisal [20–23] have advanced the understanding of neutrosophic and
intuitionistic fuzzy normed spaces through Tauberian theorems, Zweier Sequences, topological analysis
and finding new sequence spaces via Jordan totient operator. In the ongoing pursuit of advancing the
understanding and application of fuzzy structures, this article introduces the c oncept of neutrosophic
quasi-normed spaces. Within this framework, the open mapping theorem and closed graph theorem are
established, representing significant milestones in the field’s progress. This contribution marks a notable
advancement, offering enhanced capabilities for modeling and analyzing uncertain and imprecise data,
thus furthering the practical utility of fuzzy theory in various domains.

2. Preliminaries

Definition 2.1. ([33]) A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] qualifies as a continuous t − norm if it
adheres to the following properties:

(a) s ◦ t = t ◦ s for all s, t ∈ [0, 1];
(b) s ◦ (t ◦ u) = (s ◦ t) ◦ u for all s, t,u ∈ [0, 1];
(c) s ◦ t ≤ u ◦ d whenever s ≤ t and u ≤ d for all s, t,u, d ∈ [0, 1];
(d) s ◦ 1 = s for all s ∈ [0, 1];
(e) ◦ is continuous.

Definition 2.2. ([33]) A binary operation ⋆ : [0, 1] × [0, 1] → [0, 1] qualifies as a continuous t − conorm if it
adheres to the following properties:

(a) s ⋆ t = t ⋆ s for all s, t ∈ [0, 1];
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(b) s ⋆ (t ⋆ u) = (s ⋆ t) ⋆ u for all s, t,u ∈ [0, 1];
(c) s ⋆ t ≤ u ⋆ d whenever s ≤ u and t ≤ d for all s, t,u, d ∈ [0, 1];
(d) s ⋆ 0 = s for all s ∈ [0, 1];
(e) ⋆ is continuous.

Example 2.3. Let ◦ be a binary operation on [0, 1] and defined as ◦(s,u) = min{s,u} for all s,u ∈ [0, 1]. Then
◦ is a continuous t − norm. Usually this t − norm is denoted by ∧.

Example 2.4. Let ⋆ be a binary operation on [0, 1] and defined as ⋆(s,u) = max{s,u} for all s,u ∈ [0, 1]. Then
⋆ is a continuous t − conorm. Usually this t − conorm is denoted by ∨.

Proposition 2.5. ([16]) Suppose ◦ and ⋆ function as continuous t − norm and t − conorm, respectively. Then

(a) If 0 < c̆1 < c̆2 < 1, there exists c̆3, c̆4 ∈ (0, 1) such that c̆1 ◦ c̆3 ≥ c̆2 and c̆1 ≥ c̆4 ⋆ c̆2.
(b) If 0 < c̆5 < 1, then there exists c̆6, c̆7 ∈ (0, 1) such that c̆6 ◦ c̆6 ≥ c̆5 and c̆7 ⋆ c̆7 ≤ c̆5.

Remark 2.6. ([36]P) Let p ∈ (0,∞) and ℓp be the collection of all p − summable sequences i.e.;

ℓp =
{
x = (xn) ∈ ω :

∞∑
n=1

|xn|
p < ∞

}
. (1)

We know that d(x, y) =
∑
∞

n=0 |xn − yn|, is a translation invariant metric on ℓp for all p ∈ (0,∞). Let τd is the
topology generated by metric d. The space (ℓp, τd) is a topological vector space. But for 0 < p < 1, ℓp does
not possess a norm; such that topology generated by this norm is compatible with τd. For 1 ≤ p < ∞, ℓp is a
norm linear space with norm defined as follows

||ξ||p =
( ∞∑

n=1

|ξn|
p
)1/p

.

Each neutrosophic normNN induces a T0 topology τNN on X, generated by the base of open balls

B(x) = {BNN (x, c̆, t̆) : x ∈ X, t̆ > 0 and c̆ ∈ (0, 1)} (2)

where

BNN (x, c̆, t̆) = {y ∈ X : P(x − y, t̆) > 1 − c̆, Q(x − y, t̆) < c̆,R(x − y, t̆) < c̆}. (3)

From equation 2, we can define base of open balls center at Θ(origin)

B(Θ) = {BNN (Θ, c̆, t̆) : Θ ∈ X, t̆ > 0 and c̆ ∈ (0, 1)} (4)

where

BNN (Θ, c̆, t̆) = {y ∈ X : P(y, t̆) > 1 − c̆, Q(y, t̆) < c̆, R(y, t̆) < c̆}. (5)

Definition 2.7. ([36]) A paratopological vector space is denoted by the 4-tuple
(
X,+, ., τ

)
, wherein

(
X, τ

)
constitutes a T0 topology on X and the addition operation + is continuous. For any neighborhood B of
t̆ξ, where ξ ∈ X and t̆ ≥ 0, there exists a neighborhood B′ of ξ and a positive ϵ > 0 such that the interval
[t̆, t̆ + ϵ)B′ ⊆ B.

Theorem 2.8. ([36]P) In the context of a FQNS
(
X,N fq , ◦

)
it follows that

(
X, τN fq

, ◦
)

constitutes a quasi-metrizable
paratopological vector space.



V. A. Khaan, M. Faisal / Filomat 39:18 (2025), 6345–6360 6348

To know more about paratopological vector spaces see [3]. Simply paratopological vector space
(
X,+, ., τ

)
is represented by

(
X, τ

)
, if no confusion arises.

Remark 2.9. ([36]) If t − norm is chosen as ◦(a, b) = min{a, b}, then BN (Θ) is convex.

Definition 2.10. ([36]) Let M be a subset of real vector space X. Then

(a) M is semibalanced if x ∈M, c̆x ∈M whenever c̆ ∈ [0, 1].
(b) M is absorbing if for each x ∈ X, there is c̆0 > 0 such that c̆0x ∈M.

Definition 2.11. ([28]) Mapping L : X → Y is open map, if the set F(B) is open in Y for every open set B in
X.

Theorem 2.12. ([36]) Let
(
X,N fq , ◦

)
and (Y,N ′ fq , ◦

′) be FQNS. Assume that
(
X,N fq , ◦

)
is right N fq -complete and

(Y,N ′ fq , ◦
′) is Hausdorff and of the half second category. If T : X→ Y is a linear, surjective, and continuous mapping,

then T is open.

3. Main results

Definition 3.1. Let X be a real vector space, and ◦, ⋆ be continuous t−norm and t− conorm respectively. Let
P,Q and R be fuzzy sets on X × [0,∞). Then

(
X,P,Q,R, ◦, ⋆

)
is said to be neutrosophic quasi norm on X, if

(a) P(x, 0) = 0; for all x ∈ X
(b) P(x, t̆) = P(−x, t̆) = 1 for all t̆ > 0 ⇐⇒ x = 0;

(c) P(αx, t̆) = P
(
x,

t̆
α

)
for all α > 0;

(d) P(x, t̆) ◦ P(y, s̆) ≤ P(x + y, t̆ + s̆) for all x, y ∈ X and s̆, t̆ > 0;
(e) P(x,−) : [0,∞)→ [0, 1] is left continuous;
(f) limt̆→∞P(x, t̆) = 1;
(g) Q(x, 0) = 1; for all x ∈ X
(h) Q(x, t̆) = Q(−x, t̆) = 0 for all t̆ > 0 ⇐⇒ x = 0;

(i) Q(αx, t̆) = Q
(
x,

t̆
α

)
for all α > 0;

(j) Q(x, t̆) ⋆ Q(y, s̆) ≥ Q(x + y, t̆ + s̆) for all x, y ∈ X and s̆, t̆ > 0;
(k) Q(x,−) : [0,∞)→ [0, 1] is right continuous;
(l) limt̆→∞Q(x, t̆) = 0;

(m) R(x, 0) = 1; for all x ∈ X,
(n) R(x, t̆) = R(−x, t̆) = 0 if and only x = y, for all t̆ > 0

(o) R
(
αx, t̆

)
= R

(
x,

t̆
α

)
for α > 0;

(p) R(x, t̆) ⋆ Q(y, s̆) ≥ Q(x + y, t̆ + s̆);
(q) R(x,−) : [0,∞)→ [0, 1] is right continuous.

A neutrosophic quasi norm on X is neutrosophic norm if P(αx, t̆) = P
(
x,

t̆
|α|

)
, Q(αx, t̆) = Q

(
x,

t̆
|α|

)
and R

(
αx, t̆

)
= R

(
x,

t̆
|α|

)
for α , 0. We will denote neutrosophic quasi norm by N = (P,Q,R). If N is
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neutrosophic quasi norm on X, thanN−1 is also neutrosophic quasi norm, whereN−1 is (P−1,Q−1,R−1) and
P
−1(x, t̆) = P(−x, t̆), Q−1(x, t̆) = Q(−x, t̆), R−1(x, t̆) = R(−x, t̆). Moreover,N s defined as

N
s =

(
min{P(x, t̆),P(−x, t̆)},max{Q(x, t̆),Q(−x, t̆)},

max{R(x, t̆),R(−x, t̆)}
)

is neutrosophic norm on X.

Here, we present an exemplary instance of a FQNS, strategically adapted from the literature, spanning
references [16], [33], [3], [2], [4], [14] ,[17], and [15]. In their pursuit of a systematic framework to dissect the
complexities inherent in certain exponential time algorithms, Garcı́a-Raffi et al. [15] introduced what they
termed the dual p-complexity (quasi-normed) space, denoted as (C∗p, σp).

In this setup, C∗p encompasses functions 1 : N→ R that satisfy the condition
∑
∞

n=0
1
2n |1(n)|p < +∞ . The

weight function σp(1) is crafted as;

σp(1) =

 ∞∑
n=0

(2−n max{1(n), 0})p


1/p

catering to all 1 within C∗p. Consider the set ℓp, comprising x = (xn)n∈N for which
∑
∞

n=0 |xn|
p < ∞. Notably,

Garcı́a-Raffi et al. [15] demonstrated an isometric isomorphism between (C∗p, σp) and the quasi-normed

linear space (ℓp, ∥ · ∥+p), where 1 ≤ p < ∞. Here, ∥x∥+p =
(∑∞

n=0(xn ∨ 0)p)1/p for all x in ℓp.

In the intriguing scenario of 0 < p < 1, the resulting space is commonly acknowledged as a quasi-
metrizable topological vector space devoid of quasi-normability. However, as elaborated in [2], it emerges
that every (ℓp, ∥ · ∥+p) space, 0 < p < ∞ , manifests neutrosophic quasi-normability through the devised
neutrosophic quasi-norm (N , ◦), define as in the following example;

Definition 3.2. A sequence {xn} in
(
X, τN

)
converges to x if;

lim
n→∞
P(xn − x, t) = 1,

lim
n→∞
Q(xn − x, t) = 0

and

lim
n→∞
R(xn − x, t) = 0

for all t > 0.We denote closure and interior of a set A in (X, τN ) by clNA and intNA respectively.

Remark 3.3. BN (x, c̆2, t̆) ⊆ BN (x, c̆1, t̆), if c̆1 > c̆2 > 0 and t̆1 > t̆2 > 0 then BN (x, c̆2, t̆2) ⊆ BN (x, c̆1, t̆1). Now the
set {BN (x, c̆n, t̆n) : c̆n ∈ (0, 1), t̆n > 0,n ∈ N} forms a fundamental set of neighborhoods of x in

(
X, τN

)
, where

both sequences {xn} and {t̆n} converges to 0.

Example 3.4. Let (ℓp, || · ||+p) be a quasi normed linear space, where 1 ≤ p < ∞ and

||x||+p =
( ∞∑

n=0

max{xn, 0}p
)1/p

.
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In the scenario where x = (xn) ∈ ℓp and for 0 < p < 1, it constitutes a quasi-metrizable topological
vector space but lacks quasi-normability. Nevertheless, each (ℓp, ||.||+p) can be characterized as neutrosophic
quasi-normable through an neutrosophic quasi-norm (P,Q) defined as follows; for 0 < p < 1,

Pp(x, t) =


tp

tp +

∞∑
n=0

(
max{xn, 0}

)p
, t > 0

0, t = 0,

(6)

Qp(x, t) =



∞∑
n=0

(
max{xn, 0}

)p

tp +

∞∑
n=0

(
max{xn, 0}

)p
, t > 0

1, t = 0

(7)

and

Rp(x, t) =



2
∞∑

n=0

(
max{xn, 0}

)p

tp + 2
∞∑

n=0

(
max{xn, 0}

)p
, t > 0

1, t = 0.

(8)

For 1 ≤ p < ∞,

Pp(x, t) =


t

t +
( ∞∑

n=0

(
max{xn, 0}

)p
)1/p
, t > 0

0, t = 0,

(9)

Qp(x, t) =



( ∞∑
n=0

(max{xn, 0})p
)1/p

t +
( ∞∑

n=0

(max{xn, 0})p
)1/p
, t > 0

1, t = 0

(10)

and

Rp(x, t) =



2
( ∞∑

n=0

(max{xn, 0})p
)1/p

t + 2
( ∞∑

n=0

(max{xn, 0})p
)1/p
, t > 0

1, t = 0,

(11)

where
( ∞∑

n=0

(
max{xn, 0}

)p
)1/p

= ||xn||+p.
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4. Open mapping and closed graph theorems

In this segment, we aim to formulate the close mapping theorem within the context of FQNS. To pave
the way for this discussion, we initially present several lemmas.

Lemma 4.1. ([36]) Let
(
X,T, I,F, ∗, ⋄

)
be neutrosophic quasi normed space and B(Θ) be the collection of open balls

center at origin. Then for t > 0 and t ∈ (0, 1)
(a) BN (Θ, r, t) is absorbing .
(b) BN (Θ, r, t) is semibalanced.

(c) λBN (Θ, r, t) = BN
(
Θ, r, λt

)
for every λ > 0,

(d) if B ∈ B(Θ), there is B′ ∈ B(Θ) such that B′ + B′ ⊆ B.
(e) if B,B′ ∈ B(Θ), there is B′′ ∈ B(Θ) such that B′′ ⊆ B ∩ B′.

Lemma 4.2. ([36]) Let M be a subset of neutrosophic quasi normed space
(
V,T, I,F, ∗, ⋄

)
, t > 0. Then:

(a) intN (tM) = t intN (M)
(b) clN (tM) = t clN (M).

Lemma 4.3. ([36]) Let
(
X, τ

)
be a paratopological vector space.

(a) If M is convex subset of X and int(M) , R then (1 − α)intA + αM ⊆ int(M), where α ∈ (0, 1) and consequently
intM is convex.

(b) If M is absorbing, convex subset of X and intM , R then Θ ∈ int(AM).
(c) If B(Θ) is a base of Θ-neighborhoods, then cl(M) = {M − B : B ∈ B}.

Lemma 4.4. ([36]) If A is absorbent and convex subset of NQNS
(
X,P,Q,R, ◦, ⋆

)
then cl(A).

Definition 4.5. Let
(
X,P,Q,R, ◦, ⋆

)
be NQNS then a sequence {xn} in X is left/rightN−Cauchy/(N ′−Cauchy)

with respect to topology τN/(τN ′ ) if xn − xm → 0 as m,n→∞, for m > n respectively.

Definition 4.6. A NQNS
(
X,P,Q,R, ◦, ⋆

)
is said to be left/right complete if every left/rightN−Cauchy/N ′−

Cauchy sequence is convergent in X.

Definition 4.7. Let S be a subspace of a NQNS
(
X,P,Q,R, ◦, ⋆

)
, then S said to be of half second category if

S =
∞⋃

n=1
Mn, there exists positive integer m such that

intN ′ (cl
N
′−1 Mm) , R.

Definition 4.8. Let
(
X,PX,QX,RX, ◦, ⋆

)
and

(
Y,PY,QY,RY, ◦, ⋆

)
be two neutrosophic normed spaces then

their product is defined as; for all (x, y) ∈
(
X × Y

)
and t > 0(

X,PX,QX,RX, ◦, ⋆
)
×

(
Y,PY,QY,RY, ◦, ⋆

)
=

(
X × Y,PX ◦ PY,QX ⋆ QY,

RX ⋆ RY, ◦, ⋆
)

where

P

(
(x, y), t

)
= PX(x, t) ◦ PY(y, t) = PX ◦ PY

Q

(
(x, y), t

)
= QX(x, t) ⋆ QY(y, t) = QX ⋆ QY

R

(
(x, y), t

)
= RX(x, t) ⋆ RY(y, t) = RX ⋆ RY

is again a neutrosophic normed space. We will call it product neutrosophic normed space.
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Lemma 4.9. Let
(
X,PX,QX,RX, ◦, ⋆

)
and

(
Y,PY,QY,RY, ◦, ⋆

)
be NQNS. Let N = NX × NY, where NX =

(PX,QX,RX) andNY = (PY,QY,RY), for any (x, y) ∈ X × Y,

(a) if r1, r2 ∈ (0, 1) and t1, t2 > 0 then

BN
(
(x, y), r, t

)
⊆ BNX

(
x, r1, t1

)
× BNY

(
y, r2, t2

)
(12)

where r = min(r1, r2) and t = min(t1, t2).
(b) if r ∈ (0, 1) and t > 0 then there exists s ∈ (0, 1) such that

BN
(
(x, y), r, t

)
⊇ BNX

(
x, s, t

)
× BNY

(
y, s, t

)
. (13)

Proof. (a) Let (x1, y1) ∈ BN
(
(x, y), r, t

)
then we have that

1 − r < P
(
(x1 − x, y1 − y), t

)
= PX(x1 − x, t) ◦ PY(y1 − y, t). (14)

Since r = min(r1, r2) we get

r1 ≥ r
1 − r1 ≤ 1 − r
1 − r1 ≤ PX(x1 − x, t) ◦ PY(y1 − y, t)
1 − r1 < PX(x1 − x, t1).

This implies that x1 ∈ BNX

(
x, r1, t1

)
. Similarly,

r2 ≥ r
1 − r2 ≤ 1 − r
1 − r2 ≤ PX(x1 − x, t) ◦ PY(y1 − y, t)
1 − r2 < PY(y1 − y, t2).

Now we will check for Q and R. Since, we assumed that (x1, y1) ∈ BN
(
(x, y), r, t

)
, we have

r > Q
(
(x1 − x, y1 − y), t

)
= QX(x1 − x, t) ⋆ QY(y1 − y, t). (15)

Since, r ≤ r1 we have

r1 ≥ r
≥ QX(x1 − x, t) ⋆ QY(y1 − y, t)

r1 > QX(x1 − x, t1).

Similarly

r2 ≥ r
≥ QX(x1 − x, t) ⋆ QY(y1 − y, t)

r2 > QY(y1 − y, t2).
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In a similar manner for R , we get

r1 > RX(x1 − x, t1),
r2 > RY(y1 − y, t2).

Hence finally, we get x1 ∈ BNX

(
x, r1, t1

)
and y1 ∈ BNY

(
y, r2, t2

)
. This implies that (x1, y1) ∈ BNX

(
x, r1, t1

)
×

BNY

(
y, r2, t2

)
. Hence equation 12 holds.

(b) From Proposition 2.5, there exists s ∈ (0, 1), such that (1 − s) ◦ (1 − s) > 1 − r. For any (x1, y1) ∈
BNX

(
x, s, t

)
× BNY

(
y, r, t

)
, we get

PX(x1 − x, t) > 1 − s,
QX(x1 − x, t) < s,
RX(x1 − x, t) < s

and

PY(y1 − y, t) > 1 − s
QY(y1 − y, t) < s
RY(y1 − y, t) < s.

Therefore

P

(
(x1, y1) − (x, y), t

)
= P

(
(x1 − x, y1 − y), t

)
= PX(x1 − x, t) ◦ PY(y1 − y, t)
> (1 − s) ◦ (1 − s)
> 1 − r,

Q

(
(x1, y1) − (x, y), t

)
= Q

(
(x1 − x, y1 − y), t

)
= QX(x1 − x, t) ⋆ QY(y1 − y, t)
< s ⋆ s
< r

and

R

(
(x1, y1) − (x, y), t

)
= R

(
(x1 − x, y1 − y), t

)
= RX(x1 − x, t) ⋆ RY(y1 − y, t)
< s ⋆ s
< r.

Hence (x1, y1) ∈ BN
(
(x, y), r, t

)
.

Theorem 4.10. Let
(
X,N1, ◦, ⋆

)
and

(
Y,N2, ◦, ⋆

)
be NQNS. Let (X×Y,N , ◦, ⋆) be product NQNS,N = N1×N2.

Then the following hold;
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(a) τN = τN1 × τN2 ,
(b) If X is rightN1 − complete and Y is rightN2 − complete then X × Y isN1 ×N2 − complete.

Proof. (a) The proof is straight and forward from lemma 4.9. (b) Suppose that (xn, yn) be a sequence in X×Y
and left N − Cauchy i.e. (xm, ym) − (xn,−yn) = (xm − xn, yn − ym) −→ (0X, 0Y) as m,n −→ ∞, with respect to
product neutrosophic quasi norm τN . Consequently, from theorem 4.10a, we can see that sequences xn, yn
are leftN1 − Cauchy and leftN2 − Cauchy respectively.

Since X and Y are rightN1 complete and rightN2 complete respectively. This guarantees that sequences
xn and yn are convergent to some x ∈ X and y ∈ Y, with respect to τN−1

1
and τN−1

2
respectively. Again

from theorem 4.10a, sequence (xn, yn) is convergent to (x, y) with respect to τN−1 . Hence X × Y is right
N1 ×N2 − complete.

Open Mapping Theorem

Theorem 4.11. Let
(
X,P,Q,R, ◦, ⋆

)
and

(
Y,P′,Q′,R′, ◦′, ⋆

)
be NQNS. Suppose that

(
X,P,Q,R, ◦, ⋆

)
is ri1ht (P,Q,R)−

complete and
(
Y,P′,Q′, ◦′, ⋆′

)
is Hausdorff and of half second category. If T : X → Y is linear, surjective and con-

tinuous, then T is open.

Proof. Let B(ΘX) be the family of open balls center at origin Θ. By remark 2.9 and lemma 4.1, for any

U = BN (ΘX, r̂, t̂) ∈ B(ΘX), U is absorbent, semibalanced and convex, hence X =
∞⋃

n=1
nU. Since T is onto and

linear Y = T(X) =
∞⋃

n=1
nT(U). Since

(
Y,P′,Q′, ◦′, ⋆′

)
is of half second category, there exists n ∈ N such that

intN ′ cl
N
′−1 nT(U) , R. From lemma 4.2, we have intN ′ cl

N
′−1 T(U) , R. Since T is linear and onto, T(U) is

absorbing and convex. From lemma 4.4, we have cl
N
′−1 (T(U)) is absorbing and convex. from lemma 4.3,

ΘY ∈ intN ′ cl
N
′−1 T(U). By using the definition of interior of a set, there exists an open ball BN ′ (ΘY, , r′, t′)

such that

ΘY ∈ BN ′ (ΘY, r′, t′) ⊆ cl
N
′−1 T(U). (16)

Let Un = BN

(
ΘX,

r̂
2n ,

t̂
2n+1

)
. Then Un is a local base at ΘX. For any Un, n ∈N from equation 16, there exists

B(n)
N ′
= BN ′ (ΘY, r′n, t′n), such that

BN ′ (ΘY, r′n, t
′

n) ⊆ cl
N
′−1 T(Un). (17)

Where r′n ∈ (0, 1) and t′n > 0. And from remark 3.3, we have that limn→∞ r′n = 0 and limn→∞ t′n = 0. By
definition of open map, we have to show that T maps open sets in

(
X,P,Q,R, ◦, ⋆

)
onto open sets in

(Y,P′,Q′, ◦′, ⋆′) i.e. we will show that

B(1)
N ′
= BN ′ (ΘY, r′1, t

′

1),⊆ T(U). (18)

Here, N = (P,Q) and N ′ = (P′,Q′) is neutrosophic quasi norms on X and Y respectively. From equation
17, we have for n = 1

BN ′ (ΘY, r′1, t
′

1) ⊆ cl
N
′−1 T(U1).

Let y ∈ BN ′ (ΘY, r′1, t
′

1), there exists x1 ∈ U1 such that

P
′−1(Tx1 − y, t′2) > 1 − r′2,

Q
′−1(Tx1 − y, t′2) < r′2,

R
′−1(Tx1 − y, t′2) < r′2
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or

P
′(y − Tx1, t′2) > 1 − r′2,
Q
′(y − Tx1, t′2) < r′2,
R
′(y − Tx1, t′2) < r′2.

This implies that,

y − Tx1 ∈ BN ′ (ΘY, r′2, t
′

2) ⊆ cl
N
′−1 T(U2).

So, there exists x2 ∈ U2 such that

P
′−1(Tx2 + Tx1 − y, t′3) > 1 − r′3
Q
′−1(Tx2 + Tx1 − y, t′3) < r′3
R
′−1(Tx2 + Tx1 − y, t′3) < r′3.

or

P
′−1(y − Tx2 − Tx1, t′3) > 1 − r′3,

Q
′−1(y − Tx2 − Tx1, t′3) < r′3,

R
′−1(y − Tx2 − Tx1, t′3) < r′3.

On continuing this process, we have

P
′(y − Txn − Txn−1 − ...... − Tx2 − Tx1, t′n + 1) > 1 − r′n+1

Q
′(y − Txn − Txn−1 − ...... − Tx2 − Tx1, t′n + 1) < r′n+1

R
′(y − Txn − Txn−1 − ...... − Tx2 − Tx1, t′n + 1) < r′n+1.

This implies that sequence Txn − Txn−1 − ...... − Tx2 − Tx1 → y as n → ∞, for r′n ∈ (0, 1) and t′n > 0. Since

xk ∈ Uk = BN

(
ΘX,

r̂
2k
,

t̂
2k+1

)
i.e., P

(
xk,

t̂
2k+1

)
> 1 −

r̂
2k

, Q
(
xk,

t̂
2k+1

)
<

r̂
2k

and R
(
xk,

t̂
2k+1

)
<

r̂
2k

. Let sn =

k=n∑
k=1

xk,

for m > n;

P

(
sm − sn,

1
2n+1

(
1 −

1
2m−n

)
t̂
)
= P

 m∑
k=1

xk −

n∑
k=1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂


= P

( m∑
k=n+1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= P

( m∑
k=n+1

xk,
m∑

k=n+1

1
2k+1

t̂
)

≥ min
n+1≤k≤m

P

(
xk,

1
2k+1

t̂
)

≥ min
n+1≤k≤m

(
1 −

r̂
2k

)
.
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Similarly,

Q

(
sm − sn,

1
2n+1

(
1 −

1
2m−n

)
t̂
)
= Q

( m∑
k=1

xk −

n∑
k=1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= Q

( m∑
k=n+1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= Q

( m∑
k=n+1

xk,
m∑

k=n+1

1
2k+1

t̂
)

≤ max
n+1≤k≤m

Q

(
xk,

1
2k+1

t̂
)

≤ max
n+1≤k≤m

(
r̂
2k

)
,

and

R

(
sm − sn,

1
2n+1

(
1 −

1
2m−n

)
t̂
)
= R

( m∑
k=1

xk −

n∑
k=1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= R

( m∑
k=n+1

xk,
1

2n+1

(
1 −

1
2m−n

)
t̂
)

= R

( m∑
k=n+1

xk,
m∑

k=n+1

1
2k+1

t̂
)

≤ max
n+1≤k≤m

R

(
xk,

1
2k+1

t̂
)

≤ max
n+1≤k≤m

(
r̂
2k

)
.

We get that if m,n→ ∞ then P → 1, Q → 0 and R → 0. Hence sequence sn is left N − Cauchy. By right

N - completeness of
(
X,P,Q,R, ◦, ⋆

)
, which guarantees that there exists some x ∈ X such that sn

N
−1

−−−→ x as
n→∞. Since T is continuous, we have

n∑
k=1

Txk
N
′−1

−−−→ Tx.
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Since (Y, τN ) is Hausdorff. So (Y, τ
N ′
−1 ) will be Hausdorff. Hence, y = Tx.

P(x, t̂) = P
(
x − sn + sn,

t̂
2
+

t̂
2

)
≥ min

{
P

(
x − sn,

t̂
2

)
,P

(
sn,

t̂
2

)}
≥ min

{
P
−1

(
sn − x,

t̂
2

)
,P

(
sn,

t̂
2

)}
≥ min

{
P
−1

(
sn − x,

t̂
2

)
,P

( n∑
k=1

xk,
t̂
2

)}

≥ min
{
P
−1

(
sn − x,

t̂
2

)
,P

( n∑
k=1

xk,
t̂
2

)}

≥ min
{
P
−1

(
sn − x,

t̂
2

)
,P

( n∑
k=1

xk,
n∑

k=1

t̂
2k+1

)}
≥ min

{
P
−1

(
sn − x,

t̂
2

)
, min

1≤k≤n
P

(
xk,

t̂
2k+1

)}
≥ min

{
P
−1

(
sn − x,

t̂
2

)
,

(
1 −

r̂
2k

)}
.

Since sn
N
−1

−−−→ x that means P−1

(
sn − x,

t̂
2

)
> 1 − r̂, for all t̂ > 0 and r̂ ∈ (0, 1). We have,

P(x, t̂) > 1 − r̂.

Similarly, for Q(x, t̂)

Q(x, t̂) = Q
(
x − sn + sn,

t̂
2
+

t̂
2

)
≤ max

{
Q

(
x − sn,

t̂
2

)
,Q

(
sn,

t̂
2

)}
≤ max

{
Q
−1

(
sn − x,

t̂
2

)
,Q

(
sn,

t̂
2

)}
≤ max

{
Q
−1

(
sn − x,

t̂
2

)
,Q

( n∑
k=1

xk,
t̂
2

)}

≤ max
{
Q
−1

(
sn − x,

t̂
2

)
,Q

( n∑
k=1

xk,
t̂
2

)}

≤ max
{
Q
−1

(
sn − x,

t̂
2

)
,Q

( n∑
k=1

xk,
n∑

k=1

t̂
2k+1

)}
≤ max

{
Q
−1

(
sn − x,

t̂
2

)
,max

1≤k≤n
Q

(
xk,

t̂
2k+1

)}
≤ max

{
Q
−1

(
sn − x,

t̂
2

)
,

(
r̂
2k

)}
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and

R(x, t̂) = R
(
x − sn + sn,

t̂
2
+

t̂
2

)
≤ max

{
R

(
x − sn,

t̂
2

)
,R

(
sn,

t̂
2

)}
≤ max

{
R
−1

(
sn − x,

t̂
2

)
,R

(
sn,

t̂
2

)}
≤ max

{
R
−1

(
sn − x,

t̂
2

)
,R

( n∑
k=1

xk,
t̂
2

)}

≤ max
{
R
−1

(
sn − x,

t̂
2

)
,R

( n∑
k=1

xk,
t̂
2

)}

≤ max
{
R
−1

(
sn − x,

t̂
2

)
,R

( n∑
k=1

xk,
n∑

k=1

t̂
2k+1

)}
≤ max

{
R
−1

(
sn − x,

t̂
2

)
,max

1≤k≤n
R

(
xk,

t̂
2k+1

)}
≤ max

{
R
−1

(
sn − x,

t̂
2

)
,

(
r̂
2k

)}
.

Since sn
N
−1

−−−→ x that means Q−1

(
sn − x,

t̂
2

)
< r̂, R−1

(
sn − x,

t̂
2

)
< r̂, for all t̂ > 0 and r̂ ∈ (0, 1). Hence x ∈ U =

BN (ΘX, r̂, t̂) and shows that y = Tx ∈ T(U). So, equation 18 holds. This completes the proof.[12]

Let (X,N1, ◦, ⋆) and (Y,N2, ◦, ⋆) be NQNS and L : (X,N1, ◦, ⋆) −→ (Y,N2, ◦, ⋆) be a mapping. The set

ΓL =
{
(x, y) ∈ X × Y : y = L(x)

}
(19)

is called the graph of L. Then is said to be closed if ΓL is closed with respect to τN1 × τN2 .

From the open mapping theorem, we get the inverse mapping theorem.

Corollary 4.12. : Consider (X,N1, ◦, ⋆) and (Y,N2, ◦, ⋆) as NQNS. Let (X,N , ◦, ⋆) be right N1 − complete, and
(Y,N2, ◦, ⋆) be Hausdorff and of the half second category. If L : X −→ Y is a linear, bijective, and continuous
mapping, then its inverse, if it exists, is also continuous.

The inverse mapping theorem, stemming from the open mapping theorem, demonstrates that under
certain conditions, a linear, bijective, and continuous mapping between FQNS results in topological iso-
morphism, implying that these two FQNS are topologically equivalent.

Closed Graph Theorem

Theorem 4.13. Let (X,N1, ◦, ⋆) and (Y,N2, ◦, ⋆) be NQNS, with

L : (X,N1, ◦, ⋆) −→ (Y,N2, ◦, ⋆)

being a linear mapping. If X is both rightN1− complete and Hausdorff, and belongs to the half second category, while
Y is rightN2 − complete, then L is closed if and only if L is continuous.
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Proof. Let us suppose L has a closed graph. Define N = N1 × N2. As per Theorem 4.10, we establish that
the space (X × Y,N1, ◦, ⋆) is right N1-complete. Since the graph ΓL of L is closed within (X × Y,N1, ◦, ⋆),
it also attains right N1-completeness. Notably, the projections q1 : ΓL −→ X and q2 : ΓL −→ Y, defined as
q1(x, y) = x and q2(x, y) = y, for any (x, y) ∈ ΓL, emerge as both linear and continuous mappings, with q1
being bijective as well. Hence, as per Corollary 4.12, q−1

1 exhibits continuity. Consequently, L = q2 ◦ q−1
1

proves continuous.
Now, let us assume that L is continuous. Suppose we have a sequence (xn, yn) ∈ ΓL converging to

some (x, y) ∈ X × Y concerning the product topology τN = τN1 × τN2 . This convergence translates to xn
approaching x in X and yn converging to y in Y. Given that yn = L(xn), applying the continuity of L and
the uniqueness of the limit, we deduce L(x) = y, implying (x, y) ∈ ΓL. Therefore, ΓL is closed regarding the
product topology.
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