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Abstract. In this paper, we prove significant results related to the Hermite-Hadamard-Mercer-type
inequality for h-convex functions in the framework of Katugampola fractional integral operators. Also, we
establish some novel fractional inequalities related to the right and left sides of Hermite-Hadamard—-Mercer-
type inequalities for differentiable mappings whose derivatives in absolute value are h-convex function.
The findings in this research generalise a number of inequities identified in earlier studies.

1. Introduction

The mathematical idea of convexity is extremely important, particularly in the fields of geometry and
optimisation. The concept of convexity is considered to have originated in ancient Egypt and Babylon,
but it was in the 18th century that mathematicians formalized and studied convex functions. According
to the best of our understanding, Karl Hermann Amandus Schwarz [15] introduced the convex function
in the late 19th century. His research on convexity made significant contributions to the advancement of
mathematical theory. Convex functions are important in economics, biology, and engineering. Convexity
is particularly useful in studying mathematical inequalities, such as Jensen inequality, Hermite-Hadamard
(H.H) inequality, and Jensen-Mercer inequality, which provide valuable insights and applications for
mathematicians and researchers [17, 36]. In [26, 34] Charles Hermite (1822-1901) and Jacques Salomon
Hadamard (1822-1963), two French mathematicians introduced H.H inequality. This inequality can be
expressed as follows: Let ® : 7 C R — R be a convex function and v, ® € 7 with v < @, then

) 1 O®W) + O(®)
@( . )smfG)(C)dCs#. (1)
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Additionally, the direction of the inequality (1) is reversed when the function © is concave. The H.H
inequalities are crucial in convex analysis and widely used in various fields like mathematics, optimisation,
economics and other disciplines [7, 13, 14, 16, 32].

Jensen’s inequality, known as the king of inequalities, is a fundamental mathematical inequality that
serves as a foundation for other classical inequalities. In recent years, scholars have focused on the
Hermite—Jensen—-Mercer (HJM) inequality, a novel version of the H.H inequality. In the framework of
k-fractional conformable integrals, Butt et al [9] have derived unique results of HJM-type inequalities for
convex functions by using a new methodology. A generalisation of Mercer’s result, known as Jensen’s
operator inequality for convex functions, is presented by Matkovic et al [28]. The obtained result is utilised
to prove Mercer’s power means operator for monotonicity property as well as a comparison theorem for
quasi-arithmetic means for operators. Xu et al [39] have introduced a generalised form of the Jensen—
Mercer inequality specifically for generalised h-convex functions defined on fractal sets. They established
H.H-Mercer local fractional integral inequalities using integral operators associated with the Mittag-Leffler
kernel. In [19] authors have developed novel variants of H.H-Mercer-type inequalities via Atangana-
Baleanu fractional integral operators with non-local and non-singular kernels. Matkovic and Pecaric [29]
have presented several refinements of Jensen—-Mercer’s inequality.

Abbasi et al [1] have discussed the characterisations of h-convex functions defined on a convex set
within a linear space. By employing this approach, they expand the Jensen-Mercer inequality for h-convex
functions. Moreover, introduced the notion of operator )-convex functions and established operator ver-
sions of Jensen and Jensen-Mercer-type inequalities for certain classes. Vivas-Cortez et al [38] have used
generalised fractional integrals to prove H.H-Mercer inequality for convex functions. They introduced
novel inequalities of H.H and H.H-Mercer-type for multiple fractional integrals, including Riemann-
Liouville, k-Riemann-Liouville, conformable, and exponential kernel fractional integrals. Liu [24] has
identified certain Simpson-type inequalities for functions with condition whose third derivatives in abso-
lute value are h-convex and (a, m)-convex, respectively. Long and Du [25] have introduced multiplicative
k-Atangana-Baleanu fractional integrals and studied their properties, constructing H.H-Mercer inequal-
ities. Additionally, they proposed identities for fractional Mercer-type inequalities with applications in
differential equations, quadrature formulas, and special means. By utilising Caputo fractional derivatives,
Zhao et al [40] derived certain HJM inequalities. Abdeljawad et al [2] gave various H.H-Mercer inequalities
involving Riemann-Liouville fractional operators. Additionally, they proved several fractional integral
inequalities related to the left side of H.H-Mercer-type inequality for differentiable convex functions. For
interval-valued functions, Kara et al [23] first established certain inclusions of fractional H.H-Mercer-type
inequalities. Butt et al [8] have proposed novel fractional H.H-Mercer-type inequalities for a differentiable
function, with the condition absolute values of its derivatives are convex.

There are numerous results associated with convex functions; two of these are the H.H inequality and
the Mercer-type-inequality, which frequently arise in the mathematical literature. Kashuri et al [22] have
established novel H.H-type inequalities, specifically designed for approximately h-convex functions, using
the framework of generalised fractional integrals. Furthermore, they include midpoint and trapezoid-
type inequalities, also tailored for approximately h-convex functions and utilising generalised fractional
integrals. Ali et al [4] gave a collection of H.H-type inequalities specially designed for h-convex functions.
These inequalities are derived by employing generalised fractional integrals. Budak and Sarikaya [6] have
proposed precise definitions that apply to h-convex stochastic processes. Following this, they proposed a
novel version of the H.H inequality specifically designed for h-convex stochastic processes. Sanja Varosanec,
in [37], came up with the idea of h-convex functions, which are a significant generalisation of convex
functions.

The motivation and inspiration for this work are derived from the current research trends and findings
in the field, as revealed by the references [1, 3, 4, 10, 12]. In this paper, by using Jensen-Mercer inequality
for h-convex function, we have formulated generalised H.H-Mercer inequalities for Katugampola fractional
integrals operator and established some novel H.H-Mercer-type inequalities for differentiable mappings
defined by the h-convexity of their absolute value of derivatives. Further, these results are satisfied for
s-convex function mentioned in next section.
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2. Preliminaries

In this section, we present some basic definitions and mathematical preliminaries which extensively
used in forthcoming work.

Definition 2.1. ([15]) A set U in a vector space is termed convex if any two points v,@ € U. The points
inside this segment can be stated in the following ways

v+(1 -0, YLe]0,1].

Definition 2.2. ([18])] A function © : [0, +c0) — R is said to be s-convex if
£OW) + (1 -6°0(@) = Oy + (1 - O)o)

forall£€[0,1],s € (0,1] and v,®@ € [0, +0).

Definition 2.3. ([37])] Suppose ) : J — R is a non-negative function with h # 0. A non-negative function
©: 71 =[v,0] — Ris said to be h-convex function, or ® belongs to the class SX(h, I), then the subsequent
inequalities holds:

H(O)B®W) + h(1 — H)BO(@) = OtV + (1 — O)®)
forallv,o € I and ¢ € [0, 1].

Definition 2.4. ([30]) Consider ® be a convex function defined over the realinterval Q c R. If 81,95, 93,...,9n €
Qand 01,02, 03,-..,0m = 0, then the well-known Jensen inequality stated as

Y 00(s)z0) @]9,].
7=1 7=1

Definition 2.5. ([27]) Let ® : [v,®] C R — R be convex function. Then, we have

o) + 0(@) - Z 00(9)) @[v +@— Z @,9]]

J=1 J=1

for every 9, € [v,@] and g, € [0,1],(j = 1,2,3,...,m) with } ¢, = 1. The inequality was established by
=1
Mercer in [27], and considered as a variant of Jensen’s inequality.

Definition 2.6. ([20]) Let © : [v, ®] — R be convex function and for every g,y € [v,®]. Then, we have

O() + O(a) —G)(—Q;V) > 0W) +0(0) - ﬁ fy@(c)dc > @(v+w— QJFTV)
4
" ©() +O(y) 1 v+o—e o+y
o) +0@) - — 2L > y_@f oz 6(v+a-L37)
V+(ny

Definition 2.7. ([37]) Supposel) : Q2 — R be anon-negative super-multiplicative function and if ® € X(b, 1),
01,02,03,...,0m € I, then the following inequality holds

m

Zb(%)®<@f)26

=1

1 m
2 Wil |
Won j=1 J

m
where W, = ¥ w, and wy, wo, w3 ..., wy, € RY, (m > 2).
=1
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Definition 2.8. ([5]) If ® : O ¢ R — R* be h-convex function on Q, and O is super-multiplicative function
on positive real numbers, then for any positive increasing sequence (@])mzl € Q, and wq, wy, w3, ..., W, €
R*, (m > 2) such that W,, = Z w, also Z b( L ) < 1, then the following inequality holds

1=1

© (01) +©(om) — ib( ) =C

J=1

1 m
01 + Om — _W E ijj] .
m =

When inequality is repudiated then, © is a h-concave.

Definition 2.9. ([33]) The Riemann-Liouville fractional integrals of order a > 0 with v > 0 are defined by

£2.0() ‘fm OO, 1> v

" T(@

and R
1 “ _
L3 00) = (Lf@ww@©% <o,
respectively. Here, T'(a) is the Gamma function and £9,0(1) = £2_0(n) = ©(n).

Definition 2.10. ([35]) The left-sided and right-sided Hadamard fractional integrals of order a > 0 of the
function © are given by

a 1
Heow = [ m(2) 22 G

a-1
#eo0m= s [ () Z2a <o)

and

respectively.

Definition 2.11. ([21]) Letv,@ € Rwithv < @, % € [v,®],p > 0,y € R,p > 1 and a > 0. Then the left and
right side Katugampola fractional integrals of order a of the function ® € Y (v, @) are defined by

X _ a-1
zﬁ@u»=FaL[(X:f?) OO (v> )

and
-1

P15 = H)j‘f'“) OO (x <),

respectively. Here Y (v, ), is the space of all the complex-valued Lebesgue measurable function ® on [v, ]
such that ||®||Y5 = fvm |C’®(C)|’”%‘: < oo forl <p <ooand|O|y= =esssup [C'IO(C)]] < oo.

V(<o

Here, we recall the following lemmas that are required to prove trapezoidal type inequalities for h-convex
function, and these results are established in [11].

Lemma 2.12. Assume that © : [V*, @] — R is a differentiable mapping on (W2, @), a, p > 0 and v, @ € [0, c0) with
@ > v. Then, we have

O +@” — )+ O + @ — ¢#) T(a+1)p°
2 T2 - ) [ W+ —g)*

OW +aF — ) +7T%,. o O+ - )]

_ 1
= M f (P — (1 = )11 (VW + P — (EPxP + (1 — €F)F))dl
0
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holds for all 9, ¢ € [v, ®]. In order to facilitate, where

O + @ =)+ OO0 + " — ¢)
2

Q@((X p.v, )

I'(a+1)p*

T — o (& — o) [ wr mp_é,w@(vl’ +@" - 9)+ P[(mep Sp)_@)(w +af — Qp)] .

Lemma 2.13. Suppose that © : [vF,@"] — R is a positive differentiable mapping on (W, @) with @ > v and
a,p>0,meN,v,® € [0, o). Then, we have

m*T(a + 1) - » »
(QP — Sp)a p [ I((nz—l)vﬂ+mﬂ—7sp+(':fwv)’6((m i+ Qp)
— 1)o7
T e OO+ (1= 10 sv)] - [@ (v%m S+l - (W))
VP +(m-1)of - ——)*
S -1
+ @(Vp + cD’”(m _ 1) _ (M))]
m
p_ yp 1 ¢
= M f gp(a+1)—1[@/ (v”(m -+ - (m ¢ 9 4+ ﬁgp))
m 0 m m
@ (v” FP(m—1)— (‘)psp —@v))]
holds for all 9, ¢ € [v, ®]. For convenience, where
i, p, v, @, m)
=M e O((m -1+ — ) +*I1° O + (m -1’ — )
(&8 = 9) p |~ (nnwrrar- TG00 (+(m-Dor - LT

- [@ (v”(m -1+ - (W)) + G)(v” +o’'(m-1)- (W))}

3. Main results

3.1. Hermite—Hadamard—Mercer-type inequalities for h-convex function via Katugampola fractional integral operator
This section provides new Hermite-Hadamard-Mercer-type inequalities for )-convex functions by em-
ploying the Katugampola fractional integral operator.

Theorem 3.1. Suppose that © : [V, "] € R — R is a continuous function with 0 <v < @ and a,p > 0. If O is a
b-convex function on [V, @], then we have

@(Vp +af — o+ Qp) <OO) +0 (@) - w [pjg+@(gp) + p[ﬂf@(‘gp)]
2 (¢ =) ’ )
<00 +0 @) —@(Sp X Qp)
and
1 O+ o
—  olwv+er-
(1)) (V o 2 ) 3)
LA 1F(a) [ O+ - ) +I OO0 + o - g”)]
= (Qp Sp) (vF’+mV o)t VP +@P —9P)”

<[2100") +0 @)1 - [0 +O ()] f 7 0(E) + 5 (1 - ) de
0
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forall 9,0 € [v,@].

Proof. By using Jensen—Mercer inequality for h-convex function, we get
Si+d
O +of - — <OW)+0 (@) -h(1/2) [@(\9’17) + @(g’;)]

for all 91,01 € [v,@]. By changing of the variables 8’1’ = 0¥ + (1 - ) and Qq = (1 -) + P for
9,0 € [v,@] and ¢ € [0, 1], then the above inequality leads to

o+ o
2

S (vp + o - ) <OW) + O (@) - h(1/2) [O(PF + (1 — )F) + O((L — &) + €/ ¢P)] . (4)

Multiplying on both sides of (4) by £*~! and then integrating the modified inequality with respect to £ over
[0,1], then we find that

I+ oF
)

L@ (VP + of -
ap
1 1
siﬂ@wm+@«fn—buﬂﬁj‘”ﬁkxﬁy+cb%mfmf+j‘”wwml_”wp+ﬂfm4
0 0

1 o fop - \*! (G o (op — gr\*! (i
= a—P[®(vP)+®((D”)]—b(1/2)[f": (QP—SF’) ®(TP)QF’—\9PdT+L (m) O () QP—SPdT]

I'(a)b(1/2)
pe (or — )"

Hence, we obtained the prove of first inequality (2). Now, suppose if © is an h-convex functionand ¢ € [0, 1],
we get

@(sugv) :G(ﬁsma —fp)¢+(1—€v)sv+gpgv)

zﬁmww@ww— [z5.00) + 15 0.

2 2
<H(1/2) [OPS + (1 - P)") + O((1 — )P + £ )]

)

Taking product £*~! on both side of (5) and performing an integration over [0, 1] with respect to ¢, then we
derive

LQGM@jsﬁmmmm

[Fre.e() + 12 o)

ap\ 2 @ — ) pte
and then
9 + o p*Tla+1)b(1/2) r, a
_8( 2 ) =7 (0 — )° ["15.8(0) +7T5-0(3). ©)

Adding ©(1*) + ©(@”) on both sides of the inequality (6), we obtain the second inequality of (2).
Next, we prove inequality (3). From the h-convexity of ©, we have

Sp+g’1’]=®[vp+cop—9’l’+vp+cap—g’l’]

Ol +of — L
- :

<H(1/2) (00 + @ - 8)) + OO + @ - d)))
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forall 81,01 € [v,@]. Let 9,0 € [v,®@], ¢ € [0,1], by replacingvp+cap—\9?1’ =P+’ =)+ (1-P)WW +oF — ")
and v/ + @f — Q’; =1 =) +f =)+ (W + @dF — @) in (7), then we find

v
@Gm+mﬁ— ;d)sbanﬂ@gww+aw—sm+(y—ﬂmf+aﬁ—¢»
(8)
+0((1 - )W + @ = ) + (W + 0 - )|
Multiplying on both sides of (8) by ¢*/~! and integrating with respect to £ over [0, 1], we conclude
o !
%p@(v” + o - ;r @p) < b(1/2)[f PO (P (W + @ — )+ (1= &)V + @F —¢F))del
0
1
+JAf”*@«l—ﬁXW+mf—Sﬂ+ﬂ%W+@P—M»d4
0
b(1/2)T () [ f”’“”‘"s" . a1 _p1
= ™ -+ - O () dt
pl—a(pp - Sp)a VP +@F —of ( ( Qp))
b — 9
+ f (O + @ = 9P) — ) L7 1@ () dT] 9)
VP -0
so, we can be rewritten inequality (9) as
1 7+ of p* T () . .
W@ (Vp + o — 5 ) < (Qp — Sp)a [p (V,gm,,_@,,y@(vp +of — )+ pI(Vp+@p_Sp),®(Vp + o — Qp)] .
(10)

Thus, the proof of first inequality (3) is holds. On the other hand side from the §) convexity of ®, we can
write as

O + @ =)+ (1 =)W + o = 7)) < H(F)BW + @ — 8) + (1 - POV + o - ¢F) (11)
and

O(L-) +f =)+ + o — ")) <H(1 - )OO + @ — ) + h(F)O( + o — ¢F). (12)
Summing up the inequality (11) and (12) and using Jensen—Mercer inequality, we obtain

OV +a" —) +(1 =)+ — )+ O (1 - )+ =)+ (VW + o — "))
< [H() + (1 - )] [OO + @ — ) + O + @ — )]
= [B(¢") +b(1 - )] [2[607) + B(@F)] - [O(S) + O()]].-

Taking product on both sides of above inequality by £%~! and then subsequently integrating the outcome
to £ over [0, 1], we acquire
P T(@)
(o - o)"
< [2007) + ©(@")] - [O(87) + O |l €7 [)(£) + b(1 - ¢¥)]dE.

17, 0y OO + @ = ) +P T, ) O + 0 = )]

%

Hence, the second inequality (3) is holds. This completes the proof. [
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Corollary 3.2. Let o« = 1 and p = 1, in Theorem 3.1, then we obtain the following inequalities for classical §-convex
function

2h(1/2)
(0-9)

@(V+LD— ‘9”’) <OW) +O@) - " o0y s@(v)+@(o)—®(¥)
S

and

1 9 +t_0 ) V+D—9 1
m@(v + - T) < @9 o O)dr < [O+ @ —-9)+ 0O+ o - 0] fo [B(6) +b(1 - &)]de

1
<210 +@@1-[O®) +0 ()] f [5(0) + b (1 - O)dL.
0
Remark 3.3. By choosing h(¢) = ¢, in Corollary 3.2, we derive [20, Theorem 2.1].
Remark 3.4. By setting h(£) = £, in Theorem 3.1, we arrive [11, Theorem 2.1].

Corollary 3.5. Ifwetake)(€) = ,s € (0, 1], in Theorem 3.1, then we find the subsequently inequalities for s-convex
function

. (v” s . @P) <OW)+O@) - Z(I;f—sp)) P1s.0() + 712 (") (13)
< @(Vp)+@(@p)_®(\9 ;Q”)

and

®(Vp +af - Sp) + pI(VV+(DI -9 )7@)(1/7 + o~ Qp)] (14)

2 ¥+ L(a)p”

;8(1/;] +of - > ) = (o — Sp)a [ (VP +a@P—gP)*+
F(a I'(s+ 1)]

INa+s+1)

1
< [2100) + 0@ - 106" + O[5 +

Theorem 3.6. Suppose that © : [v¥,@"] € R — R be a differentiable mapping on (vF, @") with v < @ such that
@’ € Li[v*, @], then we have the following inequality

|Q@(0¢, p.v, CD)| (15)

|©" ()] + 10" ()
2

< p(@” = v [1©' (V)] + 10" ()] - )f [(1 =€) = ()1 (0(¢) + b(1 — &) de

holds for all 9, ¢ € [v, ®] and if |©’| is an h-convex on [V, @P].
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Proof. It follows from Lemma 2.12, |@’| is an h-convex and ) is a non-negative function, then
|Q@(C¥, p,v, CD)'
oF — 1P 1
< |’¥ f (@)~ (1= Y10+ — (S + (1 - O) )]
0
L P@ V) [
2

1
f () = (1 = Y1 1O (PP + @ — ) + (1 — )P + o — QP))W]
0
Ndtald [ [1a-or-@rieperee o - - epe'er + o - i
2 0
1
v [0y - - oy (e 0 + o - 9]+ 51 - O 4 o - @”>|)df}

= ’M [ f 1= ) = @1 (N0 + 0 = )+ (1 - DO+ — )
0

[T

+ [ 1= ) = @)1 (51 - OO (F + @ — )]+ H()O' (F + @F — @">|)df} :
0
After simplification, we get the required result. [J

Corollary 3.7. Let o = 1 and p = 1, then Theorem 3.6 gives the inequality for classical b-convex function

‘@(v+®—8)+®(v+@—@) 1 fm_s
2 Q_S V+@—0

@) +1© )l
— 2 ) fo (1-20)[5(6) +b(1 — OIdC.

O(1)dt

< (@-v)(10' W) + 10/ (@)| -

Remark 3.8. If we take h(€) = £, in Theorem 3.6, then, we have [11, Theorem 2.3].

Corollary 3.9. If we take h(£) = €, s € (0,1] , in Theorem 3.6, then we get the inequality for s-convex function

O + @ — ) +OW +af — 7))  T(a+1)p"
‘ 2 C2(p — o) [pI (rar-g)r OO + @ = 87)
a , , 1©"(57) + 10 ()
+pI(Vp+@p—sp)—®(Vp +o - Qp)]' <pl@” —P) (|® () + 10" (@) - > ¢
1 a+s+1
2Fi(—a, s+ 1;s +2;1/2P) _2F1(1+a,—s;ac+2;1/2p) 1_<1_2_p) 3 1
p(s + 1)2v6+D) pla + 1)2v@+) pla+s+1) parstp( +s+1) |

3.2. Generalized Hermite—Hadamard—Mercer-type inequalities for Y-convex function via Katugampola fractional
integral

This section contain a new version of Jensen-Mercer inequality for h-convex function by using Katugam-
pola fractional integral operator.
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Theorem 3.10. Suppose that © € SX(,1),v,® € I, with @ > v such that © € L[V, @"). Then, we have the
subsequent inequality for h-convex function

1 I+ m*T(a) "
—ozpb(l/m)@ W+ of - > ) < 7 Sp)“ pl—a [p]

7”)) O((m -1’ + " - ) (16)

((m v +oF -

+719 O +(m -1’ -9
(VV+(m Daor— (m— 1)Qp+0p) ( ( ) )]

< aip[[@)(vp) +O(@")] + [O((m — 1W) + O((m — 1)(Dp)]]

1 T m— e
_ p ap—1 il
(®<9)+®(@">)fof [o(5) + 5 ("= )] e
holds for all 9,0 € [v,®],a,p > 0,and m € N.

Proof. Considering that © € SX(b, 1), we have

@(w +af — w] <b(1/m) [© (v(m—1)+ ¥ - 8) + O (v + (m - N’ - g])].

Let 9,0 € [v, @], € € [0,1], by changing the variables S’i =Cop+ =Ly and Q’{ =L+ Lo, we get

I+ oF
m

@(vp+ca”—

@ )S@(vp(m—1)+cap—(€ N —Q’”))

+®(vp+w”(m—1)—(m;1€ I+ EQ”)).

Taking product on both sides of above inequality by £%~! and then integrating the obtained inequality with
respect to £ over [0, 1], we have

I+ oF
")

W+ of —

e
< fol t’“”*@(v”(m -D+af - (gsr’ + m;fpd“))dr + fol t’“”‘1®(vp +aof(m—-1) - (m;ZﬂJS’” + gdj))dr

ma vp(m 1)+®p P +(m=1)oP
T -y U( — (T = (F(m—1) + @ - ")) O () T Ndr
VP (m—1)+oP -

VP (m—1)— 97
+f (W +@"(m —1) = ) —")* 1 @ (7F) ’L’p_ldT]

V+(Dp(m_1)_w
:L(a) Pfq
(Qp - Sp)a pl—a

Therefore, the first inequality of Theorem 3.10 is proved. Next, by using Jensen-Mercer inequality for
h-convex function, we obtain

m—1n + o — ) +7T
((m=1)vP+@P— SF’+(m 1)}’)+ (( ) 017) (vP+(m Daor— (m— 1)SF’+[}’

oW + (m—-1)o" - S?’)].

® (v”(m D +af - (gsp ; %”g”)) <O (m —1)) + O@F) (b (i—p)@(sp) + b(%)@(@r’)) (17)
and

m= o %Qp)) < @) + O((m - 1)a¥) (b (#)@(SP) +0 (fn—pca(g”))). (18)

@(v”+ca”(m—1)—(
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By adding (17) and (18), we obtain the following inequality by using Jensen—Mercer inequality

@(vp(m D+ - (fn—psp ; (m,;”)@ﬂ)) + @(Vp + P (m—1)— ((mr;”)sr’ ; i—p@%’))

< @) +O(0f) +[O((n ~ 1) + O((m ~ )] - [0() + O] b1 ) + b)),

Multiplying the above inequality on both sides by ¢*7~! and then integrating the obtained inequality with
respect to £ over [0, 1], then we get

pa—l mar(a) )

[ P p_ pre P P _ Qp
=) | Lty say_stnce O =1 + 07 = ) +7T o OO+ (= 1) = 97)]

(VP +(m-1)oF—

m—{F

P
< L[1007) + ©(@)] + [O((m - )W) + ©((n - )] | - [O(") + ©(&)] f (1 b(ﬁ) ¥ b(—)] .
ap 0 m m
Hence, the second inequality (16) is proved. O
Consider m = 2, in Theorem 3.10, then immediately we find Corollary 3.11.

Corollary 3.11. Suppose that a,p > 0,v,® € [0, 00) with ®@ > v and © : [V*,@"] — R be a positive function such
that © € LL[v?, @] and if © is an h-convex on [v¥, @]. Then, the following inequality

1 F+o\ _p 2Ty, -, a
an(l/Z)G (v’” ro'- 2 ) = (o8 — 97)* [pj(wurmv LEZ0 00+ — )+ pI(vm p- L )7®(VP ror- 8”’)]
< i[2[®( Py + @(mp)]] - [O(%") + ©()] fl por-1 [b (ﬁ) +h (2 - )] de
< v 0 2 2

holds for all 9, ¢ € [v, ®].
Remark 3.12. If we choose (£) = £, in Theorem 3.11, then we find [11, Corollary 3.1].

Corollary 3.13. If we choose H(€) = £*, s € (0,1], in Theorem 3.10, then we obtain the following inequalities for
s-convex function

s 9r a
Z’—p@(wﬂap— +Qp)s( Ui COR Ty s Om =10+~ )

2 =) ploal = (m-1yw+ar-

" pIZ/”Jr(m 1)DP+M o0 + (m -1’ — Sp)]
) “ip[@)(vp) +0(@) + O ((m — 1)) + B((m — 1)¢?)| - (O(5") + (")) m (s a1+ a;1/m)|.

Theorem 3.14. Suppose that © : [VF, @] — IR be a differentiable mapping on (v¥, @) such that ®" € L[v/, @] and
a,p > 0,m € N. If|®'| is an h-convex function on [V, @"]. Then the following inequality

|Q1(C¥, pr v, @, m)l <

P — P
P~ v [p( ! (10 (F(m = 1)+ |0 (@ (m - 1))l + ' ()] + 10 (@"))

m a+1) (19)

— (©'(3) +1'())) fo e (b(;) b(l—%))df]

holds for all 9, ¢ € [v, ®].
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Proof. From Lemma 2.13 and the Jensen’s inequality, we get

|Ql(€¥, p/ V,®, m)l

1
< p(@ —P) [f prla+)-1
m 0

n fo ety (Vp FoP(m—1) - ((1 - g)sr’ N %@”))‘dﬁ]

p@” —vP)

_ [ fol P (|®’(vv(m _)+ @@ - (b(%)@,(s,,)l N b(l _ g ) - Qp)l) 0

m

o (v’”(m D+ af - (%sp + (1 - g) pﬂ))‘ de

. [ 1 (o700 + 0@ - 1 = (5 (1= 2 )leron 5 () |®’(@”)I)) df]

— 1
= HE B o 6 - )1+ 10 @ - I+ @0 + 0@ [ e ae
0

1 P P
e+ @ [ e o) +o(1- 2))ac
0 m m
after simplification, we get

p@” —vP)

Q ///(D/ S
Q1 (e, p, v, ®, m)]| -

[p<a1+ 7y (€07 (m = )] +10'(@"(m ~ )] +1O°(7)] +18'(@")) (20)
/ / ! a+1)— gﬁ [P
— [1©'(s")] + 10 ()] fo iz 1’1(5(%)%(1—%)):15].

Therefore, we have finished the proof. [

Corollary 3.15. If we assign m = 2, in Theorem 3.14, then we obtain the following inequality

2071 (a + 1)
2 "\ T pga p p_ pra p P _ Qpr
@ = 9 p [I(mep_sp;@,,)@(v + o - o)+ I(mep_ﬂy@(v +of -9 )]
O+ ¢ (@ =VF) |©(SP)] +1©’(0")]
_ p p_ < ! (P (P — )
@(v + @ > )_2(a+1) [I@(v)|+|®(ca)| >

Remark 3.16. If we take a = p = 1, in Corollary 3.15, then we get

@%9 f@@ Ot @(V o3 Q)’ <0 ['@’<v>| +10/(@)] - w]

which is reported in [31, Corollary 3.10].
Remark 3.17. If we take h(£) = ¢, one has the inequality proved in [11].

Corollary 3.18. If we choose h(€) = £°,s € (0,1], in Theorem 3.14, we find inequality for s-convex function

P — P
Rl [p( ! [1©' (P (m — )| +10 (@ (m — 1)| + 10" (V)| + & (@F)]]

(e, p,v, @, m)| < - ar D)

1 1
msp(a + s + 1) * pla+1)

- [l©'ON) + 10" ()] ( 2Fi(=s,1+®2+a; 1/m))] :
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Theorem 3.19. Suppose that © : [vF,@"] — R is a differentiable function on (V?, @) such that ®" € Li[v*, @],
a,p>0,meNandv,® €[0,00) with® > v. If|®'|7 is h-convex function on [V*, @], then we obtain the following
inequality

PO 0P — 1) + 18 @) 1)

P — P
1 p,v,0,m) < X2 V)([ .

m pp(a+1)—l]+1)
1 g
—( | (- i—p)|®’(~9”)l"+b(i—p)|®’(gp)lq)d5) +(©/ 07 +18/ (@ (m — D)

) (f; (e +o(1-T) |®'(@”)Iq)d£)$]

holds for all 8, 0 € [v, @] and p,q > 1, with % + % =1.

Proof. Drawing from Lemma 2.13 and the combined effects of the Holder and Jensen-Mercer inequalities,
in conjunction with the -convexity of |®’|7, we can assert that

oF — VP 1
Q1 (e, p, v, @, m)| < l% [f a1
0

+ fl fp(“"'l)_l

0
< @ ( fo o) 1))1/p [(
+(f01@(v”+ca”(m 1) (b Z) (“i—p)é’p))

p(@” —P)
m (p[p(oz +1)-1]+1

m

o (vp(m D+l - (m;fﬁsr’ + ﬁg”))‘dﬁ

o (vP +Pm—1) - (gsr’ + m};‘m@v))‘d{’]

-+~ D) (G)o)

g \Va
o) ]

) 16/ (v (m = 1)1 +16' (@)
e
m

g\
|

/q

- fo 1(b(1—ﬁ)|@'<sp>|q+b( Jier @”w)df) + (190 + 1€/ (@ (m ~ )P

) fol () +(1-S)e@r)a) )
0

If we assume that m = 2, then Theorem 3.19 directly leads to Corollary 3.20.

Corollary 3.20. Suppose that © : [V¥, @] — R is a differentiable function on (V¥ , @) such that ® € Li[v/, @] and
p,q > 1, with % + % =1,a,p>0 meN, with® >v. If|©'|1 is an h-convex on [vF, @], then we have the following
inequality

P(CDP—V”)< 1

1/p , )
2 plpa +1) — 1] + 1) [(|® W11 + 10" (@)

Qi(a,p,v,@,2) <
- 1 b 1—ﬁ I®’(\9p)lq+b I®’(Q” %+(I®’(V’”)Iq+|@’(®’”)l" (22)
0

_ fol (b (%)@’(SP)W + b(l - %)IG'(Q”)I")W); |

holds for all 9, ¢ € [/, @F].
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Corollary 3.21. Assuming H)(€) = €* withs € (0, 1], in Theorem 3.19, it leads us to the following inequality

|Q1(a/plvl , m)|
P — P 1/p
<5 T ) (P[P(a ¥ 11) 1) @0 -+ @)
1/q
) (zpl(” pr=si1+1/p; 1/m)I& ()1 + m@’(dﬂ)lq) df) + (10001 + 1€/ (@ (m — 1)

1
- [ mgerm @@+ R -1+ U imie @ a0) .

4. Conclusion

The implications of this work extend to various areas of mathematics and related disciplines, including
optimization, functional analysis, and fractional calculus. This study introduced the concept of h-convex
function on Jensen-Mercer-type inequality by using Katugampola fractional integral. Additionally, results
are also shown for convex, s-convex functions in the second sense. The findings of this research open up
exciting possibilities for both theoretical and practical applications.
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