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Statistical quasi Cauchyness on asymmetric spaces
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Abstract. We call a sequence (xm) of points in an asymmetric metric space (X, d) statistically forward quasi
Cauchy if limn→∞

1
n | {m ≤ n : d(xm, xm+1) ≥ ε} |= 0 for each positive ε, where |A| indicates the cardinality of

the set A. We prove that a subset E of X is forward totally bounded if and only if any sequence of points
in E has a statistically forward quasi Cauchy subsequence. We also introduce and investigate statistically
upward continuity in the sense that a function defined on X into Y is called statistically upward continuous
if it preserves statistically forward quasi Cauchy sequences, i.e. ( f (xm)) is statistically forward quasi Cauchy
whenever (xm) is.

1. Introduction

Using the idea of sequential continuity, many kinds of continuities were introduced and investigated,
not all but some of them we recall in the following: ward continuity [2, 5], statistical ward continuity [3, 4].

Metric spaces are a fundamental concept in analysis and are characterized by metric functions that define
the distance between any points in space. In traditional metric spaces, this distance function is symmetric.
However, in some applications or problems, situations can be encountered where the distance does not
satisfy the symmetry property. Asymmetric metric spaces, which are developed to handle such situations
and does not satisfy the symmetry property, have attracted great attention in mathematical modeling
and applied disciplines in recent years. These spaces have become a powerful tool, especially used in
fields such as optimization problems, transportation models, computer science and artificial intelligence.
Such spaces are used to model situations where the distance from one point to another depends on the
direction. For example, the travel time or cost between two points varies depending on the direction of
travel. Asymmetric metric spaces have applications in applied mathematics and material science, such as
rate-independent models for plasticity, shape memory alloys, and material failure. Another application of
these spaces in abstract and applied mathematics is the study of the existence and the uniqueness of the
Hamilton-Jacobi equations.

Asymmetric function is known to be first mentioned by Hausdorff in 1914. He defined the distance
between two sets in a metric space using a function that does not satisfy the symmetry requirement. Then
Wilson studied asymmetry by calling this concept as quasi metric [19], while Ribeiro called this notion as
weak metric in 1943. Künzi and Reilly studied in quasi pseudo metrics [15, 17]. Künzi and Kočinac have
a paper about selection principles on quasi uniform and quasi metric spaces [14]. Afterwards, Zimmer

2020 Mathematics Subject Classification. Primary 54A10 ; Secondary 54D30, 40A05.
Keywords. asymmetric metric, compactness, continuity.
Received: 29 October 2024; Revised: 22 May 2025; Accepted: 25 May 2025
Communicated by Ljubiša D. R. Kočinac
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and Colins have conducted research on topics such as total boundedness, compactness and convergence
on these spaces [7].

An asymmetric metric is a generalization of metric created by removing the symmetry requirement
in the metric definition. The lack of symmetry requirement in asymmetric metric spaces results in two
types of topology. Accordingly, basic notions such as convergence, compactness, completeness and total
boundedness need to be examined in two types (see ([7, 9]).

The notion of statistical convergence was firstly given as ”almost convergence” by Zygmund in 1935
[20] . Statistical convergence was formally given by Fast [12]. Although statistical convergence has been
studied for approximately the last ninety years, it has been an important research topic for various authors
for the last forty years [10, 13, 18].

Recall that a subset E of an asymmetric metric space (X, d) is forward totally bounded if it has a finite
forward ε-net for each ε > 0. This is equivalent to the statement that any sequence of points in E has a
forward Cauchy subsequence. This raises the question of whether the term ”Cauchy” can be replaced by
the term ”quasi Cauchy” or ”statistical quasi Cauchy”. In fact we see that we can use both of them instead
of the term ”Cauchy”.

The aim of this study is to characterize of total boundedness of a subset of an asymmetric metric space
X, and to examine the relationship between statistical forward continuity and new types of continuities
defined based on statistical forward quasi Cauchy sequences.

Now we present the concepts and results that may be necessary throughout the paper.
A sequence (xn) is called forward (backward) Cauchy if for every ε > 0 there exists an n0 ∈N such that for

m ≥ n ≥ n0, d(xn, xm) < ε ( d(xm, xn) < ε) .
We recall the definition of forward (backward) convergence which was given in [7].
A sequence (xn) in an asymmetric metric space X forward (backward) converges to x ∈ X if limn→∞ d(x, xn) =

0 (limn→∞ d(xn, x) = 0).
Some examples are given in [7, 9] that forward convergence does not imply forward Cauchyness.

Lemma 1.1. ([8]) Let (X, d) be an asymmetric metric space which has the property that forward convergence implies
backward convergence. Then any forward convergent sequence is forward Cauchy.

Let (X, d) be an asymmetric space and E ⊆ X. If every sequence taken from the set E has a subsequence
that is forward (backward) convergent to an element of E, then the set E is called forward (backward)
compact.

For a subset K of the set of positive integers the asymptotic density of K, denoted by δ(K), is given by

δ(K) = lim
n→∞

1
n
|{m ≤ n : m ∈ K}|,

if this limit exists, where |{m ≤ n : m ∈ K}| denotes the cardinality of the set {m ≤ n : m ∈ K}.
A sequence (xn) of points in X is called forward quasi Cauchy if limn→∞ ∆

+xn = 0 where∆+xn = d(xn, xn+1)
(see [8] and [1]).

A function defined on a subset E of X is called upward continuous if it preserves forward quasi Cauchy
sequences, i.e. ( f (xn)) is a forward quasi Cauchy sequence whenever (xn) is.

Notation 1.2. Let YX be the space of the functions of X into Y, then the asymmetric on YX is

ρ( f , 1) := sup{d( f (w), 1(w)) : w ∈ X},

which generates the asymmetric metric space on YX whose topology is uniform, where d(x, y) = min{1, dY(x, y)}.

2. Statistically quasi Cauchy sequences on aasymmetric metric spaces

In this paper hereafter, N, R, X, and Y denote the set of positive integers, the set of real numbers, an
asymmetric metric spaces with an asymmetric metric d, and dY respectively. .

In this section, statistical forward (backward) quasi Cauchy sequences are defined in asymmetric metric
spaces, and the concept of statistical upward compactness is examined.
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Definition 2.1. Let (X, d) be an asymmetric metric space and let (xm) be a sequence in X . The sequence (xm)
is called statistical forward convergent to the point L if for each ε > 0,

limn→∞
1
n | {m ≤ n : d(L, xm) ≥ ε} |= 0

which means that δ({m : d(L, xm) ≥ ε}) = 0 .
Similarly, The sequence (xm) is called statistical backward convergent to the point L if for each ε > 0,

limn→∞
1
n | {m ≤ n : d(xm,L) ≥ ε} |= 0

which means that δ({m : d(xm,L) ≥ ε}) = 0.

Theorem 2.2. Any forward convergent sequence in an asymmetric metric space (X, d) is statistically forward con-
vergent.

Proof. Let (xm) is forward convergent with forward limit L. Take ε > 0 . Since (xm) forward convergent to
L, there exists a positive integer m0 which depends on ε such that

d(L, xm) < ε

whenever m > m0. Thus, for n ≥ m0 we get

{m ≤ n : d(L, xm) ≥ ε} ⊆ {1, 2, 3, ...,m0 − 1,m0}

Therefore we can express it as

| {m ≤ n : d(L, xm) ≥ ε} |≤ m0

Thus we obtain

limn→∞
1
n | {m ≤ n : d(L, xm) ≥ ε} |≤ limn→∞

m0
n = 0

Thus the proof is completed.

The converse of Theorem 2.2 is not true, i.e. a statistical forward convergent sequence does not need to
be forward convergent.

Example 2.3. A sequence (xk) defined by

xk =

2 , k = m2, (m ∈N)
0 , otherwise

is statistically forward convergent to zero but not forward convergent in the asymmetric metric space which
is generated by the asymmetric metric d : R ×R→ R

d(x, y) =
{

y − x, y ≥ x
1, y < x

Indeed, since for each ε > 0
| {k ≤ n : d(0, xk) ≥ ε} |≤| {k ≤ n : xk , 0} |≤

√
n

we obtain
limn→∞

1
n | {k ≤ n : xk ≥ ε} |≤ limn→∞

1
n | {k ≤ n : xk , 0} | ≤ limn→∞

1
n

√
n = 0

which means that (xk) is statistically forward convergent to zero. But since limk→∞ d(0, xk) = limk→∞ xk , 0,
(xk) is not forward convergent to zero.

Theorem 2.4. If forward convergence implies backward convergence in an asymmetric space (X, d), then statistical
forward convergence implies statistical backward convergence.
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Proof. Let statistical forward convergence do not imply statistical backward convergence on X and let (xm)
be a sequence in X which is forward convergent to the point L. Thus, (xm) statistically forward converges
to L. Since (xm) does not statistically backward converge to L, there exists an ε > 0 such that

limn→∞
1
n | {m ≤ n : d(xm,L) ≥ ε} |> 0

So for infinitely many indexes of the sequence (xm) we obtain d(xm,L) ≥ ε which means (xm) does not
backward converges to L. Thus, forward convergence does not imply backward convergence on X. This
contradiction completes the proof.

Theorem 2.5. In an asymmetric space (X, d), the limit of a statistical forward convergent sequence is unique if
forward convergence on X implies backward convergence.

Proof. Let (xm) be a statistical forward convergent sequence. Assume that L1 and L2 are different statistical
forward limits of (xm). Then d(L1,L2) , 0.

Let d(L1,L2) = α and take ε = α3 . Since (xm) statistically forward converges to L1 it follows that

limn→∞
1
n |
{
m ≤ n : d(L1, xm) ≥ ε2

}
|= 0

Since (xm) statistically forward converges to L2 it also statistically backward converges. Then we obtain

limn→∞
1
n |
{
m ≤ n : d(xm,L2) ≥ ε2

}
|= 0

Thus

1 = limn→∞
1
n | {m ≤ n : d(L1,L2) ≥ ε} |≤ limn→∞

1
n |
{
m ≤ n : d(L1, xm) ≥ ε2

}
|

+ limn→∞
1
n |
{
m ≤ n : d(xm,L2) ≥ ε2

}
|= 0.

This contradiction completes the proof.

Definition 2.6. Let (X, d) be an asymmetric metric space and let (xm) be a sequence in X. (xm) is called a
statistical forward Cauchy sequence if there exists a pozitive integer N such that for each ε > 0

limn→∞
1
n | {m ≤ n : d(xN, xm) ≥ ε} |= 0

Similarly, (xm) is called a statistical backward Cauchy sequence if there exists a pozitive integer N such that
for each ε > 0

limn→∞
1
n | {m ≤ n : d(xm, xN) ≥ ε} |= 0

Definition 2.7. Let (X, d) be an asymmetric space and E ⊆ X. If every sequence taken from the set E has a
subsequence that is statistical forward (backward) convergent to an element of E, then the set E is called
statistical forward (backward) compact.

Definition 2.8. Let (X,d) be an asymmetric metric space and (xm) be a sequence in X. (xm) is called
statistically forward quasi Cauchy if for each ε > 0

limn→∞
1
n

∣∣∣{m ≤ n : ∆x+m ≥ ε
}∣∣∣ = 0,

where ∆x+m = d(xm, xm+1) for each pozitive integer m. Similarly, (xm) is called statistically backward quasi
Cauchy if for each ε > 0

limn→∞
1
n

∣∣∣{m ≤ n : ∆x−m ≥ ε
}∣∣∣ = 0,

where ∆x−m = d(xm+1, xm) for each positive integer m.

Any statistical forward Cauchy sequence is a statistical forward quasi Cauchy sequence but the converse
does not need to be true.
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Example 2.9. A sequence (xk) defined by

xk =

1 , k = m2, (m ∈N)∑k
i=1

1
i , otherwise

is a statistical forward quasi Cauchy sequence but is not statistical forward Cauchy sequence in the asym-
metric metric space which is generated by the asymmetric metric d : R ×R→ R

d(x, y) =
{

y − x, y ≥ x
1, y < x

Lemma 2.10. Any statistical forward convergent sequence is statistically forward quasi Cauchy if forward conver-
gence implies backward convergence on X.

Proof. Let (xm) be a sequence that is statistical forward convergent to a point l. Then given ε > 0

limn→∞
1
n |
{
m ≤ n : d(l, xm) ≥ ε2

}
|= 0

holds. Since forward convergence implies backward convergence on X statistical forward convergence
implies statistical backward convergence. Thus we see that

limn→∞
1
n |
{
m ≤ n : d(xm, l) ≥ ε2

}
|= 0

Since

limn→∞
1
n |
{
m ≤ n : d(l, xm+1) ≥ ε2

}
|= 0

we obtain that

limn→∞
1
n | {m ≤ n : d(xm, xm+1) ≥ ε} |≤ limn→∞

1
n |
{
m ≤ n : d(xm, l) ≥ ε2

}
|

+ limn→∞
1
n |
{
m ≤ n : d(l, xm+1) ≥ ε2

}
|= 0 + 0 = 0..

Therefore, (xm) is statistically forward quasi Cauchy.

Definition 2.11. Let (X, d) be an asymmetric metric space. E ⊆ X is called statistical upward (downward)
compact if any sequence whose terms are in E has a statistical forward (backward) quasi Cauchy subse-
quence.

According to this definition a finite subset of X is statistical upward and downward compact. Any
subset of statistical upward compact set is statistical upward compact, union of finitely many statistical
upward compact set is statistical upward compact and intersection of any family of statistical upward
compact subsets of X is statistical upward compact.

Theorem 2.12. ([8]) A subset E of X is forward totally bounded if and only if it is upward compact.

Theorem 2.13. A subset E of X is forward totally bounded if and only if it is statistical upward compact.

Proof. It is clear that forward totally boundedness of E implies statistical upward compactness of E.
To prove the converse suppose that E is not forward totally bounded. In that case, there is an ε > 0 such

that E has not a finite forward ε-net. Let Sε(x) denotes B+(x, ε) for any x ∈ E. Now take any element of E
and say x1. Since E is not forward totally bounded, Sε(x1) , E. Otherwise {x1} would be a finite forward
ε-net of E. So there is an x2 ∈ E such that x2 < Sε(x1), i.e. d(x1, x2) ≥ ε. Since {x1, x2} is not a finite forward
ε-net, Sε(x1) ∪ Sε(x2) , E. Now let x3 < Sε(x1) ∪ Sε(x2). So we obtain that d(x1, x3) ≥ ε and d(x2, x3) ≥ ε.
Continuing in this way we can generate the sequence (xn) such that xn < ∪n−1

i=1 Sε(xi) for n = 2, 3, .... So we get
d(xi, xn) ≥ ε for i = 1, 2, ...,n − 1 and for n = 2, 3, .... As a result of this, for all n,m ∈ N which satisfy n < m
we have d(xn, xm) ≥ ε. Therefore d(xn, xn+1) ≥ ε. Thus the sequence (xn) constructed has not any statistical
forward quasi Cauchy subsequence. This contradiction completes the proof.
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3. Statistical ward continuity of functions in asymmetric metric spaces

In this section we modify the definition of statistical forward continuity, we define statistical upward
continuity and investigate the relationship between statistical upward continuity and statistical forward
continuity.

Definition 3.1. A function f defined on a subset E of X to Y is called statistical forward continuous if
it preserves statistical forward convergent sequences, i.e. ( f (xn)) is statistical forward convergent to f (l)
whenever (xn) is statistical forward convergent to l.

Definition 3.2. A function f defined on a subset E of X to Y is called statistical upward continuous if
it preserves statistical forward quasi Cauchy sequences, i.e. ( f (xn)) is statistical forward quasi Cauchy
whenever (xn) is.

Theorem 3.3. Assume that f be a statistical upward continuous function on a subset E of X to Y and that forward
convergence implies backward convergence on X , then it is statistical forward continuous.

Proof. Take any statistical upward continuous function f on E to Y. Let (xn) be any statistical forward
convergent sequence of points in E with statistical forward limit a. Then the sequence

(x1, a, x2, a, ..., xn, a, ...)

is also statistical forward convergent to a. Hence

(x1, a, x2, a, ..., xn, a, ...)

is statistical forward quasi- Cauchy. As f is statistical upward continuous from E to Y, the sequence

( f (x1), f (a), f (x2), f (a), ..., f (xn), f (a), ...)

is statistical forward quasi Cauchy in Y . Thus ( f (xn)) statistical forward converges to f (a). This completes
the proof of the theorem.

Theorem 3.4. Let f be an statistical upward continuous function from X to Y. Then statistical upward continuous
image of any statistical upward compact subset of X is statistical upward compact.

Proof. Suppose that f is statistical upward continuous, and E is a statistical upward compact subset of X.
Let y = (yn) ∈ f (E). Thus, for each n ∈ N there exists xn ∈ E such that yn = f (xn). Since E is statistical
upward compact, there is a statistical forward quasi Cauchy subsequence t = (tk) = (xnk ) of x. Statistical
upward continuity of f implies that f (t) = ( f (tk)) is statistical forward quasi Cauchy. This completes the
proof of the theorem.

Corollary 3.5. Let f be an statistical upward continuous function from X to Y. Then statistical upward continuous
image of any forward totally bounded subset of X is forward totally bounded.

Theorem 3.6. Let ( fn) be a sequence of statistical upward continuous functions from X to Y. Assume that forward
convergence implies backward convergence on Y. If ( fn) uniformly forward converges to f , then f is statistical upward
continuous.

Proof. Let (xm) be a statistical forward quasi Cauchy sequence of terms in X and ε > 0 be given. Since ( fn)
is uniform forward convergent and forward convergence implies backward convergence on Y, there exists
N ∈N such that

d( f (x), fn(x)) < ε3 and d( fn(x), f (x)) < ε3
for any x ∈ X whenever n ≥ N. Since fN is statistical upward continuous, we get



F. Ince Dagci / Filomat 39:18 (2025), 6383–6390 6389

limn→∞
1
n |
{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
|= 0

On the other hand, {
m ≤ n : d( f (xm), f (xm+1)) ≥ ε

}
⊆

{
m ≤ n : d( f (xm), fN(xm)) ≥ ε3

}
∪

{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
∪

{
m ≤ n : d( fN(xm+1), f (xm+1)) ≥ ε3

}
holds. Thus we obtain

limn→∞
1
n |
{
m ≤ n : d( f (xm), f (xm+1)) ≥ ε

}
|

≤ limn→∞
1
n |
{
m ≤ n : d( f (xm), fN(xm)) ≥ ε3

}
|

+ limn→∞
1
n |
{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
|

+ limn→∞
1
n |
{
m ≤ n : d( fN(xm+1), f (xm+1)) ≥ ε3

}
|= 0

This completes the proof.

Theorem 3.7. If forward convergence implies backward convergence on Y, then the set of statistical upward contin-
uous functions is a forward closed subset of the set of functions from X to Y in the uniform metric ρ according to
d.

Proof. Let f be an element of forward closure of the set of statistical upward continuous functions. Then
there exists a sequence ( fn) whose terms are in the set of statistically upward continuous functions such
that the uniform forward limit is f . To show that the function f is statistical upward continuous let take
a statistical forward quasi Cauchy sequence (xm) whose terms are in X. Let ε > 0 be given. Since ( fn)
uniformly forward converges to f , there exists N ∈ N such that d( f (x), fn(x)) < ε

3 for all x ∈ X and n ≥ N.
Statistical upward continuity of fN implies

limn→∞
1
n |
{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
|= 0

On the other hand, {
m ≤ n : d( f (xm), f (xm+1)) ≥ ε

}
⊆

{
k ≤ n : d( f (xm), fN(xm)) ≥ ε3

}
∪

{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
∪

{
m ≤ n : d( fN(xm+1), f (xm+1)) ≥ ε3

}
holds. Thus we obtain

limn→∞
1
n |
{
m ≤ n : d( f (xm), f (xm+1)) ≥ ε

}
|

≤ limn→∞
1
n |
{
m ≤ n : d( f (xm), fN(xm)) ≥ ε3

}
|

+ limn→∞
1
n |
{
m ≤ n : d( fN(xm), fN(xm+1)) ≥ ε3

}
|

+ limn→∞
1
n |
{
m ≤ n : d( fN(xm+1), f (xm+1)) ≥ ε3

}
|= 0.

This completes the proof.

Corollary 3.8. If the asymmetric metric space (Y, d) is forward compact and forward convergence implies backward
convergence on Y, then the space of statistical upward continuous functions is complete in the uniform metric ρ
according to d.

Proof. It is a direct consequence of [7, Lemma 5.7] and Theorem 3.7.
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4. Conclusion

In this paper, we introduce and examine the statistical forward continuity of functions as well as new
types of continuity defined based on statistical quasi Cauchy sequences in an asymmetric metric space X
which is more general than the metric space. We also investigate necessary and sufficient conditions for a
subset of X to be forward totally bounded. We prove that any statistical upward continuous function on a
subset E of X to Y is statistical forward continuous under the condition that forward convergence implies
backward convergence on X. We also prove that under suitable conditions, the space of statistical upward
continuous functions is complete in the uniform metric ρ according to d. For another study, we suggest to
investigate statistical forward quasi Cauchy double sequences in an asymmetric metric spaces [6, 11, 16].
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