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Abstract. This study describes the use of an interactive derivative of Caputo to a fuzzy fractional starting
value issue. The beginning setting of the equation is represented by a fuzzy subset, and the differentiation is
indicated by F-correlated derivative. In first we provide new and essentials theorems related to F-derivative
of order α ∈ (0, 1]. Secondly we use these theorems to extract the mild solution of the main problem. Thirdly
we demonstrate the uniqueness of solutions by the Schauder fixed point theorem. Lastly, a case study is
given to exhibit the correctness of the acquired outcomes.

1. Introduction

Fractional Differential Equations may be observed of as an extension of Ordinary Differential Equations
(ODE) to random fractional rank [20]. Agarwal et al. established the idea of Fuzzy Fractional Differential
Equation (FFDE) in [21]. A number of articles have been published that handle FFDEs, for instance,
[9, 12, 15, 38–41].

Recent advances in fuzzy fractional differential equations have demonstrated significant theoretical and
computational progress. El Ghazouani and collaborators have established fundamental results including:
existence and asymptotic behavior for nonlinear hybrid systems with fuzzy Caputo-Nabla differences [9];
semilinear elliptic equations [12]; mild solutions for fractional evolution equations [15]; and solvability of
ABC-fractional coupled systems [22]. Their work on Volterra-Fredholm integro-differential equations [23]
and boundary value problems via Hilfer derivatives [24] has extended stability analysis, while studies on
neutral equations with Caputo generalized Hukuhara derivatives [25] and conformable derivatives [27]
have enriched the operator theoretic framework. Novel solution techniques have been developed, including
Chinchole-Bhadane interval methods [26], Laplace residual power series for wave equations [31, 35], and
semi-analytical approaches for acoustic waves [30]. Important extensions cover: Langevin equations
[29]; nonlocal conditions [32]; stochastic systems [33]; and intuitionistic fuzzy equations [34]. Recent
breakthroughs include hybrid systems via Mönch’s theorem [46] and ψ-Caputo nonlocal problems [37],
with applications ranging from elliptic theory to fractional boundary value problems [28]. This collective
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work advances both the theoretical underpinnings and computational methods for fuzzy fractional models
across mathematics and engineering applications.

In this article, we look at the FFDE using the F-derivative of Caputo of degree α ∈ (0, 1], which means
that the differentiation is supplied by an interactive derivation, as defined by Santo Pedro et al. [16].

CF Dα
a+u(s) = Au(s) +F f (s,u(s)),

u(a) = u0 ∈ FR, J = [a, b]
(1)

where f : J × FR → FR is fuzzy continuous function and A is a linear operator.
The fundamental contribution of this study is the development of new theorems about the F-correlated

fractional derivation of degree , such as:

• The relationships between the operators RLF Iα and CF Dα
a+

• The demonstration of: ”If u is F-differentiable. Then u is continuous”.

• We provide the Laplace transform of F-correlated fractional Caputo operator using the F-derivative.

• We present the derivation of the combination of two functions based on the F-derivative.

and use all of this to see if the problem (1) has a fuzzy mild solutions.
The generalized Hukuhara derivative (gH) is commonly utilized by scientists in fuzzy fractional mathe-

matics. The outcomes that we achieve using the F-correlated derivative are comparable to those generated
with (gH).

The afterwards is a breakdown of the work’s sections: Section 2 covers the fundamental ideas of fuzzy
set theory, along with the fuzzy derivative for self-correlated processes. Section 3 offers fuzzy interactive
derivative and new theorems on this notion. Section 4 provide the existence and uniqueness conclusions
for FFDE using the F-correlated derivative. Section 5 supplied an example of FFIVP under the F-correlated
fractional Caputo derivative and Section 6 is the conclusion.

2. Preliminaries

Definition 1. The fuzzy number is a fuzzy set u : R→ [0, 1] that meets these conditions:

1. u is normal, i.e. there’s a t0 ∈ R such as u (t0) = 1;

2. u is a fuzzy convex set;

3. u is upper semicontinuous;

4. The closure of {t ∈ R, u(t) > 0} is compact.

The set of all fuzzy elements on R is symbolized by FR.

FR = {u : R→ [0, 1], u satisfies (1 − 4) below }.

The r-cut of a FR component is given by

[u]r = {s ∈ R,u(s) ≥ r} For all r ∈ (0, 1]

We may write using the previous items

[u(t)]r = [u+r (t),u−r (t)]. (2)

Allow u ∈ FR. The size of the r-cut set of u is given by

len ([u]r) = u+r − u−r , ∀r ∈ [0, 1]. (3)



A. El Ghazouani et al. / Filomat 39:18 (2025), 6391–6411 6393

If r = 0, then len ([u]0) = diam(u).
The Hausdorffmetric d∞ : FR × FR → R+ ∪ {0}, is represented by

d∞(u, v) = sup
0≤r≤1

dH ([u]r, [v]r) , (4)

where dH is the Hausdorffmetric for compact elements of R.
Let u, v ∈ FR, then (4) turns to

d∞(u, v) = sup
0<r≤1

max
{∣∣∣u−r − v−r

∣∣∣ , ∣∣∣u+r − v+r
∣∣∣} . (5)

Allow u, v ∈ FR and J ∈ FJ

(
R2

)
. The relation J is a joint possibility distribution (JPD for short) of u and

v if, [2]
max

s
µJ(t, s) = µu(t) and max

t
µJ(t, s) = µv(s),∀t, s ∈ R.

u and v are the marginal possibility distributions of J in this case.
The fuzzy numbers u and v are called non-interactive iff,

µJ(t, s) = min
{
µu(t), µv(s)

}
for all t, s ∈ R

If not, the fuzzy numbers are called interactive [2, 3].
Allow u, v ∈ FR with JPD J and 1 : R2

→ R. The expansion of 1 in relation to J, applied to (u, v), is the
fuzzy element 1J(u, v) with the following membership function [4]

µ1J(u,v)(x) =
{

sup(z,y)∈1−1(x) µJ(z, y) if 1−1(x) , ∅
0 if 1−1(x) = ∅

, (6)

where 1−1(x) = {(z, y) : 1(z, y) = x}.
If J is supplied by the minimal t-norm, subsequently 1J(u, v) is the Zadeh’s extending concept 1 at u and

v [4].

Theorem 1. [4, 5]. Let u, v ∈ FR, J be a JPD of u and v, and 1 : R × R −→ R a continuous function. At this
scenario, 1J : FR × FR −→ FR is clearly stated. and[

1J(u, v)
]

r
= 1 ([J]r) ∀r ∈ [0, 1]. (7)

Let concentrate on the unique relationship known as interaction. There are multiple kinds of JPD that
provide various interactivities. This paper investigates the interaction known as linear correlation, which
is achieved as proceeds.

Definition 2. [2]. Allow u, v ∈ FR and a function F : R→ R. The fuzzy numbers u and v are said F-correlated if
its JPD is expressed by

µJ(w, z) = χ{(x,y=F(x))}(w, z)µu(w) = χ{x,y=F(x)}(w, z)µv(z). (8)

It is worth noting that the fuzzy number v corresponds to the Zadeh’s extended concept of the function F
when performed at u. If F can be inverted, then u = F − 1(v) and, in this instance,

[u]r =
{
(x,F(x)) ∈ R2

| x ∈ [u]r

}
=

{(
F−1(y), y

)
∈ R2

| y ∈ [v]r

}
. (9)

Furthermore, if F is a continuous function, the r-cuts of v are provided by [1]

[v]r = F ([u]r) . (10)

If the function F is defined as F(u) = qu + r, then F is said to be linearly correlated (or linearly interactive).



A. El Ghazouani et al. / Filomat 39:18 (2025), 6391–6411 6394

Definition 3. [4]. Allow u and v be F-correlated fuzzy numbers. The process v ⊗F u is expressed as follows:

µv⊗Fu(w) =
{

supx∈Φ−1
⊗

(w) µu(x) if Φ−1
⊗

(w) , ∅
0 if Φ−1

⊗
(w) = ∅

,

where Φ−1
⊗

(w) = {x | w = x ⊗ y, y = F(x)}, and ⊗ ∈ {+,−,×,÷}.

According to the Theorem 1, For any r ∈ [0, 1], the four mathematical computations of F-correlated fuzzy
numbers are provided by

[v +F u]r = {F(s) + s ∈ R | s ∈ [u]r}; (11)

[v −F u]r = {F(s) − s ∈ R | s ∈ [u]r}; (12)

[v ·F u]r = {sF(s) ∈ R | s ∈ [u]r}; (13)

[v ÷F u]r = {F(s) ÷ s ∈ R | s ∈ [u]r} , 0 < [u]0. (14)

Furthermore, scalar multiplying of λv, with v = F(u), is stated by [λv]r = {λF(s) ∈ R | s ∈ [u]r}.

Proposition 1. [7]. Allow u and v be F-correlated fuzzy numbers, i.e., [v]r = F ([u]r), with F-differentiable,
[u]r =

[
u−r ,u+r

]
and [v]r =

[
v−r , v+r

]
, then, ∀r ∈ [0, 1],

1)

[v −F u]r = {F(s) − s | s ∈ [u]r} =
i.

[
v−r − u−r , v+r − u+r

]
if F′(s) > 1, ∀s ∈ [u]r

ii.
[
v+r − u+r , v−r − u−r

]
if 0 < F′(s) ≤ 1,∀s ∈ [u]r;

iii.
[
v−r − u+r , v+r − u−r

]
if F′(s) ≤ 0, ∀s ∈ [u]r

(15)

2)

[v +F u]r = {F(s) + s | s ∈ [u]r} =
i.

[
v−r + u−r , v+r + u+r

]
if F′(s) > 0, ∀s ∈ [u]r

ii.
[
v+r + u−r , v−r + u+r

]
if − 1 < F′(s) ≤ 0,∀s ∈ [u]r.

iii.
[
v−r + u+r , v+r + u−r

]
if F′(s) ≤ −1, ∀s ∈ [u]r

(16)

In the initial instance, (15)-i, we have len ([u]r) < len ([v]r), and −F matches with Hukuhara difference [6],
but in (15)-ii, we have len ([u]r) > len ([v]r) and, −F is compatible with 1H difference [8, 10]. In reality, the 1H
and Hukuhara differences are special examples of an interacting difference [8]. Furthermore, if F′(s) ≤ −1,
−F corresponds with standard difference, and +F matches with usual sum when F′(s) > 0.

Let u, v ∈ FR be linearly correlated, i.e. F(y) = qy + r, and [v]r = q[u]r + r, with [u]r =
[
u−r ,u+r

]
and

[v]r =
[
v−r , v+r

]
, (15) and (16) becomes

[v − Lu]r =


i.

[
v−r − u−r , v+r − u+r

]
if q ≥ 1

ii.
[
v+r − u+r , v−r − u−r

]
if 0 < q < 1

iii.
[
v−r − u+r , v+r − u−r

]
if q < 0

(17)

and

[v +L u]r =


i.

[
v−r + u−r , v+r + u+r

]
if q > 0

ii.
[
v+r + u−r , v−r + u+r

]
if − 1 ≤ q < 0.

iii.
[
v−r + u+r , v+r + u−r

]
if q < −1

(18)

It is interesting that if q is positive, +L corresponds to traditional sum, while if q is negative, −L
corresponds to normal difference [11]. Furthermore, when q is positive, −L corresponds with generalized
Hukuhara difference [10], and for q > 1, it matches with Hukuhara difference. [6].
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2.1. Auto-correlated Fuzzy Processes

Auto-correlated fuzzy processes are similar to auto-correlated statistical processes, such as [7, 11, 13].
Those fuzzy processes have been used in fields as diverse as epidemiology [14] and the evolution of
populations [7].

Let L (J,FR) be the field of all Lebesgue integrable functions, and AC (J,FR) be the set of all absolutely
continuous functions.

Definition 4. [7]. A fuzzy function u : J −→ FR defines a fuzzy process u. Let [u(t)]r =
[
u−r (t),u+r (t)

]
, for all r ∈

[0, 1], the process u is δ-locally F-auto-regressive at t ∈ J if there’s a family of real functions Ft,h such as, for all
0 < |h| < δ

[u(t + h)]r = Ft,h ([u(t)]r) ,∀r ∈ [0, 1].

Definition 5. [7]. If u : J → FR is a F-auto-regressive fuzzy process, therefore u is F-correlated differentiable at
t0 ∈ J if a fuzzy number u′F (t0) exist in such a way that

u′F (t0) = lim
h→0

u (t0 + h) − Fu (t0)
h

, (19)

When the aforementioned limit exists and is equivalent to u′F (t0) (by applying the metric d∞). We state that u is
F-differentiable if u′F exists for every t ∈ J.

The following theorem characterizes the F derivative using r-cuts.

Theorem 2. [7]. Allow u : J → FR be F-differentiable at t0 ∈ J, with [u(t)]r =
[
u−r (t),u+r (t)

]
, where the associated

function family Ft0,h : I→ R is monotone continuous differentiable for every h, r ∈ [0, 1] and Ft,h, ∀t ∈ J. Then,

[
u′F (t0)

]
r
=


[(

u−r
)′ (t0) ,

(
u+r

)′ (t0)
]
if F′t,h(w) > 1[(

u+r
)′ (t0) ,

(
u−r

)′ (t0)
]
if 0 < F′t,h(w) ≤ 1{(

u−r
)′ (t0)

}
=

{(
u+r

)′ (t0)
}
if F′t,h(w) ≤ 0

.

for every 0 < |h| < δ, δ > 0, and w ∈ [u(t)]r.

The process u is referred to be expansive if the length of u(t) is a non-decreasing function at t, and
contractive if the length of u(t) is a non-increasing function at t.

Theorem 3. [16]. Consider u ∈ AC (J,FR) be F-differentiable, and [u(t)]r =
[
u−r (t),u+r (t)

]
.

1. Assume u is expansive, i.e., len ([u(t)]r) is an increase function on J. If function u′F is Riemann integrable then(
u−r

)′ (t) and
(
u+r

)′ (t) are integrable on J, and[∫ t

a
u′F(s)ds

]
r
=

[∫ t

a

(
u−r

)′ (s)ds,
∫ t

a

(
u+r

)′ (s)ds
]
.

2. Assume u is contractive, i.e., len ([u(t)]r) is a decrease function on J. If function u′F is Riemann integrable then(
u−r

)′ (t) and
(
u+r

)′ (t) are integrable on J, and[∫ t

a
u′F(s)ds

]
r
=

[∫ t

a

(
u+r

)′ (s)ds,
∫ t

a

(
u−r

)′ (s)ds
]
.
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2.2. Fractional Calculus
Definition 6. The Gamma function is given by

∀x > 0, Γ(x) =
∫ +∞

0
tx−1e−tdt. (20)

Definition 7. [15]. The Riemann Liouville fractional integral Iαa+u of u ∈ L(J,R) of degree α ∈ (0, 1] is set up by

(
Iαa+u

)
(t) =

1
Γ(α)

∫ t

a
(t − s)α−1u(s)ds, for t > a

and Γ(α) is the gamma function. When α = 1, we have
(
I1
a+u

)
(t) =

∫ t

a u(s)ds.

Definition 8. [15]. The Riemann Liouville derivative of degree α ∈ (0, 1], has been expressed like

(
RLDα

a+u
)

(t) =
d
dt

I1−α
a+ u(t) =

1
Γ(1 − α)

d
dt

∫ t

a
(t − s)−αu(s)ds, for t > a.

Definition 9. [15]. Allow u ∈ L(J,R) and assume there’s RLDα
a+u on J. The Caputo fractional derivative CDα

a+u is
stated as (

CDα
a+u

)
(t) =

(
RLDα

a+ [u(·) − u(a)]
)

(t), for t ∈ J.

Besides that, if u ∈ AC(J,R), then

(
CDα

a+u
)

(t) =
1

Γ(1 − α)

∫ t

a
(t − s)−αu′(s)ds,∀t ∈ J,

and (
RLDα

a+u
)

(t) =
(

CDα
a+u

)
(t) +

(t − a)−α

Γ(1 − α)
u(a), ∀t ∈ J.

Definition 10. [19] Allow u be a continuous function such that e−st
⊙ u(t) is integrable. Therefore the fuzzy Laplace

transform of u, indicated by L[u(t)], is

L[u(t)] := U(s) =
∫ +∞

0
e−st
⊙ u(t)dt, s > 0. (21)

A fuzzy function u is exponent bounded of degree α if there’s M > 0 provided that

∃t0 > 0, d+∞(u(t), 0̃) ≤Meαt,∀t ≥ t0

Proposition 2. [15]. If u(t) is a fuzzy continuous function and of exponential degree α, thus

L((u ⋆ v)(t)) = L(u(t)) ⊙ L(v(t)). (22)

where v(t) is a peace-wise continuous real function on [0,∞).

Proposition 3. [15]. For all α > 0, we get the following result∫ t

0
Eα,1 (Asα) ds = tEα,2 (Atα) . (23)

Lemma 1. [15]. For all α > 0 and s > 0,

i. sα−1 (sα − A)−1 = L
(
Eα,1 (Atα)

)
(s),
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ii. sα−2 (sα − A)−1 = L
(
tEα,2 (Atα)

)
(s),

iii. (sα − A)−1 = 1
Γ(α−1)L

(∫ t

0 (t − s)α−2Eα,1 (Asα) ds
)
.

Now, we recall Schauder fixed point theorem and the Ascoli-Arzela theorem as follows.

Theorem 4. (Schauder fixed point theorem) AllowG be a non-empty, closed, limited and convex subspace of a Banach
space O, and assume that Q : G → G is a compact operator. Therefore Q has at least one fixed point in G.

Theorem 5. (Ascoli-Arzela). Allow ϕn(t) be a series of functions which is uniformly limited and equi-continuous.
Therefore, ϕn(t) has a uniformly convergent subsequence.

The next parts considers u as a fuzzy process, instead of a deterministic function. The goal is to apply the
ideas of fuzzy integral and fuzzy F-derivative.

3. Fuzzy Interactive Fractional Derivative

The fuzzy fractional Riemann Liouville integral of degree alpha > 0, of u can be specified by[(
Iαa+u

)
(t)

]
r
=

1
Γ(α)

[∫ t

a
(t − s)α−1u−r (s)ds,

∫ t

a
(t − s)α−1u+r (s)ds

]
, t > a.

For fuzzy fractional derivative of u ∈ L (J,RF ) we have

u1−α(t) =
∫ t

a

(t − s)−α

Γ(1 − α)
u(s)ds, for all t ∈ J,

where u1−α(a) = limt→a+ u1−α(t) according to Pompeiu Hausdorff distance.

Definition 11. [16]. The fuzzy Riemann Liouville fractional derivative of u with regard to the F-derivative is
characterized as(

RLF Dα
a+u

)
(t) =

1
Γ(1 − α)

(∫ t

a
(t − s)−αu(s)ds

)′
F
= (u1−α(t))′F , (24)

where
∫ t

a (t − s)−αu(s)ds is a F-correlated fuzzy process, F-differentiable for all t ∈ J.

It is critical to note that
∫ t

a (t− s)−αu(s)ds might be an expansive or contractive fuzzy process. nevertheless it
is expansive if u(·) is expansive [17]. As a result, if u1−α(·) or u(·) is expansive, therefore[

RLF Dα
a+u(t)

]
r
=

1
Γ(1 − α)

[
d
dt

∫ t

a
(t − s)−αu−r (s)ds,

d
dt

∫ t

a
(t − s)−αu+r (s)ds

]
.

Thus, [
RLF Dα

a+u(t)
]

r
=

 i.
[
Dα

a+u
−
r (t),Dα

a+u
+
r (t)

]
if u1−α(·) or u(·) is expansive

ii.
[
Dα

a+u
+
r (t),Dα

a+u
−
r (t)

]
if u1−α(·) is contractive

Definition 12. Allow u be a F-correlated fuzzy process. The fuzzy Caputo fractional derivative CF Dα
a+u with regard

to the F-derivative is stated as follows:(
CF Dα

a+u
)

(t) =
(

RLF Dα
a+ [u(·) − Fu(a)]

)
(t), ∀t ∈ J.

Then, (
CF Dα

a+u
)

(t) =
1

Γ(1 − α)

(∫ t

a
(t − s)−α (u(s) − Fu(a)) ds

)′
F
.
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According to (24) if u1−α(·) is contractive, therefore

[(
CF Dα

a+u
)

(t)
]

r
=


[(

CDα
a+u
−
r

)
(t),

(
CDα

a+u
+
r

)
(t)

][(
CDα

a+u
+
r

)
(t),

(
CDα

a+u
−
r

)
(t)

]  if u(·) is expansive
if u(·) is contractive

Theorem 6. [16]. Let u ∈ AC (J,FR) be a F-correlated fuzzy process, F-differentiable alongside [u(t)]r =
[
u−r (t),u+r (t)

]
,

for 0 < α ≤ 1 , and r ∈ [0, 1]. we have,

[(
CF Dα

a+u
)

(t)
]

r
=


[∫ t

a
(t−s)−α

Γ(1−α)
(
u−r

)′ (s)ds,
∫ t

a
(t−s)−a

Γ(1−α)
(
u+r

)′ (s)ds
]
if u is expansive[∫ t

a
(t−s)−a

Γ(1−α)
(
u+r

)′ (s)ds,
∫ t

a
(t−s)−α

Γ(1−α)
(
u−r

)′ (s)ds
]
if u is contractive

,

for t ∈ J.

Theorem 7. If u : J → FR is F-differentiable at t0 > 0, Denote [u(t)]r =
[
u−r (t),u+r (t)

]
, r ∈ [0, 1]. Then u−r (t) and

u+r (t) are continuous at t0 so u is continuous at t0.

Proof. Let ϵ > 0 and r ∈ [0, 1], we have :

[u (t0 + h) − Fu (t0)]r =
i.

[
u−r (t0 + h) − u−r (t0) ,u+r (t0 + h) − u+r (t0)

]
if F′(w) > 1, ∀w ∈ [u]r

ii.
[
u+r (t0 + h) − u+r (t0) ,u−r (t0 + h) − u−r (t0)

]
if 0 < F′(w) ≤ 1,∀w ∈ [u]r;

iii.
[
u−r (t0 + h) − u+r (t0) ,u+r (t0 + h) − u−r (t0)

]
if F′(w) ≤ 0, ∀w ∈ [u]r

Dividing and multiplying by h, we have :

[u (t0 + h) −F u (t0)]r =
i.

[
u−r (t0+h)−u−r (t0)

h · h, u+r (t0+h)−u+r (t0)
h · h

]
if F′(w) > 1, ∀w ∈ [u]r

ii.
[

u+r (t0+h)−u+r (t0)
h · h, u−r (t0+h)−u−r (t0)

h · h
]
if 0 < F′(w) ≤ 1,∀w ∈ [u]r;

iii.
[

u−r (t0+h)−u+r (t0)
h · h, u+r (t0+h)−u−r (t0)

h · h
]
if F′(w) ≤ 0, ∀w ∈ [u]r

Then
lim
h→0

[u (t0 + h) −F u (t0)]r =
i.

[
lim
h→0

u−r (t0+h)−u−r (t0)
h · lim

h→0
h, lim

h→0

u+r (t0+h)−u+r (t0)
h · lim

h→0
h
]
if F′(w) > 1, ∀w ∈ [u]r

ii.

[
lim
h→0

u+r (t0+h)−u+r (t0)
h · lim

h→0
h, lim

h→0

u−r (t0+h)−u−r (t0)
h · lim

h→0
h
]
if 0 < F′(w) ≤ 1,∀w ∈ [u]r;

iii.

[
lim
h→0

u−r (t0+h)−u+r (t0)
h · lim

h→0
h, lim

h→0

u+r (t0+h)−u−r (t0)
h · lim

h→0
h
]
if F′(w) ≤ 0, ∀w ∈ [u]r

Then
lim
h→0

[u (t0 + h) −F u (t0)]r =
i.

[
u−r
′
· 0,u+r

′
· 0

]
if F′(w) > 1, ∀w ∈ [u]r

ii.
[
u+r
′
· 0,u−r

′
· 0

]
if 0 < F′(w) ≤ 1,∀w ∈ [u]r;

iii.

[
lim
h→0

u−r (t0+h)−u+r (t0)
h · 0, lim

h→0

u+r (t0+h)−u−r (t0)
h · 0

]
if F′(w) ≤ 0, ∀w ∈ [u]r

which implies that
lim
h→0

[u (t0 + h)]r = [u (t0)]r

Hence, u is continuous at t0.

Theorem 8. Let u ∈ AC (J,FR) be a F-correlated fuzzy process, F-correlated differentiable with [u(t)]r =
[
u−r (t),u+r (t)

]
,

for 0 < α ≤ 1, and r ∈ [0, 1]. Then
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1.

RLF Iα
(

CF Dα
a+u(t)

)
= RLF Iα

(
RLF Dα

a+ [u(·) − Fu(a)]
)

(t)

=

{
u(t) −F u(a), if u(·) is expansive
−F(−1) (u(t) −F u(a)) , if u(·) is contractive

. (25)

2.

CF Dα
a+

(
RLF Iαu(t)

)
=

{
u(t), if u(·) is expansive
−F(−1)u(t), if u(·) is contractive (26)

Proof. Using the r-cuts, we get[
RLF Iα

(
CF Dα

a+u(t)
)]

r
= RLIα

([
CF Dα

a+u(t)
]

r

)
=

RLIα
([(

CDα
a+u
−
r

)
(t),

(
CDα

a+u
+
r

)
(t)

])
, if u(·) is expansive

RLIα
([(

CDα
a+u
+
r

)
(t),

(
CDα

a+u
−
r

)
(t)

])
, if u(·) is contractive

=


[

RLIα
(

CDα
a+u
−
r

)
(t), RLIα

(
CDα

a+u
+
r

)
(t)

]
, if u(·) is expansive[

RLIα
(

CDα
a+u
+
r

)
(t), RLIα

(
CDα

a+u
−
r

)
(t)

]
, if u(·) is contractive

where
RLIα

(
CDα

a+u
−

r

)
(t) = RLIα

(
1

Γ(1 − α)

∫ t

a
(t − s)−αu−r

′(s)ds
)

= u−r (t) − u−r (a),

and
RLIα

(
CDα

a+u
+
r

)
(t) = RLIα

(
1

Γ(1 − α)

∫ t

a
(t − s)−αu+r

′(s)ds
)

= u+r (t) − u+r (a),

Thus, [
RLF Iα

(
CF Dα

a+u(t)
)]

r
=

{ [
u−r (t) − u−r (a),u+r (t) − u+r (a)

]
, if u(·) is expansive[

u+r (t) − u+r (a),u−r (t) − u−r (a)
]
, if u(·) is contractive

Therefore, using the F-difference (12),we obtain

RLF Iα
(

CF Dα
a+u(t)

)
=

{
u(t) −F u(a), if u(·) is expansive
−F(−1) (u(t) −F u(a)) , if u(·) is contractive (27)

For the second property, since u is continuous, then RLF Iαu(t) is clearly F-correlated differentiable. Hence,
Using the r-cuts, we obtain

[
CF Dα

a+
(

RLF Iαu(t)
)]

r
=


[

CDα
a+

(
RLIαu−r

)
(t), CDα

a+

(
RLIαu+r

)
(t)

]
, if u(·) is expansive[

CDα
a+

(
RLIαu+r

)
(t), CDα

a+

(
RLIαu−r

)
(t)

]
, if u(·) is contractive

=

{ [
u−r (t),u+r (t)

]
, if u(·) is expansive[

u+r (t),u−r (t)
]
, if u(·) is contractive

=

{
[u(t)]r , if u(·) is expansive
−F(−1) [u(t)]r , if u(·) is contractive
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Theorem 9. Let u ∈ AC (J,FR) be a F-correlated fuzzy process, F-correlated differentiable with [u(t)]r =
[
u−r (t),u+r (t)

]
,

for 0 < α ≤ 1, and r ∈ [0, 1]. Then

L

(
CF Dα

a+u(t)
)
=

{
s ⊙ L(u(t)) −F u(a), if u(·) is expansive
−F(−1) (s ⊙ L(u(t)) −F u(a)) , if u(·) is contractive . (28)

Proof. Using the r-cuts, we get

[
L

(
CF Dα

a+u(t)
)]

r
=


[
L

(
CDα

a+u
−
r

)
(t),L

(
CDα

a+u
+
r

)
(t)

]
, if u(·) is expansive[

L

(
CDα

a+u
+
r

)
(t),L

(
CDα

a+u
−
r

)
(t)

]
, if u(·) is contractive

=

{ [
sL(u−r (t)) − u−r (a), sL(u+r (t)) − u+r (a)

]
, if u(·) is expansive[

sL(u+r (t)) − u+r (a), sL(u−r (t)) − u−r (a)
]
, if u(·) is contractive

=

{
s ⊙ L(u(t)) −F u(a), if u(·) is expansive
−F(−1) (s ⊙ L(u(t)) −F u(a)) , if u(·) is contractive

The evidence is finished.

Theorem 10. Assume 0 < α ≤ 1. If ϕ,ψ : J→ FR are F-differentiable and λ ∈ R then

1.

(ϕ + ψ)′F(s) = ϕ′F(s) + ψ′F(s) (29)

2.

(λϕ)′F(s) = λϕ′F(s) (30)

Proof. We just offer the specifics for instance 1 because the second instance is analogous. Since ϕ is F-
differentiable, as a result of this ϕ (s + h) −F ϕ(s) exists i.e. there is u1 (s, h) such as

ϕ (s + h) = ϕ(s) + u1 (s, h)

Analogously since ψ is F-differentiable, then there is v1 (s, h) such as

ψ (s + h) = ψ(s) + v1 (s, h)

and we get
ϕ (s + h) + ψ (s + h) = ϕ(t) + ψ(s) + u1 (s, h) + v1 (s, h)

that is the F-difference(
ϕ (s + h) + ψ (s + h)

)
−F (ϕ(s) + ψ(s)) = u1 (s, h) + v1 (s, h) (31)

We notice that

lim
h→0

u1 (s, h)
h

= ϕ′F(s) and lim
h→0

v1 (s, h)
h

= ψ′F(s).

Finally, by multiplying (31) with 1
h and passing to limit with lim

h→0
we get the desired results.

Theorem 11. Let u : J→ FR and ϕ : J→ R. Assume that ϕ(t) is real differentiable function and the fuzzy function
u(t) is F-differentiable. Then

(u ⊙ ϕ)′F(t) = u′F(t) ⊙ ϕ(t) +F u(t) ⊙ ϕ′F(t). (32)
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Proof. First of all, we have

(u(t) ⊙ ϕ(t))′F = lim
h→0

u(t + h) ⊙ ϕ(t + h) −F u(t) ⊙ ϕ(t)
)

h

Evaluating the difference between the two edges of the equation, it is easy to see that the metric is zero.

d∞

 u(t + h) ⊙ ϕ(t + h) −F u(t) ⊙ ϕ(t)
)

h
,u′F(t) ⊙ ϕ(t) +F u(t) ⊙ ϕ′F(t)


= d∞

(
u(t+h)⊙ϕ(t+h)+Fu(t)⊙ϕ(t+h)−Fu(t)⊙ϕ(t+h)−Fu(t)⊙ϕ(t))

h ,u′F(t) ⊙ ϕ(t) +F u(t) ⊙ ϕ′F(t)
)

= d∞
(

(u(t+h)−Fu(t))⊙ϕ(t+h)+Fu(t)⊙(ϕ(t+h)−F⊙ϕ(t))
h ,u′F(t) ⊙ ϕ(t) +F u(t) ⊙ ϕ′F(t)

)
≤ d∞

(
(u(t + h) −F u(t)) ⊙ ϕ(t + h)

h
,u′F(t) ⊙ ϕ(t)

)

+ d∞

u(t) ⊙
(
ϕ(t + h) −F ⊙ϕ(t)

)
h

,u(t) ⊙ ϕ′F(t)


Now limit of two edges when h→ 0 are,

lim
h→0

d∞

 u(t + h) ⊙ ϕ(t + h) −F u(t) ⊙ ϕ(t)
)

h
,u′F(t) ⊙ ϕ(t) +F u(t) ⊙ ϕ′F(t)


= lim

h→0
d∞

(
(u(t + h) −F u(t)) ⊙ ϕ(t + h)

h
,u′F(t) ⊙ ϕ(t)

)

+ lim
h→0

d∞

u(t) ⊙
(
ϕ(t + h) −F ⊙ϕ(t)

)
h

,u(t) ⊙ ϕ′F(t)


The proof is finished by considering the qualities of the limits and distances.

Theorem 12. Take u(t) as a continuous and F-differentiable fuzzy correlated proses on [a, b] respectively and ϕ(t) is
a real continuous and differentiable function on [a, b]. Then there’s t0 ∈ (a, b) such as

[u(b) −F u(a)] ⊙ ϕ′(t0) =
[
ϕ(b) − ϕ(a)

]
⊙ u′F(t0) (33)

Proof. Construct the following novel function:

ψ(t) = [u(b) −F u(a)] ⊙ ϕ(t) −F

[
ϕ(b) − ϕ(a)

]
⊙ u(t) (34)

Since this function is continuous,
We can take u(b) −F u(a) = k and ϕ(b) − ϕ(a) = l so we gain

ψ(t) = k ⊙ ϕ(t) −F l ⊙ u(t)

Afterwards, for every ϵ > 0, ∃δ > 0 if for each x in |t − t0| < δ at an random point t we demonstrate,

d∞(ψ(t), ψ(t0)) = d∞
(
k ⊙ ϕ(x) −F l ⊙ u(t), k ⊙ ϕ(t0) −F l ⊙ u(t0)

)
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In accordance with the characteristics of the Hausdorffmetric,

≤ d∞(k ⊙ ϕ(t), k ⊙ ϕ(t0)) + d∞(l ⊙ u(t), l ⊙ u(t0))

We may produce, on the basis of the definitions of Hausdorffmetric and the value of a fuzzy element,

≤ |k||ϕ(t) − ϕ(t0)| + |l|d∞(u(t),u(t0))

Furthermore, this total is smaller than ϵ.
On the opposite side, ψ(a) = ψ(b) so it is F-differentiable at t0 and equals to zero. Therefore

ψ′F(t) = [u(b) −F u(a)] ⊙ ϕ′(t) −F [ϕ(b) − ϕ(a)] ⊙ u′F(t)

And ψ′F (t0) = 0 so,
[u(b) −F u(a)] ⊙ ϕ′ (t0) −F [ϕ(b) − ϕ(a)] ⊙ u′F (t0) = 0

The proof is completed.

Remark 1. Our findings using F-correlated derivative are analogous with those found using gH. Yet, the levels
of computation using F-correlated process and via gH have distinct characteristics as can be observed in (11)-(14).
Despite the difference (12) corresponds to the difference (gH), the F-correlated multiplication and division operations
are not compatible with normal operations employed with (gH). These evidences suggest that the results of fuzzy
differential equations obtained by gH and F may differ. For instance, [18] using computational simulations.

4. Solutions via Fuzzy Interactive Fractional Derivative

Considering the next fuzzy fractional starting point issue, which is supplied by the F-correlated fractional
Caputo derivative of degree 0 < α ≤ 1

CF Dα
a+u(t) = Au(t) +F f (t,u(t)),

u(a) = u0 ∈ RF , J = [0, b]
(35)

where f : J × FR → FR is fuzzy continuous function and A is a linear operator.

Definition 13. The F-correlated fuzzy process u : J→ FR is considered to be a solution of (35) if and only if

1. u ∈ C (J,FR) ,u(a) = u0 and

2.
(

CF Dα
a+u

)
(t) = Au(t) +F f (t,u(t)), for all t ∈ J.

Lemma 2. Let A be a linear operator, the solution u(t) of (35) is provided by

• if u(t) is expansive,

u(t) = Eα,1 (Atα) ⊙ u0 +F

∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds. (36)

• if u(t) is contractive,

u(t) = Eα,1 (Atα) ⊙ u0 +F −F(−1)
∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds. (37)
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Proof. By performing the Riemann-Liouville fractional integral operator with respect to F-derivative RLIαa+
to both side of the Eq. (35) we get

if u(t) is expansive

RLF Iα
(

CF Dα
a+u(t)

)
= u(t) −F u(a) = RLF Iαa+

(
Au(t) +F f (t,u(t))

)
, (38)

And if u(t) is contractive, we obtain

RLF Iα
(

CF Dα
a+u(t)

)
= −F(−1) (u(t) −F u(a)) = RLF Iαa+

(
Au(t) +F f (t,u(t))

)
, (39)

We may derive these claims from the concept of F-difference:

• if u(t) is expansive

u(t) = u(a) +F
RLF Iαa+

(
Au(t) +F f (t,u(t))

)
, (40)

• if u(t) is contractive,

u(t) = u(a) +F −F(−1)RLF Iαa+
(
Au(t) +F f (t,u(t))

)
, (41)

Now we use the fuzzy Laplace transform on (40) and (41)

• if u(t) is expansive,

U(s) =
1
s
⊙ u0 +F

1
sα
⊙ AU(s) +F

1
sα
⊙ F(s),

• if u(t) is contractive,

U(s) =
1
s
⊙ u0 +F −F(−1)

1
sα
⊙ AU(s) +F −F(−1)

1
sα
⊙ F(s),

which implies

• if u(t) is expansive,
sα ⊙U(s) = sα−1

⊙ u0 +F AU(s) + F(s)

(sα ⊙ Id − A) ⊙U(s) = sα−1
⊙ u0 +F F(s)

Then

U(s) = (sα ⊙ Id − A)−1
⊙ sα−1

⊙ u0 +F (sα ⊙ Id − A)−1
⊙ F(s). (42)

• if u(t) is contractive,

sα ⊙U(s) = sα−1
⊙ u0 +F −F(−1)AU(s) +F −F(−1)F(s)

(sα ⊙ Id − A) ⊙U(s) = sα−1
⊙ u0 +F −F(−1)F(s)

Then

U(s) = (sα ⊙ Id − A)−1
⊙ sα−1

⊙ u0 +F −F(−1)(sα ⊙ Id − A)−1
⊙ F(s). (43)

By the Lemma 1 we gain

• if u(t) is expansive,

U(s) = L
(
Eα,1 (Atα)

)
⊙ u0 +F L

(
1 ⋆ f

)
, (44)
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• if u(t) is contractive,

U(s) = L
(
Eα,1 (Atα)

)
⊙ u0 +F −F(−1)L

(
1 ⋆ f

)
. (45)

with 1(t) =
∫ t

0

(t − τ)α−2

Γ(α − 1)
⊙ Eα,1 (Aτα) dτ.

Finally by applying the inverse Laplace transformation on both sides of the equations (44) and (45), we
get the mild solution of the Eq. (35). The evidence is complete.

The next hypothesis will be utilized in the findings that follow:

(Hyp1) : For all t ∈ J, the function f ∈ C(J × T ,T ) is continuous and for every u ∈ C(J,T ), f (.,u) : J → T is
strongly measurable.

(Hyp2) : There exist α2 ∈ [0, α),Bκ :=
{
u ∈ T , d∞(u, 0̃) ≤ κ

}
⊂ T , κ > 0, and ρ(.) ∈ L

1
α2 (J,R+) such as for any

u, v ∈ C (J,Bκ) we obtain

d∞( f (t,u(t)), f (t, v(t)) ≤ ρ(t)d∞(u(t), v(t)), t ∈ J. (46)

(Hyp3) : There is a constant α1 ∈ [0, α) and m ∈ L
1
α1 (J,R+) suchas

d∞( f (t,u(t)), 0̃) ≤ µ(t). (47)

for all u ∈ C(J,T ) and for almost all t ∈ J.

(Hyp4) : Eα,n (Atα) is a compact operator for any t > 0 and n ∈N.

Theorem 13. Given assumptions
(
Hyp1

)
−

(
Hyp4

)
the Eq. (35) has a expansive mild fuzzy solution in the set

C(J,T ).

Proof. Assume u ∈ C(J,T ). as u is continuous according to t and hypothesis
(
Hyp1

)
, f (s,u(s)) is a measurable

function on J. Let

σ =
α − 1
1 − α1

, M1 = ∥µ∥
L

1
α1 (J)

. (48)

For t ∈ J, by using Holder’s inequality and
(
Hyp3

)
, we have

d∞

(∫ t

0
(t − s)α−1

⊙ f (s,u(s))ds, 0̃
)
≤

∫ t

0
(t − s)α−1

⊙ d∞( f (s,u(s)), 0̃)ds

≤

(∫ t

0
(t − s)

α−1
1−α1 ds

)1−α1

∥µ∥
L

1
qα1 [0,t]

≤
M1b(1+σ)(1−α1)

(1 + σ)1−α1
.

Therefore, we obtain

d∞

(∫ t

0

∫ t

s

(
(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤

∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ d∞

(
Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) , 0̃

)
dδds

≤
M
Γ(α)

⊙

∫ t

0
(t − s)α−1d∞( f (s,u(s)) , 0̃)ds

≤
M1Mb(1+σ)(1−α1)

Γ(α)(1 + σ)1−α1
.
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for all t ∈ J.

Therefore
∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds is limited for any t ∈ J.

For u ∈ C(J,T ), we state

(Q1u) (t) = Eα,1 (Atα) ⊙ u0 t ∈ J = [0, b]

(Q2u) (t) =
∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds,

Set

λ =M

∥u0∥ +
M1b(1+σ)(1−qα1)

Γ(α)(1 + σ)1−α1

 .
and Bλ :=

{
u(.) ∈ C(J,T ) : d∞(u(t), 0̃) ≤ λ for all t ∈ J

}
. We will prove that Q1u+Q2u has a fixed point on

Bλ.
Step 1. we show for every u ∈ Bλ,Q1u + Q2u ∈ Bλ. Indeed, with 0 ≤ t1 ≤ t2 ≤ b we have

d∞ ((Q2u) (t2) , (Q2u) (t1)) = d∞

(∫ t2

0

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds,∫ t1

0

∫ t1

s

(t1 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

)
= d∞

(∫ t2

t1

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

+

∫ t1

0

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

−

∫ t1

0

∫ t1

s

(t1 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
= d∞

(∫ t2

t1

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

+

∫ t1

0

∫ t1

s

[
(t2 − δ)α−2

− (t1 − δ)α−2
]

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

+

∫ t1

0

∫ t2

t1

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤ d∞

(∫ t2

t1

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)

+ d∞


∫ t1

0

∫ t1

s

[
(t2 − δ)α−2

− (t1 − δ)α−2
]

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃


+ d∞

(∫ t1

0

∫ t2

t1

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
= I1 + I2 + I3.

where
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I1 = d∞

(∫ t2

t1

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)

I2 = d∞


∫ t1

0

∫ t1

s

[
(t2 − δ)α−2

− (t1 − δ)α−2
]

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃


I3 = d∞

(∫ t1

0

∫ t2

t1

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
.

We have :

I1 = d∞

(∫ t2

t1

∫ t2

s

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤

MM1

Γ(α)

(∫ t2

t1

(t2 − s)1−α1

)
≤

MM1

(1 + σ)1−α1Γ(α)
(t2 − t1)(σ+1)(1−α1),

also

I2 = d∞


∫ t1

0

∫ t1

s

[
(t2 − δ)α−2

− (t1 − δ)α−2
]

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃


≤

M
Γ(α)

(∫ t1

0

[
(t2 − s)α−1

− (t1 − s)α−1
− (t2 − t1)α−1

]
⊙ d∞

(
f (s,u(s)) ds, 0̃

))
≤

M
Γ(α)

(∫ t1

0

[
(t2 − s)α−1

− (t1 − s)α−1
]
⊙ d∞

(
f (s,u(s)) ds, 0̃

)
−

∫ t1

0
(t2 − t1)α−1

⊙ d∞
(

f (s,u(s)) ds, 0̃
))

≤
M
Γ(α)

(∫ t1

0

[
(t2 − s)b

− (t1 − s)σ
]1−α1

⊙M1 − (t2 − t1)α−1
⊙ t1−α1

1 M1

)
≤

MM1

(σ + 1)1−α1Γ(α)

(
−(t2 − t1)σ+1 + tσ+1

2 − tσ+1
1 − (t2 − t1)α−1(σ + 1)1−α1

)
.

likewise

I3 = d∞

(∫ t1

0

∫ t2

t1

(t2 − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤

M
Γ(α)

(∫ t1

0
(t2 − t1)α−1

⊙ d∞
(

f (s,u(s)) ds, 0̃
))

≤
MM1(t2 − t1)α−1

Γ(α)
t1−α1
1 .

Then it is straightforward that I1, I2, and I3 tend to 0 as t2 − t1 → 0. So (Q2u) (t) is continuous in t ∈ J. It’s
easy to see that (Q1u) (t) is also continuous in t ∈ J.

Now, for any u ∈ Bλ and t ∈ J, we have

d∞
(
(Q1u) (t) + (Q2u) (t), 0̃

)
≤M (∥u0∥) +

M1Mb(1+σ)(1−α1)

Γ(α)(1 + σ)1−α1
≤ λ. (49)
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Then Q1 + Q2 is an operator from Bλ into Bλ.
Step 2 . We prove thatQ2 is a fully continuous operator that can be decomposed into several small steps.
First, we show that Q2 is continuous in Bλ.
Let {un} ⊆ Bλ with un → u on Bλ. Applying hypothesis

(
Hyp2

)
, we get

f (s,un(s))→ f (s,u(s)) as n→∞, (50)

almost everywhere t ∈ J.
From the hypothesis

(
Hyp3

)
, d∞

(
f (s,un(s)) , f (s,u(s))

)
≤ 2µ(s).

Therefore, by the domination convergence theorem, we get

d∞ ((Q2un) (t), (Q2u) (t)) ≤
∫ t

0

∫ t

s

M(t − δ)α−2

Γ(α − 1)
⊙ d∞

(
f (s,un(s)) , f (s,u(s))

)
dδds

≤

∫ t

0
(t − s)α−1 αM

Γ(1 + α)
⊙ d∞

(
f (s,un(s)) , f (s,u(s))

)
ds→ 0,

when n→∞, This means Q2 is continuous.
Next, we show that Q2 (Bλ) is relatively compact. This is the family of functions {Q2u : u ∈ Bλ} and

{(Q2u) (t)} relative compactness:u ∈ Bλ, where t ∈ J.
We proved this for all u ∈ Bλ and 0 ≤ t1 ≤ t2 ≤ b

d∞ ((Q2u) (t2) , (Q2u) (t1)) ≤ I1 + I2 + I3.

We now have

I1 ≤
MM1

(1 + σ)1−α1Γ(α)
(t2 − t1)(σ+1)(1−α1)

I2 ≤
MM1

(σ + 1)1−α1Γ(α)

(
−(t2 − t1)σ+1 + tσ+1

2 − tσ+1
1 − (t2 − t1)α−1(σ + 1)1−α1

)
I3 ≤

MM1(t2 − t1)α−1

Γ(α)
t1−α1
1 .

From step 1, it is easy to see that Q2 (Bλ) is equi-continuous.
Proving this is enough for each t ∈ J,V(t) = {(Q2u) (t) : u ∈ Bλ} is relatively compact. For any fixed

0 < t ≤ b,∀ϵ ∈ (0, t) and ∀δ > 0, let the operator Qϵ,δ be define as

(
Qϵ,δu

)
(t) =

∫ t−ϵ

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

=

∫ t−ϵ

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1

(
A(δ − s)α − A(η − ϵ) + A(η − ϵ)

)
⊙ f (s,u(s)) dδds

= Eα,1
(
A(η − ϵ)

) ∫ t−ϵ

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1

(
A(δ − s)α − A(η − ϵ)

)
⊙ f (s,u(s)) dδds,

where u ∈ Bλ. From hypothesis
(
Hyp4

)
,Eα,1

(
A(η − ϵ)

)
is a compact operator, then Vϵ,δ(t) =

{(
Qϵ,δu

)
(t) : u ∈ Bλ

}
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is relatively compact. Moreover, ∀u ∈ Bλ, we have

d∞
(
(Q2u) (t),

(
Qϵ,δu

)
(t)

)
= d∞

(∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

−

∫ t−ϵ

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

)
= d∞

(∫ t

0

∫ s+η

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

+

∫ t

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds

−

∫ t−ϵ

0

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤ d∞

(∫ t

0

∫ s+η

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
+ d∞

(∫ t

t−ϵ

∫ t

s+η

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds, 0̃

)
≤

M1M
(σ + 1)Γ(α)

[(
(−η)σ+1

− (a − η)σ+1 + bσ+1
)1−α1

(
−(−η)σ+1 + (−ϵ − η)σ+1

)1−α1
]
→ 0,

when η, ϵ→ 0.
Then we have a relatively compact set arbitrarily close to V(t), t > 0, which means that V(t), t > 0 is also

relatively compact.
Applying the Ascoli-Arzela theorem 5 shows that Q2 (Bλ) is relatively compact. Since Q2 is continuous

and Q2 (Bλ) is relatively compact, Q2 is a fully continuous operator.
According to Schauder’s fixed point theorem 4, Q1 + Q2 has a fixed point at Bλ. So the Eq. (35) has a

expansive mild solution.

Set

Q̂[u](t) = Eα,1 (Atα) ⊙ u0 −F (−1)
∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1 (A(δ − s)α) ⊙ f (s,u(s)) dδds.

Ĉ(J,T ) =
{
u ∈ C(J,T ) : Q̂[u](t) exists for all t ∈ J

}
. (51)

The following results show that there’s a contractive mild solution for the Eq. (35) in the space C(J,T ).

Theorem 14. The hypothesis
(
Hyp1

)
−

(
Hyp4

)
is true and

Hyp5 Ĉ(J,T ) , ∅.

Hyp6 if u ∈ Ĉ(J,T ), hence Q̂[u] ∈ Ĉ(J,T ).

In this case the Eq. (35) has a contractive mild solution C(J,T ).

Proof. For u ∈ Ĉ(J,T ), Q̂[u](t) = (Q1u) (t) −F (−1) ⊙ (Q2u) (t).
Set

λ =M
(
∥x0∥ +

M1b(1+σ)(1−α1)

Γ(α)(1 + σ)1−α1

)
.

Using a similar method as before, we get : Q1u −F (−1) ⊙ Q2v ∈ Bλ for any pair u, v ∈ Bλ ⊂ Ĉ(J,T ), where
(Q1u) (t) and (Q2u) (t) are continuous in t ∈ J.
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Now for any u, v ∈ Bλ we have,

d∞
(
(Q1u) (t) −F (−1) ⊙ (Q2u) (t), 0̃

)
≤ d∞

(
(Q1u) (t), 0̃

)
+ d∞

(
(Q2u) (t), 0̃

)
≤M

(
∥u0∥ +

M1b(1+σ)(1−α1)

Γ(α)(1 + σ)1−α1

)
= λ,

which means that Q1 −F (−1) ⊙ Q2 is an operator from Bλ into Bλ.
Since Q2 is a fully continuous operator, according to the Schauder fixed point theorem 4 Q1 −F (−1)⊙Q2

has a fixed point in Bλ, This indicate that the Eq. (35) has a contractive mild solution.

5. An example

Consider the following equations.



CF D
3
2
0+u(t, x) = ∂

∂t u(t, x) + e−t

9+et

(
|u(t, x)|

1+|u(t, x)|

)
, (t, x) ∈]0, 1[×]0, 1[,

u(t, 0) = u(t, 1) = 0, t ∈]0, 1[,

u(0, x) = ψ(x), x ∈]0, 1[.

(52)

We choose E = C([0, 1] × T ,T ) And the operator A : D(A) ⊂ E→ E descripted by

D(A) =
{

u ∈ E : ∂
∂t u ∈ E andu(0, 0) = u(0, 1) = 0

}
,

Au =
∂
∂t

u.

Then, we get

D(A) =
{

u ∈ E : u(t, 0) = u(t, 1) = 0
}
. (53)

This implies that A satisfies (Hyp4).
Let’s pose

V(t) = u(t, ·), that is V(t)(x) = u(t, x), ∀(t, x) ∈]0, 1[×]0, 1[.

In this example, we have f :]0, 1[×T → T provided by

f (t,V(t)) =
e−t

9 + et

(
|V(t)|

1 + |V(t)|

)
.

It is obvious that for each V,W ∈ C ([0, 1],Bλ) we obtain

d∞
(

f (t,V(t), f (t,W(t)
)
≤ ρ(t)d∞(V(t),W(t)), with ρ(t) =

e−t

9 + et ∈ L1,∀t ∈]0, 1[,

And that
d∞

(
f (t,V(t), 0̃

)
≤ µ(t), with µ(t) =

1
9 + et ∈ L1,∀t ∈]0, 1[.

Moreover f is continuos, therefore it is strongly measurable.
Hence, according to the theorem 13 and the lemma 2, the problem (52) admits two types of solutions

expressed as follow
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• if V(t) is expansive,

V(t) = Eα,1

(
∂
∂t

tα
)
⊙ u0 +F

∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1

(
∂
∂s

(δ − s)α
)
⊙

e−s

9 + es

(
|V(s)|

1 + |V(s)|

)
dδds. (54)

• if V(t) is contractive,

V(t) = Eα,1

(
∂
∂t

tα
)
⊙ u0 −F (−1)

∫ t

0

∫ t

s

(t − δ)α−2

Γ(α − 1)
⊙ Eα,1

(
∂
∂s

(δ − s)α
)
⊙

e−s

9 + es

(
|V(s)|

1 + |V(s)|

)
dδds. (55)

6. Conclusion

An interactive fuzzy derivative is applied to a fuzzy fractional starting value problem in this study.
The equation’s starting point is represented by a fuzzy subset, and the differentiation is offered by the
F-derivative. Initially we present fresh fundamental theorems about the F-correlated fractional derivative
of degree α ∈ (0, 1]. In addition, we employ those theorems to extract the mild solution of the basic problem.
After that, we use the Schauder fixed point theorem to guarantee the existence and uniqueness of solutions.
Finally, an example is provided to corroborate and confirm the viability of the acquired findings. We
anticipate that the presented results will inspire scholars to pursue more study on the issue.
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