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Abstract. In this work, we study a class of fast diffusion Kirchhoff-type p-Laplace equation with logarithmic
nonlinearity. Under appropriate conditions, by applying energy estimates in combination with the Galerkin
method and Sobolev inequality, we establish the global existence of solutions. Moreover, we analyze the
criteria for the extinction and non-extinction of these solutions.

1. Introduction

In this paper, we consider the following initial boundary value problem:
∂u
∂t −M(∥∇u∥pp)∆pu = |u|q−2u log(|u|) in Ω ×R+,
u = 0 in ∂Ω ×R+,
u(x, 0) = u0(x) in Ω,

(1)

whereΩ is a bounded open domain of Rn with smooth boundary ∂Ω, ∆p = div(|∇u|p−2
∇u) and 1 < p, q < 2.

M : R+ → R+ is a continuous function defined by:

(M) There exist constant m1 > 0 such that m1 = inf
s∈R+

M(s).

Problem (1) belongs to the class of quasilinear diffusion problems which have garnered increasing
interest in recent years due to their applications in various scientific fields. More precisely, when M = 1 in
(1), it describes the motion of a compressible fluid moving through a porous medium, this movement is
governed by the conservation of mass, expressed by the equation:

θ(x)
∂ρ

∂t
+ div(ρV⃗) − f (ρ) = 0 (2)
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where θ(x) represents the volumetric moisture content, ρ is the fluid density, V⃗ is the fluid velocity and f (u)
is a source term (see [28, 29]). The velocity is influenced by Darcy’s law for nonlinear diffusion is given by:

ρV⃗ = −λ|∇ρ|α−2
∇ρ, (3)

where α and λ are characteristics of the medium. By substituting this velocity relation into the conservation
equation, and with specific values like θ(x) = |x|−r, r = 0, λ = 1 and f (ρ) = |ρ|p−2ρ log(|ρ|), we arrive at
the formulation of the problem (1). Moreover, as already mentioned in [9], the function u(x, t) represents
the population density at time t and spatial position x, div(|∇u|p−2

∇u) accounts for the diffusion of the
population density and |u|q−2u log(|u|) is the source.

There are also several studies concerning global solutions for problems similar to (1). Based on the
potential well theory and variational methods, the authors in [11] obtained the global existence and finite
time blow-up of solutions to the following initial boundary value problem of Kirchhoff type

ut −M
(∫
Ω

|∇u|2dx
)
∆u = f (u), (x, t) ∈ Ω × (0,T),

u = 0, (x, t) ∈ ∂Ω × (0,T),
u(x, 0) = u0(x), x ∈ Ω,

(4)

where M(r) = a + br, a, b are postitive constants and f (u) = |u|q−1u. Equation (4) was investigated in
[6, 12, 17, 24, 25, 33], where authors have proved global existence, uniqueness and asymptotic behavior of
a weak or strong solution.

The research with logarithmic nonlinearity can be found in many physical applications, including the
theory of superfluidity, diffusion and transport phenomena, and nuclear physics. We refer the readers to
[34] for more information. Within the framework of partial differential equations (see [15, 19, 27]), the
authors [31] studied the existence of global solution to the following semilinear pseudo-parabolic problem

ut − ∆ut −M(∥∇u∥pp)∆u = |u|q−2 ln |u|, (5)

with Dirichlet boundary condition by applying the logarithmic Sobolev inequality. By using the potential
well method, the authors in [32] studied the global existence and finite-time blow-up for the weak solutions.
See [20, 21] for Kirchhoff type problems with logarithmic nonlinearity. We also refer the reader to [1, 4, 5,
7, 8, 13, 14, 16, 23, 26, 30] where the theory of logarithmic nonlinearity find its applications for the same
evolution equations.

In the present work, we aim to study the combined effects of the p-Laplacian and logarithmic nonlinearity
to discuss the global existence and extinction properties of solutions. Our approach relies on energy
estimates and Sobolev inequalities to establish the global existence of weak solutions for the problem (1).
To the best of our knowledge, this is the first study to explore both the global existence and extinction
properties of solutions for evolution equations involving the p-Laplacian and logarithmic nonlinearity.

Next, we will introduce the energy functional E : W1,p
0 (Ω)→ R associated with problem (1) defined by

E(u) =
1
p

∫
∥u(t)∥p

W
1,p
0 (Ω)

0
M(s)ds −

1
q

∫
Ω

|u|q log(|u|)dx +
1
q2

∫
Ω

|u|qdx (6)

For simplicity reasons, throughout this paper, we adopt the following abbreviations:

∥u∥p = ∥u∥Lp(Ω), ∥u∥2 = ∥u∥L2(Ω).

2. Preliminaries

In this section, we give some lemmas and definitions which will be needed in our proofs of the main
results.
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In the first instance, for 1 ≤ p < ∞, we introduce the Hilbert space

W1,p(Ω) =
{

u ∈ Lp(Ω) :
∂u
∂xi
∈ Lp(Ω), i = 1, 2, . . . ,n

}
endowed with the norm

∥u∥p
W1,p(Ω)

= ∥u∥pp + ∥∇u∥pp.

Denote
W0 :=W1,p

0 (Ω) =
{
u ∈W1,p(Ω) : u|∂Ω = 0

}
.

Due to Poincaré’s inequality, one can know that ∥∇u∥p is an equivalent norm to ∥u∥W1,p(Ω) in W0.
Secondly, we denote the maximal existence time of a solution u = u(t) to problem (1) by Tm, which is defined
as follows:

Definition 2.1. (1) If there exists a t̂ ∈ (0,+∞) such that u exists for 0 ≤ t < t̂, but u blows up in W0 as t→ t̂− i.e

lim
t→t̂−
∥u(t)∥W0 = +∞ (7)

then Tm = t̂.

(2) If (7) does not happen at any finite time, then Tm = +∞ and we say u exists globally.

Definition 2.2. Let u be a solution to the problem (1). We say u = u(t) vanishes in finite time if there exists a T∗ > 0
such that

u(x, t) ≡ 0 on Ω, t ≥ T∗ (8)

Lemma 2.3. [3] Let 1 ≤ p ≤ ∞, we have

∥u∥
L

np
n−p
≤ Cp∥u∥W0 ∀u ∈W0. (9)

Lemma 2.4. [10] Suppose that l, m and s are the positive constants, andφ(t) is absolutely continuous and nonnegative
function such that φ′(t) +mφl(t) ≥ s, t > 0. Then

φ(t) ≥ min
{
φ(0),

( s
m

) 1
l
}
.

Lemma 2.5. [18] If 0 < r < s ≤ 1 and h(t) solve dh
dt + γ1hr

≤ γ2hs, t > 0
h(0) = h0 > 0

(10)

with γ1 > 0, 0 < γ2 < 1
2γ1hr−s

0 . Then, there exists q1, q2 > 0 such that

0 ≤ h(t) ≤ q2e−q1t for all t ≥ 0.

Lemma 2.6. [2] Let σ be a positive constant. Then for all r ⩾ 1, we have:

| log(r)| ≤
1
σ

rσ,

for all r ∈ [1,+∞).
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3. Main results

In this section, we will define a weak solution to the problem (1) and prove the main results. We start
with the following definition:

Definition 3.1. Fix T > 0 and assume that u0 ∈W0. A function u ∈ L∞(0,T; W0) is called a weak solution of (1), if
∂u
∂t ∈ L2(0,T,L2(Ω)) and∫

Ω

∂u
∂t
ϕdxdt +

∫
Ω

M(∥u(t)∥W0 )|∇u|p−2
∇u∇ϕdx =

∫
Ω

|u|q−2u log(|u|)ϕdx, (11)

holds fo a.e t ∈ (0,T) and for all ϕ ∈W0.

The main results of our paper is the following:

Theorem 3.2. Let u0 ∈ W0 and suppose that (M) hold. The problem (1) admits a global weak solution u = u(t) if
there exists a constant σ > 0 such that 1 < q + σ ≤ 2.

Proof. Assume that u is a weak solution of (1). As in [14, Theorem 3.2] and [22, Theorem 1], the local existence
of weak solutions to problem (1) is established using the Galerkin method. Moreover, we establish the global
existence of the weak solution. For this reason, let assume that the weak solution of (1) blows up in finite
time as in definition 2.1.
We let ϕ = u in (11), we obtain

1
2

d
dt
∥u(t)∥22 +M(∥u(t)∥pW0

)∥u(t)∥pW0
=

∫
Ω

|u(t)|q log |u(t)|dx. (12)

According to Lemma 2.6, we have∫
Ω

|u(t)|q log |u(t)|dx ≤
1
σ

∫
Ω

|u(t)|q+σdx =
1
σ
∥u(t)∥q+σq+σ. (13)

Combining (12), (13), (M) and the Hölder inequality, we obtain

∥u(t)∥2
d
dt
∥u(t)∥2 +m1∥u(t)∥pW0

≤
1
σ
∥u(t)∥q+σLq+σ(Ω) ≤

|Ω|
2−(q+σ)

2

σ
∥u(t)∥q+σ2 .

Therefore

d
dt
∥u(t)∥2 ≤

|Ω|
2−(q+σ)

2

σ
∥u(t)∥q+σ−1

2 . (14)

Next, by choosing ϕ = du
dt in (11) and by using (M), the Hölder inequality and the Young inequality, we get∥∥∥∥∥du(t)

dt

∥∥∥∥∥2

2
+

m1

p
d
dt
∥u(t)∥pW0

≤

∫
Ω

|u(t)|q−2u(t) log |u(t)|
du(t)

dt
dx

≤

∫
Ω

1
σ
|u(t)|q+σ−1

∣∣∣∣∣du(t)
dt

∣∣∣∣∣ dx

≤
1

2σ

∫
Ω

|u(t)|2(q+σ−1)dx +
1
2

∫
Ω

∣∣∣∣∣du(t)
dt

∣∣∣∣∣2 dx

≤
|Ω|1−

2(q+σ−1)
p

2σ
∥u(t)∥

2(q+σ−1)
p +

1
2

∥∥∥∥∥du(t)
dt

∥∥∥∥∥2

2
.

(15)
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Case 1: If 1 < q + σ < 2, after a simple calculation on (14), we obtain

∥u(t)∥2 ≤

 (2 − q − σ
)
|Ω|1−

q+σ
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

∀t ∈ (0,T) (16)

for sufficiently large T.
Since p < 2, combining (16) with Hölder inequality, we conclude that

∥u(t)∥p ≤ |Ω|
2−p
2p ∥u(t)∥2 ≤

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p . (17)

Substituting the inequality (17) into (15), we get

d
dt
∥u∥pW0

≤

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2m1σ
. (18)

Since the right-hand sides of (17) and (18) is defined on t ∈ [0,+∞) and (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p ∈ [0,+∞) ∀t ≥ 0,

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2m1σ
∈ [0,+∞) ∀t ≥ 0.

Moreover, for t̂ ∈ (0,+∞),

lim
t→t̂

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


1

2−q−σ

|Ω|
2−p
2p < +∞,

lim
t→t̂

 (2 − q − σ
)
|Ω|

2−(q+σ)
2

σ
t + ∥u0∥

2−q−σ
2


2(q+σ−1)

2−q−σ p|Ω|2−q−σ

2m1σ
< +∞,

this contradicts (7). As a result, the problem (1) has a weak solution u that exists globally.
Case 2: If q + σ = 2, according to inequality (14) that

d
dt
∥u(t)∥2 ≤

1
σ
∥u(t)∥2,

we obtain

∥u(t)∥2 ≤ ∥u0∥2 e
t
σ . (19)

According to the Hölder inequality combined with (19) with p < 2, we have

∥u(t)∥p ≤ |Ω|
2−p
2p ∥u(t)∥2 ≤ |Ω|

2−p
2p ∥u0∥2 e

t
σ . (20)

Substituting (20) into (15) with q + σ = 2, we obtain that

d
dt
∥u∥pW0

≤
p|Ω|1−

2
p

2m1σ
∥u(t)∥2p ≤

p ∥u0∥
2
2

2m1σ2 e
2t
σ . (21)
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Since the right hand sides in (20) and (21) is defined on t ∈ [0,+∞) and

|Ω|
2−p
2p ∥u0∥2 e

t
σ ∈ [0,+∞) t ≥ 0,

p ∥u0∥
2
2

2m1σ2 e
2t
σ ∈ [0,+∞) t ≥ 0.

Moreover, for t̂ ∈ (0,+∞),

lim
t→t̂
|Ω|

2−p
2p ∥u0∥2 e

t
σ < +∞,

lim
t→t̂

p ∥u0∥
2
2

2m1σ2 e
2t
σ < +∞

this contradicts (7). Consequently, the global solution is obtained.

Theorem 3.3. Let u0 ∈W0 ∩ L2(Ω) and (M) hold. Assume that problem (1) admits a global weak solution. Then

i) if 2n
n+2 < p < min

{
n, q + σ

}
and

∥u0∥
q+σ−p
2 <

m1σ
2Cp
|Ω|

n(q+σ−p)−2p
2n (22)

with some 0 < σ ≤ 2 − q, then u vanishes in finite time.

ii) Suppose that λ ≥ 1 such that γ(t)M(γ(t)) ≤ λ
∫ γ(t)

0 M(s)ds for any t ≥ 0. If

∥u0∥2 , 0 and E (u0) ≤ 0, when q = pλ

or
∥u0∥2 , 0 and E (u0) < 0, when q < pλ.

Then u cannot vanish in finite time.

Proof. Theorem 3.2 leads to the conclusion that the problem (1) has a global weak solution u. First, we
prove conclusion i). From (11) and (M), we deduced that

1
2

d
dt
∥u(t)∥22 +m1∥u(t)∥pW0

≤

∫
Ω

|u(t)|q log |u(t)|dx (23)

Plugging (13) into (23) and using Lemma 2.3, we get

∥u(t)∥2
d
dt
∥u(t)∥2 +

m1

Cp
∥u(t)∥p

L
np

n−p (Ω)
≤

1
σ
∥u(t)∥q+σq+σ. (24)

Using again the Hölder inequality in (24), it follows that

d
dt
∥u(t)∥2 +

m1|Ω|
1− p(n+2)

2n

Cp
∥u(t)∥p−1

2 ≤
|Ω|

2−(q+σ)
2

σ
∥u(t)∥q+σ−1

2

Let z(t) = ∥u(t)∥2, the inequality mentioned above can be reduced to

dz
dt
+

m1|Ω|
1− p(n+2)

2n

Cp
zp−1(t) ≤

|Ω|
2−(q+σ)

2

σ
zq+σ−1(t) (25)

Furthermore, from inequality (22) and 1 ≤ 2n
n+2 < p < min

{
n, q + σ

}
, we ensures that p− 1 < q+ σ− 1 and

0 <
|Ω|

2−(q+σ)
2

σ
<

m1|Ω|
2n−p(n+2)

2n

2Cp
∥u0∥

p−q−σ
2
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Thus, it follows from Lemma 2.5 that constants q1 > 0 and q2 > 0 exist such that

0 ≤ z(t) ≤ q2e−q1t, t ≥ 0. (26)

We take the constant T∗ > 0 such that(
q2e−q1t

)q+σ−p
≤

m1σ
2Cp
|Ω|

n(q+σ−p)−2p
2n , t ≥ T∗ (27)

Combining inequalities (26) and (27), it is concluded that

zq+σ−1(t) =
(
zq+σ−pzp−1

)
(t) ≤

σm1

2Cp
|Ω|

n(q+σ−p)−2p
2n zp−1(t), t ≥ T∗ (28)

Plugging (28) into (25), we get

dz
dt
+

m1|Ω|
1− p(n+2)

2n

2Cp
zp−1(t) ≤ 0, t ≥ T∗

After a simple calculation, we obtain ∥u(t)∥2 ≤
(
z2−p (T∗) − m1(2−p)|Ω|1−

p(n+2)
2n

2Cp
(t − T∗)

) 1
2−p

, T∗ ≤ t < T∗v

∥u(t)∥2 ≡ 0 t ≥ T∗v

where T∗v =
2Cp

m1(2−p)|Ω|1−
p(n+2)

2n
z2−p (T∗) + T∗. Then, u vanishes in finite time.

Secondly, we prove conclusion ii). Choosing ϕ = du
dt in (11), we have∫

Ω

(
du(t)

dt

)2

dx +
1
p

M(∥u(t)∥pW0
)

d
dt
∥u(t)∥pW0

=

∫
Ω

|u(t)|q−2u(t) log |u(t)|
du(t)

dt
dx. (29)

We can see that (29) simplifies as follows:∫
Ω

(
du(t)

dt

)2

dx +
1
p

M(∥u(t)∥pW0
)

d
dt
∥u(t)∥pW0

=
1
q

d
dt

∫
Ω

|u(t)|q log |u(t)|dx

−
1
q2

d
dt

∫
Ω

|u(t)|qdx.
(30)

Differentiating (6) with respect to t, we get

d
dt

E(u(t)) =
1
p

M(∥u(t)∥pW0
)

d
dt
∥u(t)∥pW0

−
1
q

d
dt

∫
Ω

|u|q log |u|dx +
1
q2

d
dt

∫
Ω

|u|qdx. (31)

According to (30) and (31), we can conclude that

d
dt

E(u(t)) = −
∫
Ω

(
du(t)

dt

)2

dx ≤ 0. (32)

Thus, E(u) is non-increasing with respect to t. Consequently, by integrating (32) from 0 to t, we have

E(u(t)) = E (u0) −
∫ t

0

∫
Ω

(
du(s)

ds

)2

dxds (33)
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Let 1(t) = 1
2∥u(t)∥22. Then, by (6), (12) and (33), we can get

1′(t) = −M(∥u(t)∥pW0
)∥u(t)∥pW0

+

∫
Ω

|u(t)|q log |u(t)|dx

≥ −

∫
∥u(t)∥pW0

0
M(s)ds +

q − pλ
q

∫
Ω

|u(x, t)|q log |u(t)|dx +
pλ
q2

∫
Ω

|u(t)|qdx

= −pλE (u0) + pλ
∫ t

0

∫
Ω

(
d
ds

u(t)
)2

dxds +
q − pλ

q

∫
Ω

|u(t)|q log |u(t)|dx

+
pλ
q2

∫
Ω

|u(t)|qdx

≥ −pλE (u0) +
q − pλ

q

∫
Ω

|u(t)|q log |u(t)|dx.

(34)

Case 1: If q = pλ, hence, (34) can be reduced to 1′(t) ≥ −pλE (u0), which gives

1(t) ≥ 1(0) − pλE (u0) > 0, ∀t > 0

therefore, u cannot vanish in finite time.
Case 2: If q < pλ. Thanks to 1 < q < 2, there exists a constant σ > 0 such that q + σ < 2. Consequently,
inequality (34) can be simplified as follows

1′(t) ≥ −pλE (u0) +
q − pλ

qσ

∫
Ω

|u(t)|q+σdx

≥ −pλE (u0) +
|Ω|

2−q−σ
2 (q − pλ)

qσ

(∫
Ω

|u(t)|2 dx
) q+σ

2

= −pλE (u0) −
(pλ − q)(

√
2)q+σ

|Ω|
2−q−σ

2

qσ
1

q+σ
2 (t).

Consequently, using Lemma 2.4 allow us to get

1(t) ≥ min

1(0),
−pλqσE (u0)

(pλ − q)(
√

2)q+σ|Ω|
2−q−σ

2

 > 0, ∀t > 0

As a results, u cannot vanish in finite time. This completes the proof of Theorem 3.3.
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