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Abstract. It is of interest to look for the sufficient conditions for the rigidity of a graph. Fan, Huang and
Lin (2023) recently studied the rigidity of a graph from the perspective of its spectral radius of the adjacency
matrix and established a sufficient condition involving the spectral radius to ensure a 2-connected (or a
3-connected) graph G with a fixed minimum degree to be rigid (or globally rigid). In this note, we establish
a similar condition which relates λα1 (G), the spectral radius of the matrix Aα(G) := αD(G) + (1 − α)A(G),
where α ∈ (0, 1), A(G) and D(G) are the adjacency matrix and the diagonal degree matrix of G, respectively.

1. Introduction

For an undirected simple graph G = (V(G),E(G)), let p : V(G) → Rd be a mapping that assigns a point
in Rd to each vertex of G. The pair (G, p) is referred to as a d-dimensional bar-and-joint framework. Two
frameworks (G, p) and (G, q) are said to be equivalent if ∥p(u) − p(v)∥ = ∥q(u) − q(v)∥ for every uv ∈ E(G) and
are said to be congruent if ∥p(u)−p(v)∥ = ∥q(u)− q(v)∥ for any u, v ∈ V(G), where ∥ · ∥ is the Euclidean norm in
Rd. A framework (G, p) is said to be generic if the coordinates of its points are algebraically independent over
Q. A framework (G, p) is rigid in Rd if there exists ε > 0 such that any framework (G, q) that is equivalent to
(G, p) and satisfies ∥p(u) − q(u)∥ < ε for u ∈ V(G) must be congruent to (G, p). A generic framework (G, p) is
rigid inRd if and only if every generic framework of G is rigid inRd. A graph G is rigid inRd if every/some
generic framework of G is rigid in Rd, and is redundantly rigid in Rd if G− e is rigid in Rd for every e ∈ E(G).
Moreover, a graph G is globally rigid inRd if there exists a globally rigid generic framework (G, p) inRd. For
more information on rigid and generic framework can be found in [1]. The problem of determining whether
a graph G is rigid (or globally rigid) inRd is interesting and received a lot attentions [9–12]. Hendrickson [8]
established that any globally rigid graph in Rd with a minimum of d + 2 vertices is (d + 1)-connected and
redundantly rigid. Consequently, it becomes imperative to impose the condition that G is 3-connected
when examining the global rigidity of G in R2.

Recently, Fan, Huang and Lin [4] studied the the rigidity of a graph in R2 from its eigenvalues of the
adjacency matrix and proposed the following problem:
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Problem 1.1. Which spectral conditions can guarantee that a graph is rigid or globally rigid in R2?

For α ∈ [0, 1], the Aα(G)-matrix of a graph G was defined in [13] as

Aα(G) = αD(G) + (1 − α)A(G),

where A(G) and D(G) are the adjacency matrix and the diagonal degree matrix of G, respectively. In
particular, A0(G) = A(G), A1/2(G) = 1

2 Q(G) and A1(G) = D(G), where Q(G) = D(G) + A(G) is the signless
Laplacian matrix of G. Since Aα(G) is a real symmetric matrix, it follows that all of its eigenvalues are real.
Moreover, the matrix Aα(G) is irreducible when G is connected. Consequently, the largest eigenvalue of
Aα(G) is the spectral radius of Aα(G), also called the Aα-spectral radius of G, denoted by λα1 (G).

Let Kn be the complete graph of order n, and Bk
n,n1

be the graph obtained from Kn1 ∪ Kn−n1 by adding k
independent edges (with no common endvertex) between Kn1 and Kn−n1 . Fan, Huang and Lin [4] provided
the following conditions involving the spectral radius (λ0

1(G)) for the rigidity (or the globally rigid) of a
2-connected graph (or a 3-connected graph):

Theorem 1.2 ([4]). Let G be a 2-connected graph of order n ⩾ 2δ + 4, where δ ⩾ 6 is the minimum degree of G. If
λ0

1(G) ⩾ λ0
1

(
B2

n,δ+1

)
, then G is rigid unless G � B2

n,δ+1.

Theorem 1.3 ([4]). Let G be a 3-connected graph of order n ⩾ 2δ + 4, where δ ⩾ 6 is the minimum degree of G. If
λ0

1(G) ⩾ λ0
1

(
B3

n,δ+1

)
, then G is globally rigid unless G � B3

n,δ+1.

It is natural and interesting to know whether the above mentioned results can be deduced from the
conditions involving λα1 (G) for α ∈ [0, 1]. In this note, we extend their conditions to λα1 (G) for α ∈ (0, 1). Our
results can be read as follows:

Theorem 1.4. Let G be a 2-connected graph of order n with the maximum degree ∆ and the minimum degree δ ⩾ 6.
For α ∈ (0, 1),

∆ < min
{
n2
− 24n + 170 +

3n − 36
α

, n2
− 21n + 116 +

13
α
, n2
− 21n + 130 +

4
α

}
and

n ⩾ max

2δ + 4,

−1 +
√
12 − 4 (1 − α) h1

2 (1 − α)

 + 1

 ,
where

1 = (α2 + α − 2)δ + 2α(α − 1) and h1 = (1 − α2)δ2 + 2α(1 − α)δ − 4α3 + 3α2 + 2α − 1,

if λα1 (G) ⩾ λα1
(
B2

n,δ+1

)
, then G is rigid unless G � B2

n,δ+1.

Theorem 1.5. Let G be a 3-connected graph of order n with the maximum degree ∆ and the minimum degree δ ⩾ 6.
For α ∈ (0, 1),

∆ < min
{
n2
− 24n + 170 +

3n − 36
α

, n2
− 21n + 116 +

13
α
, n2
− 21n + 130 +

4
α

}
and

n ⩾ max

2δ + 4,

−1 +
√
12 − 4 (1 − α) h2

2 (1 − α)

 + 1

 ,
where

1 = (α2 + α − 2)δ + 2α(α − 1) and h2 = (1 − α2)δ2 + 2α(1 − α)δ − 6α3 + 5α2 + 2α − 1,

if λα1 (G) ⩾ λα1
(
B3

n,δ+1

)
, then G is globally rigid unless G � B3

n,δ+1.

The remainder of this note is organized as follows: Section 2 includes some necessary preliminaries.
By adopting the somewhat similar strategy which was used in [4], we provide the proofs of Theorems 1.4
and 1.5 in Section 3. The last section includes some concluding remarks.
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2. Preliminary

Given a partition π = (X1,X2, . . . ,Xk) of the set {1, 2, . . . ,n} and a matrix M whose rows and columns
are labeled with elements in {1, 2, . . . ,n}, then M can be expressed as the following partitioned matrix

M =


M1,1 M1,2 · · · M1,k
M2,1 M2,2 · · · M2,k
...

...
. . .

...
Mk,1 Mk,2 · · · Mk,k

 with respect to π. The quotient matrix Mπ of M with respect to π is the k× k

matrix (mi j) such that mi j is the average value of all row sums of Mi, j. The partition π is equitable if each
block Mi, j of M has constant row sum mi j. Also, we say that the quotient matrix Mπ is equitable if π is an
equitable partition of M.

Lemma 2.1 ([2, 5]). Let M be a real symmetric matrix and λ(M) be its largest eigenvalue. If Mπ is an equitable
quotient matrix of M, then the eigenvalues of Mπ are also eigenvalues of M. Furthermore, if M is nonnegative and
irreducible, then λ(M) = λ (Mπ).

Lemma 2.2 ([13]). If H is a proper subgraph of a connected graph G, then for α ∈ [0, 1], we have λα1 (G) > λα1 (H).

Recall that Bk
n,n1

is the graph obtained from Kn1 ∪Kn−n1 by adding k independent edges between Kn1 and
Kn−n1 .

Lemma 2.3. For α ∈ (0, 1), let k ⩾ 1, b ⩾ k + 1 and n > max
{

2b + 1,
−1+
√
12−4(1−α)h

2(1−α)

}
, where 1 = (α2 + α − 2)b +

2α(α − 1) and h = (1 − α2)b2 + 2α(1 − α)b − 2kα3 + (2k − 1)α2 + 2α − 1. Then we have λα1
(
Bk

n,b+1

)
< λα1

(
Bk

n,b

)
.

Proof. Since Bk
n,b contains Kn−b as a proper subgraph, by Lemma 2.2, we have

λα1
(
Bk

n,b

)
> λα1 (Kn−b) = n − b − 1.

Note that Aα
(
Bk

n,b

)
has an equitable quotient matrix as

Mb
π =


αb + (1 − α)(k − 1) (1 − α)(b − k) 1 − α 0

(1 − α)k αk + b − k − 1 0 0
1 − α 0 α(n − b) + (1 − α)(k − 1) (1 − α)(n − b − k)

0 0 (1 − α)k αk + n − b − k − 1

 ,
and its characteristic polynomial is

f
(
Mb
π, x

)
=(1 − α)2k(b + k − n)

{
x2 + [2 − α − (1 + α)b]x + α(αk − k − 1) + αb2

− b + 1
}

− (x + k − αk + b − n + 1)
{
(1 − α)2(x + 1 − b + k(1 − α))

+[(1 − α)(k − 1) + α(n − b) − x]
[
x2 + (2 − α − (1 + α)b)x + α (αk − k − 1) + αb2

− b + 1
]}
.

Similarly, Aα
(
Bk

n,b+1

)
has an equitable quotient matrix Mb+1

π , substituting b with b + 1 in Mb
π, we then have

f
(
Mb+1
π , x

)
− f

(
Mb
π, x

)
=(n − 2b − 1)×{

(1 + α2)x2 + [(2 − n)α2
− (2 + n)α + 2]x − 2kα3

− [2b(b − n + 1) − 2k − n]α2
− nα

}
.
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As n > 2b + 1, so n − 2b − 1 > 0. Let

f (x) = (1 + α2)x2 + [(2 − n)α2
− (2 + n)α + 2]x − 2kα3

− [2(b − n + 1)b − 2k − n]α2
− nα.

In order to derive f
(
Mb+1
π , x

)
− f

(
Mb
π, x

)
> 0 for all x ⩾ n − b − 1, we need to ensure that f (x) > 0 for all

x ⩾ n − b − 1, that is the largest root of f (x) = 0 is less than n − b − 1, i.e.,

n − b − 1 >
−c +

√
c2 − 4 (1 + α2) d

2 (1 + α2)
,

where c = (2 − n)α2
− (2 + n)α + 2 and d = −2kα3

− [2b(b − n + 1) − 2k − n]α2
− nα. By calculations, we have

n2
− 2bn + b2

− 2αn − αn2 + 2αb − 2α2b + αbn + α2bn + 2α − 1 − α2 + 2α2n − α2b2 + 2α2k − 2α3k > 0,

that is

(1 − α)n2 +
[
(α2 + α − 2)b + 2α(α − 1)

]
n + (1 − α2)b2 + 2α(1 − α)b − 2kα3 + (2k − 1)α2 + 2α − 1 > 0.

It follows that n >
−1+
√
12−4(1−α)h

2(1−α) , where

1 = (α2 + α − 2)b + 2α(α − 1) and h = (1 − α2)b2 + 2α(1 − α)b − 2kα3 + (2k − 1)α2 + 2α − 1.

Hence, when n > max
{

2b + 1,
−1+
√
12−4(1−α)h

2(1−α)

}
, we have f

(
Mb+1
π , x

)
− f

(
Mb
π, x

)
> 0 for x ⩾ n−b−1. It follows

that λα1
(
Mb+1
π

)
< λα1

(
Mb
π

)
. This together with Lemma 2.1 implies that λα1

(
Bk

n,a+1

)
< λα1

(
Bk

n,a

)
, as desired.

In particular, for k = 2, 3, we then have the following corollaries.

Corollary 2.4. For α ∈ (0, 1), b ⩾ 3 and n ⩾ max
{

2b + 4,
⌈
−1+
√
12−4(1−α)h1

2(1−α)

⌉
+ 1

}
where 1 = (α2+α−2)b+2α(α−1)

and h1 = (1 − α2)b2 + 2α(1 − α)b − 4α3 + 3α2 + 2α − 1. Then λα1
(
B2

n,b+1

)
< λα1

(
B2

n,b

)
.

Corollary 2.5. For α ∈ (0, 1), b ⩾ 4 and n ⩾ max
{

2b + 4,
⌈
−1+
√
12−4(1−α)h2

2(1−α)

⌉
+ 1

}
where 1 = (α2+α−2)b+2α(α−1)

and h2 = (1 − α2)b2 + 2α(1 − α)b − 6α3 + 5α2 + 2α − 1. Then λα1
(
B3

n,b+1

)
< λα1

(
B3

n,b

)
.

Lemma 2.6 ([14]). Let G be a graph of order n with e(G) edges, the maximum degree ∆ and the minimum degree δ.
Then for α ∈ [0, 1], we have

λα1 (G) ⩽
1
2

[
(δ − 1) +

√
(δ − 1)2 + 4{α∆ − α(δ − 1)δ + (1 − α)[2e(G) − δ(n − 1)]}

]
.

Moreover, the equality holds if and only if G is regular.

Lemma 2.7 ([4]). Let a and b be two positive integers. If a ⩾ b, then(
a
2

)
+

(
b
2

)
<

(
a + 1

2

)
+

(
b − 1

2

)
.

For a subset X ⊆ V(G), let G[X] be the subgraph induced by X in G, let eG(X) and eG(G) (or simply e(G))
be the number of edges of G[X] and G, respectively. For two subsets X,Y ⊆ V(G), let EG(X,Y) be the set of
edges having one endpoint in X and the other in Y, and eG(X,Y) = |EG(X,Y)|. For simplicity, we use ∂G(X)
to denote EG(X,V(G) − X).
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Lemma 2.8 ([7]). Let G be a graph with the minimum degree δ and U(, ∅) ⊂ V(G). If |∂G(U)| ⩽ δ − 1, then
|U| ⩾ δ + 1.

A part is trivial if it contains a single vertex. For any set Z ⊂ V(G), let π be a partition of V(G − Z) with
n0 trivial parts {v1, v2, . . . , vn0 }. Let nZ(π) =

∑n0
i=1 |Zi|, where Zi is the set of vertices in Z which are adjacent

to vi for 1 ⩽ i ⩽ n0. For any partition π of V(G), let EG(π) be the set of edges in G whose endpoints lie in
different parts of π, and eG(π) = |EG(π)|.

Lemma 2.9 ([6]). A graph G contains k edge-disjoint spanning rigid subgraphs if for every Z ⊂ V(G) and every
partition π of V(G − Z) with n0 trivial parts and n′0 nontrivial parts,

eG−Z(π) ⩾ k(3 − |Z|)n′0 + 2kn0 − 3k − nZ(π).

Lemma 2.10 ([3, 10]). Let G be a graph. Then G is globally rigid if and only if either G is a complete graph on at
most three vertices or G is 3-connected and redundantly rigid.

3. Proofs of Theorems 1.4 and 1.5

We say a graph G is minimally rigid if G is rigid but G− e is not rigid for any e ∈ E(G). Note that if a graph
G is rigid, then it must contain a spanning subgraph that is also rigid. For minimal rigidity, this subgraph
must remain rigid while the removal of any edge results in a non-rigid structure. On the other hand, if G
has a minimally rigid spanning subgraph, the rigidity of this subgraph is sufficient to ensure the rigidity of
G, as rigidity is inherently determined by the structural properties of the framework. Therefore, a graph G
is rigid if and only if G has a minimally rigid spanning subgraph.

In this section, we will provide two key lemmas (Lemma 3.1 and Lemma 3.2), as well as the proofs of
Theorems 1.4 and 1.5.

Lemma 3.1. Let G be a 2-connected graph of order n with the minimum degree δ ⩾ 6. If G is not rigid, then for every
Z ⊂ V(G) and every partition π of V(G − Z) with n0 trivial parts and n′0 nontrivial parts, we have 0 ⩽ |Z| ⩽ 2 and
n′0 ⩾ 2.

Proof. Note that G does not contain any spanning rigid subgraphs since G is not rigid. Then Lemma 2.9
implies that there exists a subset Z ⊂ V(G) and a partition π of V(G − Z) with n0 trivial parts {v1, v2, . . . , vn0 }

and n′0 nontrivial parts {V1,V2, . . . ,Vn′0 } such that

eG−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 4 − nZ(π), (1)

where nZ(π) =
∑n0

j=1 |Z j| and Z j is the set of vertices in Z that are adjacent to v j.

Since dG−Z(v j) ⩾ δ − |Z j|, δ ⩾ 6 and 2eG−Z(π) =
∑n′0

i=1 |∂G−Z(Vi)| +
∑n0

j=1 dG−Z(v j), then we have

2eG−Z(π) ⩾
n′0∑
i=1

|∂G−Z(Vi)| + δn0 −

n0∑
j=1

|Z j| ⩾

n′0∑
i=1

|∂G−Z(Vi)| + 6n0 − nZ(π). (2)

It follows that

eG−Z(π) ⩾ 3n0 −
1
2

nZ(π). (3)

We now establish the possible values for |Z| and n′0.

Fact 1: 0 ⩽ |Z| ⩽ 2.
Assume that |Z| ⩾ 3. Then by (1), we have eG−Z(π) ⩽ 2n0 − 4 − nZ(π). This together with (3) implies
that 3n0 −

1
2 nZ(π) ⩽ 2n0 − 4 − nZ(π). It follows that n0 + 4 + 1

2 nZ(π) ⩽ 0. This is impossible since n0
and nZ(π) are both non-negative. Therefore, 0 ⩽ |Z| ⩽ 2.



L. Jing et al. / Filomat 39:18 (2025), 6423–6436 6428

Fact 2: n′0 ⩾ 2.
Assume that n′0 ⩽ 1. Then by (1) and Fact 1, we have eG−Z(π) ⩽ 2n0 − 1 − nZ(π). This together with
(3) implies that 3n0 −

1
2 nZ(π) ⩽ 2n0 − 1− nZ(π). It follows that n0 + 1+ 1

2 nZ(π) ⩽ 0. This is impossible
since n0 and nZ(π) are both non-negative. Therefore, n′0 ⩾ 2.

The proof is completed.

Proof of Theorem 1.4: We prove it by contradiction. Assume that G is not rigid. Then Lemma 3.1 implies
that there exists a subset Z ⊂ V(G) and a partition π of V(G − Z) into n0 trivial parts {v1, v2, . . . , vn0 } and n′0
nontrivial parts {V1,V2, . . . ,Vn′0 }, where 0 ⩽ |Z| ⩽ 2 and n′0 ⩾ 2.

Note that

λα1 (G) ⩾ λα1 (B2
n,δ+1) > λα1 (Kn−δ−1) = n − δ − 2.

This together with Lemma 2.6 implies that

1
2

[
(δ − 1) +

√
(δ − 1)2 + 4{α∆ − α(δ − 1)δ + (1 − α)[2e(G) − δ(n − 1)]}

]
> n − δ − 2.

Solving for e(G), we obtain

e(G) >
(2n − 3δ − 3)2

− (δ − 1)2
− 4α∆ + 4α(δ − 1)δ + 4(1 − α)δ(n − 1)

8(1 − α)
. (4)

Moreover, as G is 2-connected, we have

|∂G−Z (Vi)| ⩾ 2 − |Z|, for 1 ⩽ i ⩽ n′0. (5)

We now consider the following two cases according to the values of |Z|.
Case 1: |Z| = 2.

Then inequality (1) becomes

eG−Z(π) ⩽ n′0 + 2n0 − 4 − nZ(π), (6)

where nZ(π) =
∑n0

j=1 |Z j| and Z j is the set of vertices in Z that are adjacent to v j.
We will prove that n′0 ⩾ 4. If 2 ⩽ n′0 ⩽ 3, then using (2), (5) and (6), we have

0 ⩽
n′0∑
i=1

|∂G−Z(Vi)| ⩽ 2n′0 − 8 − 2n0 − nZ(π) ⩽ −2,

a contradiction. Hence n′0 ⩾ 4.
Let δ′ be the minimum degree of G−Z, then δ′ ⩾ δ− 2. If the partition π contains at most one nontrivial

part, say V j (1 ⩽ j ⩽ n′0), such that |∂G−Z(V j)| ⩽ δ′ − 1, then |∂G−Z(Vi)| ⩾ δ′ for all i ∈ {1, . . . ,n′0} \ { j}. Note that

2eG−Z(π) =
n′0∑
i=1

|∂G−Z(Vi)| +
n0∑
j=1

dG−Z(v j)

⩾ (n′0 − 1)δ′ + δn0 − nZ(π) (as dG−Z(v j) ⩾ δ − |Z j| and nZ(π) =
∑n0

j=1 |Z j| )

⩾ (n′0 − 1)(δ − 2) + δn0 − nZ(π) (as δ′ ⩾ δ − 2)
= 2n′0 + 4n0 − 8 − 2nZ(π) + (δ − 4)n′0 − δ + (δ − 4)n0 + nZ(π) + 10
⩾ 2n′0 + 4n0 − 8 − 2nZ(π) + 3δ − 6 (as n′0 ⩾ 4, n0 ⩾ 0 and nZ(π) ⩾ 0)

> 2n′0 + 4n0 − 8 − 2nZ(π) (as δ ⩾ 6).
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It follows that eG−Z(π) > n′0 + 2n0 − 4 − nZ(π), which contradicts (6). Hence, the partition π must contain
at least two nontrivial parts, say V1 and V2, such that |∂G−Z(V1)| ⩽ δ′ − 1 and |∂G−Z(V2)| ⩽ δ′ − 1. Then
Lemma 2.8 implies that |Vi| ⩾ δ′ + 1 ⩾ δ − 1 for i = 1, 2 (as δ′ ⩾ δ − 2).

In what follows, we determine the maximum value of
∑n′0

i=1 eG (Vi). We assert that
∑n′0

i=1 eG (Vi) is maxi-

mized when n′0 is minimized (i.e., n′0 = 4). Otherwise, if n′0 ≥ 5, then we may increase the value of
∑n′0

i=1 eG (Vi)

by adding edges between V4 and Vn′0 , which contradicts the maximality of
∑n′0

i=1 eG (Vi).
For n′0 = 4, let V1, V2, V3, and V4 be the nontrivial parts of G−Z. If |V1| or |V2| = max{|V1|, |V2|, |V3|, |V4|},

since |V1| , |V2| ⩾ δ − 1 and |V3| , |V4| ⩾ 2, then we have
n′0∑
i=1

eG (Vi) ⩽
4∑

i=1

eG (Vi)

=

(
|V1|

2

)
+

(
|V2|

2

)
+

(
|V3|

2

)
+

(
|V4|

2

)
⩽

(
δ − 1

2

)
+

(
n − |Z| − δ − 3

2

)
+

(
2
2

)
+

(
2
2

)
(by Lemma 2.7).

Similarly, for |V3| or |V4| = max{|V1|, |V2|, |V3|, |V4|}, we have

n′0∑
i=1

eG (Vi) ⩽
4∑

i=1

eG (Vi) ⩽
(
δ − 1

2

)
+

(
δ − 1

2

)
+

(
n − |Z| − 2δ

2

)
+

(
2
2

)
.

Recall that n = |Z|+ n0 +
∑n′0

i=1 |(Vi)|, where V1,V2, . . . ,Vn′0 are nontrivial parts, and |V1|, |V2| ⩾ δ− 1. Then
by calculation, we have

n′0 ⩽
n − |Z| − 2(δ − 1)

2
+ 2 =

n
2
− δ + 2, as |Z| = 2 and n0 ⩾ 0. (7)

Moreover, note that for |Z| = 2, we have

|∂G(Z)| + eG(Z) − nZ(π) ⩽ 2(n − 2) + 1 − 2n0 = 2(n − 2 − n0) + 1.

This together with (6) implies that

eG−Z(π) + |∂G(Z)| + eG(Z) ⩽ n′0 + 2n − 7.

Then by (7), we have

eG−Z(π) + |∂G(Z)| + eG(Z) ⩽
5n
2
− δ − 5. (8)

Moreover, as δ ⩾ 6 and n ⩾ 2δ + 4, we then have

e(G)

=

n′0∑
i=1

eG(Vi) +
n0∑
j=1

eG(v j) + eG−Z(π) + |∂G(Z)| + eG(Z)

⩽max
{(
δ − 1

2

)
+

(
n − |Z| − δ − 3

2

)
+ 2

(
2
2

)
, 2

(
δ − 1

2

)
+

(
n − |Z| − 2δ

2

)
+

(
2
2

)}
+ 0 + eG−Z(π) + |∂G(Z)| + eG(Z)

⩽

(
δ − 1

2

)
+

(
n − |Z| − δ − 3

2

)
+ 2

(
2
2

)
+

5n
2
− δ − 5 by (8)

⩽
n2

2
−

(2δ + 6)n
2

+ δ2 + 3δ + 13.
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This together with (4) implies that

(2n − 3δ − 3)2
− (δ − 1)2

− 4α∆ + 4α(δ − 1)δ + 4(1 − α)δ(n − 1)
8(1 − α)

<
n2

2
−

(2δ + 6)n
2

+ δ2 + 3δ + 13.

Solving for δ, we get

δ <

√
α∆ + 6αn + 24 − 3n − αn2 − 26α

3α
+

(3αn + 2 − 6α)2

36α2 +
3αn + 2 − 6α

6α
.

On the other hand, the condition√
α∆ + 6αn + 24 − 3n − αn2 − 26α

3α
+

(3αn + 2 − 6α)2

36α2 +
3αn + 2 − 6α

6α
< 6

is equivalent to ∆ < n2
− 24n+ 170+ 3n−36

α . Therefore, when ∆ < n2
− 24n+ 170+ 3n−36

α , we have δ < 6, which
contradicts our initial assumption δ ⩾ 6.
Case 2: 0 ⩽ |Z| ⩽ 1.

This case can be analyzed in the following two subcases.

(A) n′0 = 2.
In this case, the partition π consists of two nontrivial parts, V1 and V2, together with n0 trivial parts.
Substituting (5) into (2), we obtain

2eG−Z(π) ⩾ |∂G−Z (V1)| + |∂G−Z (V2)| + 6n0 − nZ(π) ⩾ 4 − 2|Z| + 6n0 − nZ(π).

Consequently,

eG−Z(π) ⩾ 2 − |Z| + 3n0 −
1
2

nZ(π).

Given that n′0 = 2, combining this inequality with (1), we have

2(3 − |Z|) + 2n0 − 4 − nZ(π) ⩾ 2 − |Z| + 3n0 −
1
2

nZ(π),

which simplifies to

−n0 −
1
2

nZ(π) − |Z| ⩾ 0.

Since n0 ⩾ 0,nZ(π) ⩾ 0 and |Z| ⩾ 0, we conclude that n0 = 0,nZ(π) = 0 and |Z| = 0. We find that the
partition π consists of two nontrivial parts V1 and V2, and as G−Z = G, then V(G) = V1∪V2. Using (1),
we have eG (V1,V2) = eG(π) ⩽ 2. By (5), eG (V1,V2) = 1

2 (|∂G (V1)| + |∂G (V2)|) ⩾ 2, making eG (V1,V2) = 2.
We denote the edge set connecting V1 and V2 by EG(V1,V2) = { f1, f2}. We claim that f1 and f2 are two
independent edges. If not, assume f1 ∩ f2 = {u}, then vertex u is a cut vertex of G, which is impossible
as G is 2-connected. It is evident that G is a spanning subgraph of B2

n,|V1 |
, leading to

λα1 (G) ⩽ λα1
(
B2

n,|V1 |

)
, (9)

with equality if and only if G � B2
n,|V1 |

. Given that δ ⩾ 6, we have |∂G(V1)| = |∂G(V2)| = 2 < δ − 1. Then,
by Lemma 2.8, we have min {|V1| , |V2|} ⩾ δ + 1. Applying Lemma 2.3, Corollary 2.4, and equation (9),
we obtain

λα1 (G) ⩽ λα1
(
B2

n,δ+1

)
,

with equality if and only if G � B2
n,δ+1. However, this is impossible since we already have λα1 (G) ⩾

λα1
(
B2

n,δ+1

)
and G � B2

n,δ+1.
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(B) n′0 ⩾ 3.
Let δ′ be the minimum degree of G−Z, then δ′ ⩾ δ−|Z|. If the partitionπ contains at most one nontrivial
part, say Vk

(
1 ⩽ k ⩽ n′0

)
, such that |∂G−Z (Vk)| ⩽ δ′ − 1, then |∂G−Z (Vi)| ⩾ δ′ for all i ∈

{
1, . . . ,n′0

}
\{k}.

Note that

2eG−Z(π)

=

n′0∑
i=1

|∂G−Z (Vi)| +
n0∑
j=1

dG−Z

(
v j

)
=

∑
i∈{1,...,n′0}\{k}

|∂G−Z (Vi)| + |∂G−Z (Vk)| +
n0∑
j=1

dG−Z

(
v j

)
⩾

(
n′0 − 1

)
δ′ + 2 − |Z| + δn0 − nZ(π) ( by (5), then |∂G−Z (Vk)| ⩾ 2 − |Z|)

⩾
(
n′0 − 1

)
(δ − |Z|) + 2 − |Z| + δn0 − nZ(π) (as δ′ ⩾ δ − |Z|)

=2(3 − |Z|)n′0 + 4n0 − 8 − 2nZ(π) + (δ − 6 + |Z|)n′0 + (δ − 4)n0 − δ + 10 + nZ(π)
⩾2(3 − |Z|)n′0 + 4n0 − 8 − 2nZ(π) + 2δ − 8 + 3|Z| + nZ(π) (as n′0 ⩾ 3 and n0 ⩾ 0)

>2(3 − |Z|)n′0 + 4n0 − 8 − 2nZ(π) (as δ ⩾ 3, nZ(π) ⩾ 0 and 0 ⩽ |Z| ⩽ 1),

which simplifies to
eG−Z(π) > (3 − |Z|)n′0 + 2n0 − 4 − nZ(π),

contradicting (1). Consequently, the partition π must contain at least two nontrivial parts, say V1 and
V2, such that |∂G−Z(V1)| ⩽ δ′ − 1 and |∂G−Z(V2)| ⩽ δ′ − 1. Then Lemma 2.8 implies that |V1| ⩾ δ′ + 1 and
|V2| ⩾ δ′ + 1. We now consider the following two situations according to the values of |Z|.

• |Z| = 0.
For |Z| = 0, we have δ′ = δ and |Vi| ⩾ δ+ 1 for i = 1, 2. If |V1| or |V2| = max{|V1|, |V2|, . . . , |Vn′0 |}, since
|Vi| ⩾ δ + 1 and

∣∣∣V j

∣∣∣ ⩾ 2 for i = 1, 2 and j ∈ {3, . . . ,n′0}, then by a similar argument as that in Case 1,
we have

n′0∑
i=1

eG (Vi) ⩽
(
δ + 1

2

)
+

(
n − δ − 3

2

)
+

(
2
2

)
.

Similarly, if |V1| and |V2| , max{|V1|, |V2|, . . . , |Vn′0 |}, then we have

n′0∑
i=1

eG (Vi) ⩽
(
δ + 1

2

)
+

(
δ + 1

2

)
+

(
n − 2δ − 2

2

)
.

As |Vi| ⩾ δ + 1 for i = 1, 2 and |V3| ⩾ 2, then n0 ⩽ n −
∑3

i=1 |Vi| ⩽ n − 2δ − 4. Recall that
n = |Z| + n0 +

∑n′0
i=1 |(Vi)| = n0 +

∑n′0
i=1 |(Vi)|. By calculation, we have

n′0 ⩽
n − (2δ + 4) − n0

2
+ 3. (10)

As |Z| = 0, G − Z = G and nZ(π) = 0, by (1) we have

eG(π) ⩽ 3n′0 + 2n0 − 4

⩽
3n
2
− 3δ − 1 +

n0

2
( by (10))

⩽ 2n − 4δ − 3 ( as n0 ⩽ n − 2δ − 4).
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Since δ ⩾ 6 and n ⩾ 2δ + 4, then we have

e(G)

=

n′0∑
i=1

eG (Vi) +
n0∑
i=1

eG (vi) + eG(π)

⩽max
{(
δ + 1

2

)
+

(
n − δ − 3

2

)
+

(
2
2

)
, 2

(
δ + 1

2

)
+

(
n − 2δ − 2

2

)}
+ 0 + eG(π)

⩽

(
δ + 1

2

)
+

(
n − δ − 3

2

)
+

(
2
2

)
+ eG(π) ( as δ ⩾ 6 and n ⩾ 2δ + 4)

⩽
n2

2
−

(2δ + 3)n
2

+ δ2 + 4.

This together with (4) implies that

(2n − 3δ − 3)2
− (δ − 1)2

− 4α∆ + 4α(δ − 1)δ + 4(1 − α)δ(n − 1)
8(1 − α)

<
n2

2
−

(2δ + 3)n
2

+ δ2 + 4.

By calculations, we have

δ <

√
α∆ + 3αn + 6 − αn2 − 8α

3α
+

(3αn − 4)2

36α2 +
3αn − 4

6α
.

On the other hand, the condition√
α∆ + 3αn + 6 − αn2 − 8α

3α
+

(3αn − 4)2

36α2 +
3αn − 4

6α
< 6

is equivalent to ∆ < n2
− 21n + 116 + 18

α . That is when ∆ < n2
− 21n + 116 + 18

α , we have δ < 6, a
contradiction.

• |Z| = 1.

When |Z| = 1, note that δ′ ⩾ δ − 1, then |Vi| ⩾ δ′ + 1 ⩾ δ for i = 1, 2 and |V3| ⩾ 2. Similarly, by
calculation, we have

n′0 ⩽
n − |Z| − n0 −

∑
i∈{1,2,3} |Vi|

2
+ 3 ⩽

n − n0 − 2δ + 3
2

. (11)

Let Z = {w}, then dG(w) − nZ(π) ⩽ n − 1 − n0. By (1), we have

eG−Z(π) + dG(w) ⩽ (3 − |Z|)n′0 + 2n0 − 4 − nZ(π) + dG(w)
⩽ 2n′0 + 2n0 − 4 − nZ(π) + dG(w) ( as |Z| = 1)
⩽ 2n′0 + 2n0 − 4 − n0 + n − 1 (as dG(w) − nZ(π) ⩽ n − 1 − n0)
= 2n′0 + n0 + n − 5
⩽ 2n − 2δ − 2 ( by (11)).
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Given that δ ⩾ 6 and n ⩾ 2δ + 4, we obtain

e(G)

=

n′0∑
i=1

eG (Vi) +
n0∑
i=1

eG (vi) + eG−Z(π) + dG(w)

⩽max
{(
δ
2

)
+

(
n − |Z| − δ − 2

2

)
+

(
2
2

)
, 2

(
δ
2

)
+

(
n − |Z| − 2δ

2

)}
+ 0 + eG−Z(π) + dG(w)

⩽

(
δ
2

)
+

(
n − |Z| − δ − 2

2

)
+

(
2
2

)
+ eG−Z(π) + dG(w) ( as δ ⩾ 6 and n ⩾ 2δ + 4)

⩽
n2

2
−

(2δ + 3)n
2

+ δ2 + δ + 5.

Similarly, combining this with (4), we get that when ∆ < n2
− 21n + 130 + 4

α , δ < 6, which is also a
contradiction. This completes the proof. □

The following lemma is very important for proving Theorem 1.5.

Lemma 3.2. Let G be a 3-connected graph of order n with the minimum degree δ ⩾ 6. If G is not globally rigid, then
there exists an edge f ∈ E(G), such that for every Z ⊂ V(G) and every partition π of V(G − f − Z) with n0 trivial
parts and n′0 nontrivial parts, we have 0 ⩽ |Z| ⩽ 2 and n′0 ⩾ 2.

Proof. Assume that G is not globally rigid. Then Lemma 2.10 implies that G is not redundantly rigid since
G is 3-connected. It means that there exists an edge f ∈ E(G) such that G − f is not rigid. Furthermore,
Lemma 2.9 implies the existence of a subset Z ⊂ V(G − f ) and a partition π of V(G − f − Z) with n0 trivial
parts {v1, v2, . . . , vn0 } and n′0 nontrivial parts {V1,V2, . . . ,Vn′0 } satisfying

eG− f−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 4 − nZ(π), (12)

where nZ(π) =
∑n0

i=1 |Z j| and Z j is the set of vertices in Z adjacent to v j.
We now consider the following two cases:

Case 1: f ∈ EG−Z(π).

For f ∈ EG−Z(π), we have eG− f−Z(π) = eG−Z(π) − 1. Then from (12), we have

eG−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 3 − nZ(π). (13)

On the other hand, since dG−Z(v j) ⩾ δ − |Z j| and δ ⩾ 6, we obtain

2eG−Z(π) =
n′0∑
i=1

|∂G−Z(Vi)| +
n0∑
j=1

dG−Z(v j) ⩾
n′0∑
i=1

|∂G−Z(Vi)| + 6n0 − nZ(π). (14)

It follows that

eG−Z(π) ⩾ 3n0 −
1
2

nZ(π). (15)

We now establish the possible values for |Z| and n′0.
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Fact1: 0 ⩽ |Z| ⩽ 2.
Assume to the contrary that |Z| ⩾ 3. Then, from (13), we have

eG−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 3 − nZ(π) ⩽ 2n0 − 3 − nZ(π).

This together with (15) implies that n0+
1
2 nZ(π)+3 ⩽ 0. This is impossible since n0 ⩾ 0 and nZ(π) ⩾ 0.

Therefore, we have 0 ⩽ |Z| ⩽ 2.
Fact2: n′0 ⩾ 2.

If n′0 ⩽ 1, then by Fact 1 (0 ⩽ |Z| ⩽ 2) and (13), we have

eG−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 3 − nZ(π) ⩽ 2n0 − nZ(π), since 0 ⩽ |Z| ⩽ 2. (16)

This together with (15) implies that n0 +
1
2 nZ(π) ⩽ 0. This means that all equalities hold in (15) and

(16). Therefore, we have n′0 = 1, n0 = 0, nZ(π) = 0, and |Z| = 0. By (12), we have eG− f−Z(π) ⩽ −1,
which is impossible. Hence, we have n′0 ⩾ 2.

Case 2: f < EG−Z(π).
For f < EG−Z(π), we have

eG−Z(π) = eG− f−Z(π) ⩽ (3 − |Z|)n′0 + 2n0 − 4 − nZ(π).

Then using an analogous argument as that in the proof of Lemma 3.1, we also have 0 ⩽ |Z| ⩽ 2 and n′0 ⩾ 2.
This completes the proof.

Recall that, for any partition π of V(G),EG(π) is the set of edges in G whose ends lie in different parts of
π, and eG(π) = |EG(π)|.
Proof of Theorem 1.5: We prove it by contradiction. Assume to the contrary that G is not globally rigid.
Then Lemma 2.10 implies that G is not redundantly rigid since G is 3-connected. It means that there exists
an edge f ∈ E(G) such that G − f is not rigid. We now consider the following two cases:
Case 1: f ∈ EG−Z(π).

For f ∈ EG−Z(π), Lemma 3.2 implies that there exists a subset Z ⊂ V(G) and a partition π of V(G− f −Z)
with n0 trivial parts {v1, v2, . . . , vn0 } and n′0 nontrivial parts {V1,V2, . . . ,Vn′0 }, where 0 ⩽ |Z| ⩽ 2 and n′0 ⩾ 2.

Furthermore, since λα1 (G) ⩾ λα1 (B3
n,δ+1) > λα1 (Kn−δ−1) = n − δ − 2, then by Lemma 2.6, we have

e(G) >
(2n − 3δ − 3)2

− (δ − 1)2
− 4α∆ + 4α(δ − 1)δ + 4(1 − α)δ(n − 1)

8(1 − α)
. (17)

Moreover, as G is 3-connected, we have

|∂G−Z(Vi)| ⩾ 3 − |Z| for 1 ⩽ i ⩽ n′0, (18)

We have the following two subcases according to the values of |Z|.
Subcase 1.1: |Z| = 2.

In this subcase, a similar argument as that used in the proof of Theorem 1.4 can be applied to obtain a
contradiction, and we omit the details here.
Subcase 1.2: 0 ⩽ |Z| ⩽ 1.

We further divide this subcase into the following two situations.

(A) n′0 = 2.
The partition π consists of two nontrivial parts, V1 and V2, together with n0 trivial parts. Substituting
(18) into (14), we obtain

2eG−Z(π) ⩾ |∂G−Z (V1)| + |∂G−Z (V2)| + 6n0 − nZ(π) ⩾ 6 − 2|Z| + 6n0 − nZ(π).
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Consequently,

eG−Z(π) ⩾ 3 − |Z| + 3n0 −
1
2

nZ(π).

Since n′0 = 2, from (13), we have

−n0 −
1
2

nZ(π) − |Z| ⩾ 0.

As n0 ⩾ 0, nZ(π) ⩾ 0 and |Z| ⩾ 0, we conclude that n0 = 0, nZ(π) = 0 and |Z| = 0. As a consequence, the
partitionπ comprises two nontrivial parts V1 and V2, G−Z = G and V(G) = V1∪V2. By (13), eG(V1,V2) =
eG(π) ⩽ 3. And from (18), we have eG(V1,V2) = 1

2 (|∂G(V1)| + |∂G(V2)|) ⩾ 3. Therefore, eG(V1,V2) = 3.
Let EG(V1,V2) = { f1, f2, f }. We claim that f1, f2, f are three independent edges. Otherwise, G cannot be
3-connected, leading to a contradiction. Thus, G is a spanning subgraph of B3

n,|V1 |
, and

λα1 (G) ⩽ λα1
(
B3

n,|V1 |

)
, (19)

with equality if and only if G � B3
n,|V1 |

. Since δ ⩾ 6 and |∂G (V1)| = |∂G (V2)| = 3 < δ − 1, by Lemma 2.8,
we have min {|V1| , |V2|} ⩾ δ + 1. Combining this with Lemma 2.3, Corollary 2.5 and (19), we have

λα1 (G) ⩽ λα1
(
B3

n,δ+1

)
,

with equality if and only if G � B3
n,δ+1. This contradicts our initial assumption that λα1 (G) ⩾ λα1

(
B3

n,δ+1

)
and G � B3

n,δ+1.
(B) n′0 ⩾ 3.

By using (17) and employing a similar approach as in the proof of Theorem 1.4, we can derive a
contradiction under this scenario. We omit the details for brevity.

Case 2: f < EG−Z(π).
For f < EG−Z(π), utilizing similar arguments as those presented above, we can obtain a contradiction.

This completes the proof. □

4. Concluding remarks

In this paper, we establish a criterion based on the Aα-spectral radius for determining the rigidity
(or global rigidity) of 2-connected (or 3-connected) graphs with a prescribed minimum degree in R2.
Specifically, we resolve the Aα-spectral radius characterization for Problem 1.1 for the cases k = 2 and k = 3.
Note that every 6-connected graph is inherently rigid (or globally rigid). Consequently, the complexity
of the Aα-spectral radius characterization for Problem 1.1 escalates for k = 4 and k = 5. For these cases,
employing a similar analytical approach as in Theorems 1.4 and 1.5, we ascertain that a k-connected graph
G is rigid (or globally rigid) if λα1 (G) > λα1

(
Bk

n,δ+1

)
. Since Bk

n,δ+1 is rigid and globally rigid for k = 4 and 5, we
conclude the paper by posing the subsequent problem for further exploration.

Problem 4.1. Let k ∈ {4, 5} and G be a k-connected graph with the maximum degree ∆ and the minimum degree
δ ⩾ 6. For α ∈ (0, 1),

∆ < min
{
n2
− 24n + 170 +

3n − 36
α

, n2
− 21n + 116 +

13
α
, n2
− 21n + 130 +

4
α

}
and

n ⩾ max

2δ + 4,

−1 +
√
12 − 4 (1 − α) h

2 (1 − α)

 + 1

 ,
where

1 = (α2 + α − 2)δ + 2α(α − 1) and h = (1 − α2)δ2 + 2α(1 − α)δ − 2kα3 + (2k − 1)α2 + 2α − 1,

is it true that G is rigid (or globally rigid) when λα1 (G) ⩾ λα1
(
Bk

n,δ+1

)
?
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