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Abstract. A dominated coloring of a graph G is a proper vertex coloring where each color class is
dominated by at least one vertex of G. The dominated chromatic number of G, denoted χdom(G), is the
minimum number of colors required for a dominated coloring of G. In this paper, we provide new bounds
for χdom(G) and characterize all graphs that achieve some of these bounds. Also we investigate graphs G
for which χdom(G) = χ(G) where χ(G) is the chromatic number of G, in particular we give a characterization
of cubic graphs G such that χdom(G) = χ(G).

1. Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops or multiple
edges. For terminology and notation not presented here, we follow [2]. Consider a graph G with vertex set
V and edge set E. The complement graph of G is denoted by G. For a nonempty set A ⊆ V, we denote by
G [A] the subgraph of G induced by A. Let v be any vertex in G. The open neighborhood of v is defined as the
set NG(v) = {u : uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree of v in G, denoted
dG(v), is the cardinality of NG(v). The maximum degree among all vertices in G is denoted by ∆(G). The
distance between two vertices u and v in G, denoted by d(u, v), is the length of a shortest path between u and
v in G. The diameter of G, denoted diam(G), is max{d(u, v) : u, v ∈ V(G)}. As usual, the path, cycle, complete
graph of order n is denoted by Pn, Cn, Kn, respectively. The complete bipartite graph with parts of orders r and
s is denoted by Kr,s. The star is the complete bipartite graph K1,k. A bistar Bp,q is a graph formed by two stars
K1,p and K1,q by adding an edge between their center vertices. Given any graph F, a graph G is F-free if it
does not have any induced subgraph isomorphic to F. A tree is any connected graph that contains no cycle.

A set S ⊆ V is called an independent set in G if no two vertices of S are adjacent to each other. A clique in
G is a set of pairwise adjacent vertices. The independence number α(G) (respectively, the clique number ω(G))
is the largest cardinality among all independent (respectively, clique) sets of G. A split graph is a graph in
which its vertices can be partitioned into a clique and an independent set.

A proper vertex coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that if uv ∈ E, then
c(u) , c(v). The chromatic number χ(G) of a graph G is the smallest integer k such that G admits a vertex
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proper coloring using k colors. It is an easy and well known observation that for every graph G with
maximum degree ∆(G),

χ(G) ≤ ∆(G) + 1. (1)

A dominated coloring of a graph G is a proper vertex coloring of G such that every color class is dominated
with at least one vertex. The dominated chromatic number of G, denoted χdom(G), is the minimum number
of colors required for a dominated coloring of G. This parameter was introduced in 2015 by Boumediene
Merouane et al. [10]. They showed that dominated coloring problem isNP-complete for arbitrary graphs
having χdom(G) ≥ 4, and they gave a polynomial time algorithm for recognizing graphs having χdom(G) ≤ 3.
They also provided bounds for planar and star-free graphs and exact values for split graphs. In [6],
Choopani et al. proved that the Vizing-type conjecture holds for dominated colorings of the direct product
of two graphs and they gave Nordhaus-Gaddum type results for χdom(G). In [1], the authors investigated
the impact on χdom(G) when G is modified by operations on vertex and edge of G. For more works, see for
instance [5, 7–9, 11]. It is worth mentioning that this kind of coloring is defined only for graphs without
isolated vertices.

The remainder of this paper is organized as follows: In Section 2, we provide some known results about
χ(G) and χdom(G). In Section 3, we present new bounds for χdom and characterize all graphs that achieve
some of these bounds. In Section 4, we investigate graphs G for which χdom(G) = χ(G), in particular we give
a characterization of cubic graphs G such that χdom(G) = χ(G). We conclude the paper with a list of open
problems.

2. Known Results

In this section, we recall some important results that will be useful in our investigations.

Observation 2.1 ([6]). Let G be a graph of order n. Then χdom(G) ≤ n. Furthermore, equality is achieved if and only
if each component of G is a complete graph.

Observation 2.2 ([10]). Let G be a graph of order n. Then χdom(G) ≥ 2. Moreover, χdom(G) = 2 if and only if G is a
bistar to which we can add some edges not inducing any triangle.

Observation 2.3 ([10]). If G is disconnected, then χdom(G) =
∑

i χdom(Gi), where Gi is the i-th connected component
of G.

Observation 2.4 ([3]). If G is disconnected, then χ(G) = maxi{χ(Gi)}, where Gi is the i-th connected component of
G.

Theorem 2.5 ([6]). For n ≥ 4, we have,

χdom(Pn) = χdom(Cn) =
{ n

2 if n ≡ 0(mod 4)⌊
n
2

⌋
+ 1 otherwise .

Theorem 2.6 ([10]). Let G be a split graph. Then

χdom(G) = χ(G) = ω(G).

Theorem 2.7 ([4]). Equality holds in (1) if and only if either ∆(G) = 2 and G contains an odd cycle, or ∆(G) , 2
and G contains a clique K∆(G)+1.
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3. Bounds

In this section, we provide new upper and lower bounds on the dominated chromatic number. In [3], it
was proved that the chromatic number of any graph G of order n ≥ 2 is at most n − α(G) + 1, where α(G)
is the independence number of G. However, the same is not necessarily true for the dominated chromatic
number of G, as we will establish in the following proposition.

Proposition 3.1. For any positive integer k, there exists a graph Gk of order nk such that

χdom(Gk) = nk − α(Gk) + k.

Proof. Let Hi be a path of order 5 with vertices xi, yi, zi,ui, vi in this order. Let Gk be a tree obtained
from H1,H2, . . . ,H2k by adding 2k − 1 edges connecting zi’s so that they induce a path P2k : z1-z2-· · · -z2k.
Observe that nk = |V(Gk)| = 10k. For example, the graph G2 is illustrated in Figure 1. First, we will show that
χdom(Gk) = 6k. Notice that in every dominated coloring of Gk, no color can appear twice in X = ∪2k

i=1{vi, yi, xi},
since the distance between any two vertices in X is different from two. Thus χdom(Gk) ≥ 6k. To show equality,
it suffices to exhibit a dominated coloring of Gk with 6k colors. We do this as follows. For each Hi, assign
color 3i − 2 to vi and zi, assign color 3i − 1 to ui and yi, and assign color 3i to xi. It is easy to check that this
yields a dominated coloring of G with 6k colors, implying that χdom(Gk) ≤ 6k. Hence χdom(Gk) = 6k. Let
us now show that α(Gk) = 5k. To this end, let S0 be a maximum independent set of the path induced by
{z1, z2, . . . , z2k}. It is well known that |S0| =

⌈
2k
2

⌉
= k. Then any maximum independent set of Gk can contain

at most k vertices among z1, z2, . . . , z2k and 2 vertices from each set {xi, yi,ui, vi}, and thus α(Gk) ≤ 5k. On the
other hand, since S0 ∪

(
∪

2k
i=1{xi, vi}

)
is an independent set of size 5k, α(Gk) ≥ 5k. Hence α(Gk) = 5k. Finally,

since nk = 10k, we get nk − α(Gk) + k = 6k, and the required is done.

1v1 4v2 7v3 10v4

2u1 5u2 8u3 11u4

1z1 4z2 7z3 10z4

2y1 5y2 8y3 11y4

3x1 6x2 9x3 12x4

Figure 1: The graph G2 of order n2 = 20 with α(G2) = 10 and χdom(G2) = 12 satisfing χdom(G2) = n2 − α(G2) + 2. The vertices in bold
represent an α(G2)-set and the values assigned to the vertices represent a dominated coloring.

For every vertex v in a graph G, let S(v) be a largest independent set of G[NG(v)] and α0 (G) = max{|S(v)| :
v ∈ V(G)}. Clearly α0 (G) ≤ α(G) and 1 ≤ α0 (G) ≤ ∆ (G), and α0 (G) = 1 holds if and only if G is the union of
complete graphs.

We next prove that n − α0 + 1 serves as an upper bound for χdom(G), and we characterize all graphs
achieving equality for this bound.

We define familiesH andF as follows: The graphs H ∈ H are split graphs, with vertex set is partitioned
into a clique Q and an independent set I such that H has a universal vertex and I has a vertex that is adjacent
to all vertices of Q. A graph G belongs to F if G has exactly one component inH and all other components,
if any, are complete graphs.

Remark that both Kn and K1,n−1 are inH , and further α0 (G) = |I| and ω(G) = n − α0 + 1.
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Theorem 3.2. Let G be a graph of order n. Then

χdom(G) ≤ n − α0 + 1,

with equality if and only if G ∈ F .

Proof. Let G1,G2, . . . ,Gp be the components of G, and let ni be the order of Gi for i ∈
{
1, 2, . . . , p

}
. To prove

the inequality, let x be a vertex of some component of G, say G1, such that |S(x)| = α0. Define a coloring c of
G as follows. Color every vertex in S(x) with color 1, and color all the remaining vertices differently. Clearly
c is a dominated coloring of G using n − α0 + 1 colors. Hence χdom(G) ≤ n − α0 + 1.

We now suppose that the equality in inequality holds. We assert that x is a universal vertex in G1, for
otherwise, there is at least one vertex in G1 that is at distance exactly two from x. In such case, by coloring
this vertex with the same color as x and maintaining the same coloring of c for the remaining vertices, we
get a dominated coloring of G with n−α0 colors, a contradiction. Now we assert that V(G1)−S(x) is a clique.
Suppose otherwise and let u and v be nonadjacent vertices in V(G1) − S(x). Note that x < {u, v}. Define a
new coloring from c as follows. Color u and v by the same color among c(u) and c(v) and the remaining
vertices keep their colors initially given by c. This gives a dominated coloring of G using less colors than
c, a contradiction. Assert that S(x) has at least one vertex that is adjacent to all vertices in V(G1) − S(x).
Suppose otherwise and define a coloring from c as follows. Recolor each vertex in S(x) with a color used
by one of its non-neighbor in V(G1) − S(x). The remaining vertices keep their colors initially given by c.
This gives a dominated coloring of G with n − α0 colors, a contradiction. Hence G1 ∈ H with I = S(x) and
Q = V(G1)− S(x). We finally show that Gi is a complete graph for all i ≥ 2. Suppose to the contrary that this
is not true for some component, say G2. Then by Observation 2.1, we have that χdom(G2) ≤ n2 − 1. Thus,
using Observation 2.3, we get

χdom(G) = χdom(G1) + χdom(G2) +
∑p

i=3χdom(Gi)

≤ (n1 − α0 + 1) + (n2 − 1) +
∑p

i=3ni

= n − α0,

a contradiction. From our previous discussions, we conclude that G ∈ F .
Conversely, let G be a graph in F , and let G1,G2, . . . ,Gp be the components of G, where G1 ∈ H . Since

G1 is a split graph, by Theorem 2.6 and the remark before Theorem 3.2, we have χdom(G1) = n1 − α0 + 1, and
by Observation 2.1, we get χdom(Gi) = ni for i ≥ 2. Hence, Observation 2.3 leads to

χdom(G) = χdom(G1) +
∑p

i=2χdom(Gi) = (n1 − α0 + 1) +
∑p

i=2ni = n − α0 + 1,

and this completes the proof.

For the particular case α0 (G) = ∆ (G), we have the following immediate corollary from Theorem 3.2.

Corollary 3.3. Let G be a graph of order n and maximum degree ∆ (G) with α0 (G) = ∆ (G). Then χdom(G) ≤
n − ∆ (G) + 1 with equality if and only if each component of G is a complete graph except exactly one which is a star.

We next give a lower bound for χdom(G) in terms of n and α0.

Theorem 3.4. If G is a graph of order n, then

χdom(G) ≥
n
α0
.

Proof. Let k = χdom(G). Let c be a dominated coloring of G with k colors, and let C1,C2, . . . ,Ck be the color
classes of c. Since α0 ≥ |Ci| for each i ∈ {1, 2, . . . , k}, it follows that n = |C1| + |C2| + · · · + |Ck| ≥ kα0.
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This lower bound is sharp for complete graphs, and for complete bipartite graph Kp,p.
It is worth emphasizing that the above bound coincide with the lower bound χdom(G) ≥ n

k−1 (k ≥ 2)
for K1,k-free graphs given by Boumediene-Merouane et al. [10], where k = α0 + 1, since every graph is
K1,α0+1-free.

As α0 ≤ ∆ (G), the next corollary given in [10] follows immediately from Theorem 3.4.

Corollary 3.5 ([10]). If G is a graph of order n and maximum degree ∆ (G), then

χdom(G) ≥
n
∆ (G)

.

The same authors of [10] characterized K3-free graphs which attain the above bound.

Next, we give bounds, in terms of order and diameter of G for the dominated chromatic number of a
connected graph.

Proposition 3.6. Let G be a connected graph of order n and with diameter diam(G). Then

1
2 (diam(G) + 1) ≤ χdom(G) ≤ n − 1

2 (diam(G) − 1).

Moreover, lower (respectively, upper) bound is sharp for path P4k (respectively, path P4k+2), where k is a positive
integer.

Proof. Let P be a diametral path in G of order t = diam(G) + 1. From Theorem 2.5, we can write

t
2 ≤ χdom(P) ≤ t

2 + 1. (2)

Therefore, to prove the statement it suffices to show the following

χdom(P) ≤ χdom(G) ≤ n + χdom(P) − t. (3)

Indeed, the right inequality in (3) follows since any dominated coloring of P with χdom(P) colors can be
extended to a dominated coloring of G with n + χdom(P) − t colors by coloring the remaining vertices of G
differently using n − t colors. Now, let us prove the left inequality. To this end, let P = v1-v2-· · · -vt and
consider a dominated coloring c of G with χdom(G) colors. We assert that

if c(vs) = c(vr) for some s and r (1 ≤ s < r ≤ t), then r = s + 2. (4)

Suppose that r ≥ s + 3 and let C be the class of color c(vs). This color class is dominated by some vertex
u ∈ V(G) − V(P) since vs and vr are at distance at least three. But in this case, v1-v2-· · · -vs-u-vr-· · · -vt would
be a shorter path than P from v1 to vt, a contradiction. Thus (4) holds. From this, we conclude that each
color of c is repeated at most twice in P. Taking this in conjunction with (4) we see that the restriction of c
to P is a dominated coloring of P. Thus the left inequality in (3) holds, and so the required is obtained by
combining (2) and (3).

According to Proposition 3.6, one can easily see that if χdom(G) ≤ 3, then diam(G) ≤ 5. The next result
will improve this upper bound for the case χdom(G) = 3.

Proposition 3.7. Let G be a graph with χdom(G) ≤ 3. Then G is connected and further diam(G) ≤ 4.
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Proof. Suppose that G is not connected. Then by Observation 2.3 and the fact that χdom(G) ≤ 3, there is
a component of G with one vertex, which is impossible since G is without isolated vertices. Now, let us
prove the second part. If χdom(G) = 2, then Proposition 3.6 shows that diam(G) ≤ 3. Assume now that
χdom(G) = 3 and let π = {X1,X2,X3} be a dominated coloring of G, and for each i in {1, 2, 3}, let ai be a vertex
that dominates Xi. Let x1 and x2 be vertices of G such that, d(x1, x2) = diam(G) and assume without loss of
generality that x1 ∈ X1. If a1 = a2 or x2 ∈ X1, then d(x1, x2) ≤ 2. So, assume next that a1 , a2 and without loss
of generality x2 ∈ X2. We assert that d(a1, a2) ≤ 2. Suppose not. Then clearly a1 and a2 both must be in X3.
In this case, a3 is adjacent to a1 and a2, and it is either in X1 or in X2, say X1. If a3 = x1, then x1, a2, x2 form a
path of length 2, meaning that d(x1, x2) ≤ 2. Otherwise, if a3 , x1, then x1, a1, a3, a2, x2 form a path of length
4, giving that d(x1, x2) ≤ 4.

4. Graphs G with χdom(G) = χ(G)

We begin this section by improving the bound χdom(G) ≥ χ(G) for disconnected graphs.

Proposition 4.1. Let G be a graph of order n with p components. Then χdom(G) ≥ χ(G) + 2(p − 1).

Proof. Let G1,G2, . . . ,Gp be the components of G and without loss of generality, assume that χ(G1) =
max{χ(Gi) : 1 ≤ i ≤ p}. Since χdom(G1) ≥ χ(G1) and χ(G) = max{χ(Gi) : 1 ≤ i ≤ p}, we get χdom(G1) ≥ χ(G).
From this and Observation 2.3, we can write χdom(G) ≥ χ(G) +

∑p
i=2χdom(Gi). Since χdom(Gi) ≥ 2 for all i ≥ 2,

we get χdom(G) ≥ χ(G) + 2(p − 1).

Corollary 4.2. If G is a graph of order n with χ(G) ≤ χdom(G) ≤ χ(G) + 1, then G is connected.

Observation 4.3. Let G be a graph with maximum degree ∆ (G) ≤ 2. Then χdom(G) = χ(G) if and only if
G ∈ {P2,P3,P4,C3,C4,C5}.

Proof. Let G be a graph with∆ (G) ≤ 2 such thatχdom(G) = χ(G). Therefore since G is connected (by Corollary
4.2), it follows that G is either a path or a cycle. Since χ(G) ≤ ∆ (G) + 1, it follows that χdom(G) ≤ 3, implying
that diam(G) ≤ 4 according to Proposition 3.7. Taking this fact into consideration, by inspection we see that
G ∈ {P2,P3,P4,C3,C4,C5}.

The next observation follows by combining Brooks’s Theorem together with Corollary 4.2 and Obser-
vation 4.3.

Observation 4.4. Let G be a graph of order n ≥ 2 with maximum degree ∆ (G). Then χdom(G) = χ(G) = ∆ (G) + 1
if and only if G � Kn or C5.

Next, we give a necessary conditions for which χdom(G) = χ(G).

Theorem 4.5. Let G be a graph of order n, maximum degree ∆ such that χdom(G) = χ(G). Then

(i) G is connected and further diam(G) ≤ 5.

(ii) If n ≥ 3 and G , C5, then n ≤ ∆2 (G).

Proof. Set k = χdom(G) = χ(G). Consider a dominated coloring c of G with k colors, and letπ = {X1,X2, . . . ,Xk}

be the set of color classes of c.
(i) The connectedness of G follows from Corollary 4.2. To show that diam(G) ≤ 5, let x1 and x2 be vertices

of G such that d(x1, x2) = diam(G) and assume without loss of generality that x1 ∈ X1, and let a1 and a2 be
vertices that dominate X1 and X2, respectively. If x2 ∈ X1, then {x1, a1, x2} forms a path P3. Now assume,
without loss of generality, that x2 ∈ X2. If a1 = a2 or a1a2 ∈ E, then d(x1, x2) ≤ 3. So, assume next that a1 , a2
and a1a2 < E. Then clearly a1 < X2 and a2 < X1. Assume first that a1 and a2 are in the same color class, say X3.



A. Benkaci et al. / Filomat 39:18 (2025), 6437–6444 6443

Since X3 is dominated by some vertex in G, d(a1, a2) = 2. Now, assume that a1 and a2 are in different classes.
As c is a χ-coloring of G, we know that there is an edge between X1 and X2, say b1b2 such that b1 ∈ X1 and
b2 ∈ X2. In this case a1, b1, b2, a2 form a path of length 3, and thus d(a1, a2) ≤ 3. Hence in all cases we have
that d(x1, x2) ≤ 5. (ii) Remember that by (1), we have k ≤ ∆ (G)+ 1. If k = ∆ (G)+ 1, then by Observation 4.4,
we have G � Kn or C5. Since n ≥ 3 and G , C5, n ≤ (n − 1)2 = ∆2 (G). If k ≤ ∆ (G), then by Corollary 3.5, we
get n ≤ ∆ (G) k ≤ ∆2 (G).

We close this section by characterizing cubic graphs G satisfying χdom(G) = χ(G).

Theorem 4.6. If G is a cubic graph, then χdom(G) = χ(G) if and only if G is an element of the family of graphs
described in Figure 2.

Proof. Let G be a cubic graph with k = χdom(G) = χ(G) ≥ 2. By Theorem 4.5-(i), G is connected and by (1),
k ∈ {2, 3, 4}. If k = 4, then by Theorem 2.7 and the fact that G is cubic, we conclude that G = K4. So from
now on, assume that k ∈ {2, 3}. By Theorem 4.5-(ii), we get n ≤ 9. We know that since G is cubic, n must be
even implying that n ∈ {6, 8}. For n = 6, we see that G � K3,3 or C6. We now look at cubic graphs of order 8.
By Corollary 3.5, k ≥ n

∆ =
8
3 , implying that k = 3. Let c be a dominated coloring of G using 3 colors and let

X,Y,Z be the color classes of c. Since |X| , |Y| , |Z| ≤ 3 and n = 8, it follows that one among X,Y,Z has size 2,
while the other two each have size 3. So, without loss of generality, we can let X = {x1, x2, x3}, Y = {y1, y2, y3}

and Z = {z1, z2}. We assert that

for each i ∈ {1, 2}, zi does not dominate neither X nor Y (5)

To the contrary and by symmetry, suppose that z1 dominates X. In such a case, no vertex in X can dominate
Y as otherwise the vertex dominating Y would have degree equal to 4, which is impossible. Therefore, Y
must be dominated by z2. But then, no vertex from X∪Y can dominate Z (since, at this step, z1 and z2 each
has degree 3), a contradiction. Thus (5) holds.

By (5), we can assume, without loss of generality, that x1 dominates Y and y1 dominates X. Since, at
this step, x1 and y1 have degree 3, Z must be dominated by one among x2, x3, y2, y3, say y2 (by symmetry).
Now y3 must have exactly two neighbors in {z1, z2, x2, x3} to have degree equal to 3. However, y3 cannot
be adjacent to both z1 and z2 (respectively, both x2 and x3), for otherwise, one of x2 or x3 (respectively, z1
or z2) will not have a degree of 3, a contradiction. Thus, by symmetry, we can let y3z2, y3x3 ∈ E(G) and
y3z1, y3x2 < E(G). To reach the degree 3, z1 must be adjacent to x2 and x3 and likewise z2 must be adjacent
to x2. Thus G is isomorphic to H (see Figure 2).

The converse is easy to check. An example of dominated coloring of each graph G belonging to
{K4,K3,3,C6,H}with χdom(G) = χ(G) is given in Figure 2.
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K4
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K3,3

21
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C6

3

2

3

1

1

2

2

1

H

Figure 2: Family of all cubic graphs satisfyingχdom(G) = χ(G). For each graph, the values assigned to the vertices represent a dominated
coloring.
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5. Open questions

We conclude our paper with few open questions that might be interesting to study.

Question 5.1. For what connected graphs of order n ≥ 4 does χdom(G) = n − 2?

Question 5.2. Characterize r-regular graphs (r ≥ 4) for which χdom(G) = χ(G).

Question 5.3. For what connected graphs does χdom(G) = χ(G) + 1?
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