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Abstract. Let G be a group and H be a rough subgroup of G with respect to the conjugacy relation, which
is considered as an equivalence relation. An internal edge of H is defined as the difference between H and
its lower approximation. Let E be a non-empty subset of G. In this paper, we aim to answer the following
questions: Can E represent an internal edge of some subgroup of G ( in other words, what are the conditions
that E must satisfy in order to be an internal edge of some subgroup of G)? If the answer to this question is
yes, what is this subgroup, and is it unique or not?

1. Introduction

Since the renowned mathematician scientist Zdzislaw Pawlak introduced the definition of rough sets
and approximation space [11, 12], rough set theory has garnered significant interest of many researchers.
This is due to its numerous applications in various fields, including data mining, machine learning, pattern
recognition, decision support systems and others.

The equivalence relation, which play key role in rough set is replaced by arbitrary relation to handle
more uncertainty (cf., Liu and Zhu [9], Yao [14] ), shows that upper and lower approximations of a set are
noting but closure and interior of the set and proposed several models of rough sets. Many interesting
and constructive extensions to binary relations and the subsets have been proposed. Several researchers
studied rough sets from an algebraic perspective and including rough semigroups, rough groups, rough
rings, rough modules, and rough vector spaces (cf., Biswas and Nanda [1], Bonikowski [2], Wang and Chen
[3], Iwinski [6], Kuroki and Wang [7], Miao et.al[10] ). There are mainly two approaches for the develop-
ment of rough set theory, the constructive and axiomatic approaches. By taking advantage of these two
approaches, rough set theory has been combined with other mathematical theories such as Boolean algebra
[4, 5], semigroup [8]. Among these research aspects, many papers has been focused on the connection
between rough sets and algebraic systems. Biswas and Nanda [1] defined the notion of rough subgroups.
Kuroki [8] introduced the notion of a rough ideal in a semigroup, studied approximations of a subset in
a semigroup and discussed some structures of a rough ideal. Conjugacy is a very significant equivalence
relation in the theory of groups and it has several important applications as well. In [13], the authors
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considering the equivalence relation conjugacy on a group and obtained their properties.

Numerous studies have investigated the properties of rough subgroups with respect to a conjugacy
relation on a group by analyzing their upper and lower approximation, while often neglecting a thorough
examination of their internal and external edges. Most studies on rough subgroups have focused on
deriving the structure of the upper and lower approximations of a rough subgroup with known properties.
However, to the best of my knowledge, no studies have attempted to determine the structure and properties
of a rough subgroup based on the form of its upper or lower approximations, internal or external edges or
boundary region. This gap represents the primary motivation for presenting this research and subsequent
studies. In this paper, we aim to answer the following questions: What conditions must a subset E of a
group G satisfy to be an internal edge of some rough subgroup of a group G? What is the structure of that
rough subgroup? Furthermore, is it possible for E to be an internal edge of more than one rough subgroup?

2. Preliminaries

Definition 2.1. Let R : U −→ U be an equivalence relation defined on a set U, and let the equivalence class of an
element x ∈ U be denoted by [x]. If X ⊆ U, we define the following:

1. The lower approximation of X with respect to the equivalence relation R, denoted by Apr(X), is the set

Apr(X) = {x ∈ U : [x] ⊆ X}

2. The upper approximation of X with respect to the equivalence relation R, denoted by Apr(X), is the set

Apr(X) = {x ∈ U : [x] ∩ X , ϕ}

3. The boundary region of X is B(X) = Apr(X) − Apr(X).
4. The internal edge of X is Ed1e(X) = X − Apr(X)

5. The external edge of X is Ed1e(X) = Apr(X) − X

Definition 2.2. Let R : U −→ U be an equivalence relation defined on a set U. A subset X of U is said to be a rough
set with respect to R if the boundary region of X is a non-empty set, in symbols B(X) , ϕ. If U is a group and X is a
subgroup of U, then a rough set X is called a rough subgroup.

Definition 2.3. Let G be a group and R : G −→ G be a relation such that

(x, y) ∈ R⇐⇒ y = 1−1x1 for some 1 ∈ G.

A relation R is called a conjugacy relation. It is well known that, R represents an equivalence relation with the
equivalence classes given by:

[x] = {1−1x1 : 1 ∈ G}

Note that: From now on, we fix the following notations:
G A group.
H A rough subgroup of a group G.
Apr(H) the lower approximation of H with respect to the conjugacy relation.
Ed1e(H) the internal edge of H with respect to the conjugacy relation.
[Ed1e(H)]2 the set {xy : x, y ∈ Ed1e(H)}.
|Ed1e(H)| the cardinality of Ed1e(H) (the number of elements in Ed1e(H)).

Proposition 2.4. [13, Prposition 4.4] Apr(H) is a subgroup of G.
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3. Main results

Proposition 3.1. Apr(H) is a normal subgroup of G.

Proof. By Proposition 2.4, Apr(H) is a subgroup of G. Let a ∈ Apr(H). Then [a] ⊆ H.

Let b ∈ [a] =⇒ [a] = [b] =⇒ [b] ⊆ H =⇒ b ∈ Apr(H) =⇒ [a] ⊆ Apr(H)

Therefore, 1−1a1 ∈ Apr(H) ∀1 ∈ G, a ∈ Apr(H) and hence Apr(H) ◁ G.

Proposition 3.2. Apr(H) is the maximum normal subgroup of G contained in H.

Proof. Let for a contradiction that, K be a normal subgroup of G with Apr(H) ≨ K ≨ H.

Let x ∈ K =⇒ 1−1x1 ∈ K ∀ 1 ∈ G =⇒ [x] ⊆ K =⇒ [x] ⊆ H =⇒ x ∈ Apr(H)

Hence K ⊆ Apr(H) which contradicts with our assumption that Apr(H) ≨ K ≨ H. Thus Apr(H) is the
maximum normal subgroup of G contained in H.

By the previous proposition, if H ◁ G, then Apr(H) = H, which follows that Ed1e(H) = ϕ. Therefore, we
obtain the following corollary.

Corollary 3.3. If H ◁ G, then Ed1e(H) = ϕ.

Proposition 3.4. Let x ∈ Ed1e(H) and a ∈ Apr(H). Then x−1, xa and ax ∈ Ed1e(H).

Proof. Since H ≤ G and x, a ∈ H, we get x−1, xa ∈ H.

If x−1
∈ Apr(H) =⇒ by Proposition 2.4, (x−1)−1 = x ∈ Apr(H)

If xa ∈ Apr(H) =⇒ ∃b ∈ Apr(H) such that xa = b =⇒ x = ba−1
∈ Apr(H)

Therefore, if x−1 or xa ∈ Apr(H), then x ∈ Apr(H) which contradicts with x ∈ Ed1e(H). Thus x−1 and
xa ∈ Ed1e(H). Similarly, ax ∈ Ed1e(H).

Proposition 3.5. Apr(H) ⊆ [Ed1e(H)]2

Proof. Let a ∈ Apr(H). Assume that x ∈ Ed1(H). By Proposition 3.4, ax ∈ Ed1e(H)
=⇒ ∃y ∈ Ed1(H) such that ax = y =⇒ a = yx−1. Since y, x−1

∈ Ed1(H), we get a ∈ [Ed1(H)]2. Hence
Apr(H) ⊆ [Ed1e(H)]2.

Note that the converse of the previous proposition is not necessary true in general. For example
consider the following: Let G � A4 (Alternating group of degree 4), H � A3. Clearly, Apr(H) = {e} and
Ed1e(H) = {(123), (132)}. Therefore, [Ed1e(H)]2 � A3 which follows [Ed1e(H)]2 ⊈ Apr(H). We now need to
address the following question: under what conditions is the converse of the previous proposition true?
The answer will be given in the following lemma.

Lemma 3.6. Apr(H) = [Ed1e(H)]2 if and only if [H : Apr(H)] = 2.
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Proof. (=⇒) Let Apr(H) = [Ed1e(H)]2. Assume, for contradiction, that [H : Apr(H)] > 2. Then there are
at least three distinct left cosets of Apr(H) in H, which we can denote as Apr(H), h1Apr(H) and h2Apr(H).
Consequently, h1Apr(H) ∪ h2Apr(H) ⊆ Ed1e(H), which implies that h1, h2 ∈ Ed1e(H). By Proposition 3.4,
h−1

1 , h2a ∈ Ed1e(H), where a ∈ Apr(H). Thus h−1
1 h2a ∈ [Ed1e(H)]2. Given our assumption that Apr(H) =

[Ed1e(H)]2, it follows that h−1
1 h2a ∈ Apr(H). Let h−1

1 h2a = b, which implies h2a = h1b. However, h1b ∈ h1Apr(H)
and h2a ∈ h2Apr(H), leading to the conclusion that h1Apr(H) ∩ h1Apr(H) , ϕ, a contradiction. Thus
[H : Apr(H)] = 2.

(⇐=) Let [H : Apr(H)] = 2 and Apr(H), hApr(H) be the distinct left cosets of Apr(H) in H. Since
H = Apr(H) ∪ hApr(H) = Apr(H) ∪ Ed1e(H) with Apr(H) ∩ hApr(H) = Apr(H) ∩ Ed1e(H) = ϕ, we get

Ed1e(H) = hApr(H)→ (∗)

By Proposition 3.5, Apr(H) ⊆ [Ed1e(H)]2. We need only show that [Ed1e(H)]2
⊆ Apr(H). Let z ∈ [Ed1e(H)]2.

Then there exist x, y ∈ Ed1e(H) such that z = xy. By Proposition 3.4, x, y−1
∈ Ed1e(H). Applying (∗), we can

find a1, a2 ∈ Apr(H) such that x = ha1, y−1 = ha2. Thus z = xy = ha1a−1
2 h−1. Since Apr(H) is a normal subgroup

of G (Proposition 3.1), z ∈ Apr(H). Therefore [Ed1e(H)]2
⊆ Apr(H) and hence Apr(H) = [Ed1e(H)]2.

Proposition 3.7. Assume that H and K are rough subgroups of a group G. Then H = K if and only if Ed1e(H) =
Ed1e(K).

Proof. It is clear that, if H = K then Ed1e(H) = Ed1e(K). For the converse, assume that Ed1e(H) = Ed1e(K).
By Proposition 3.5,

Apr(H) ⊆ [Ed1e(H)]2 = [Ed1e(K)]2
⊆ K =⇒ Apr(H) ∪ Ed1e(K) ⊆ K =⇒ H ⊆ K

Similarly, K ⊆ H and hence H = K.

Proposition 3.8. [Ed1e(H)]4
⊆ [Ed1e(H)]2.

Proof. Assume that Z ∈ [Ed1e(H)]4. Then z can be written as z = x1x2x3x4, where xi ∈ Ed1e(H) for i = 1, 2, 3, 4.
Since x1x2 ∈ H, either x1x2 ∈ Apr(H) or x1x2 ∈ Ed1e(H). If x1x2 ∈ Apr(H), then by Proposition 3.4,
(x1x2)x3 ∈ Ed1e(H) and hence z = [(x1x2)x3]x4 ∈ [Ed1e(H)]2. Similarly, if x3x4 ∈ Apr(H), then z ∈ [Ed1e(H)]2.
Now assume both x1x2 and x3x4 ∈ Ed1e(H). Hence z = (x1x2)(x3x4) ∈ [Ed1e(H)]2 and we are done.

Lemma 3.9. [Ed1e(H)]2 is a subgroup of G normal in H.

Proof. Let z1, z2 ∈ [Ed1e(H)]2. Then z1 = x1x2, z2 = x3x4 where xi ∈ Ed1e(H) for i = 1, 2, 3, 4. Therefore,
z1z−1

2 = x1x2x−1
4 x−1

3 ∈ [Ed1e(H)]4
⊆ [Ed1e(H)]2 (by Proposition 3.8) and hence [Ed1e(H)]2

≤ G. Now we need
to show that [Ed1e(H)]2 ◁ H. Let h ∈ H. If h ∈ Ed1e(H), then h−1z1h = h−1x1x2h ∈ [Ed1e(H)]4

⊆ [Ed1e(H)]2.
Also if h ∈ Apr(H), then by Proposition 3.4, h−1x1, x2h ∈ Ed1e(H) which follows that h−1z1h ∈ [Ed1e(H)]2.
Hence [Ed1e(H)]2 ◁H.

The following example demonstrates that [Ed1e(H)]2 does not need to be a normal subgroup of G. Let
G � A4 and H = ⟨(234)⟩. Clearly, Ed1e(H) = {(234), (243)}. Hence [Ed1e(H)]2 � H is not normal in G.
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Lemma 3.10. Either [Ed1e(H)]2 = Apr(H) or [Ed1e(H)]2 = H.

Proof. By Proposition 3.5, we have Apr(H) ⊆ [Ed1e(H)]2
⊆ H. To reach a contradiction, suppose that

Apr(H) , [Ed1e(H)]2 , H. Let h ∈ H − [Ed1e(H)]2 and x, y ∈ Ed1e(H). Then hxy ∈ h[Ed1e(H)]2. If
hx ∈ Ed1e(H), then (hx)y ∈ [Ed1e(H)]2 which contradicts with [Ed1e(H)]2

∩ h[Ed1e(H)]2 = ϕ. Thus

hx ∈ Apr(H) ∀x ∈ Ed1e(H) −→ (∗∗)

Let z ∈ [Ed1e(H)]2
− Apr(H). Since [Ed1e(H)]2

− Apr(H) = [Ed1e(H)]2
∩ Ed1e(H), we have z ∈ [Ed1e(H)]2

∩

Ed1e(H). Then z = u1u2 where u1,u2 and z are elements of Ed1e(H). By applying (∗∗), hz and hu1 ∈ Apr(H).
By Proposition 2.4, (hu1)−1(hz) ∈ Apr(H). However,

(hu1)−1(hz) = u−1
1 h−1hu1u2 = u2 ∈ Ed1e(H)

Then we get a contradiction which follows that, either [Ed1e(H)]2 = Apr(H) or [Ed1e(H)]2 = H.

Corollary 3.11. The following conditions are equivalent:

(i) [Ed1e(H)]2 = H.

(ii) [H : Apr(H)] > 2.

(iii) |Ed1e(H)| , |[Ed1e(H)]2
|.

Corollary 3.12. The following conditions are equivalent:

(i) [Ed1e(H)]2 = Apr(H).

(ii) [H : Apr(H)] = 2.

(iii) |Ed1e(H)| = |[Ed1e(H)]2
|.

We are now ready to answer the questions raised at the beginning of this paper. The answer is provided
in the following theorem, which represents our main theorem.

Theorem 3.13. Let E be a non-empty subset of a group G. Then E∪E2 is a unique subgroup of G with internal edge
E if and only if the following conditions hold:

(i) E2
≤ G.

(ii) Either |E| = |E2
| and E2 ◁ G or E ⊆ E2 and E2

− E is the maximum normal subgroup of G contained in E2.

(iii) E ∪ E2 is not normal in G.

Proof. Let E∪E2 be a subgroup of G with internal edge E. By Lemma 3.9, E2 is a subgroup of G and condition
(i) holds. Since E is a non-empty subset, Corollary 3.3 implies that E ∪ E2 is not normal in G, so condition
(iii) holds. By Lemma 3.10, there are two possibilities for E2, either E2 = Apr(E ∪ E2) or E2 = E ∪ E2.

• If E2 = E∪ E2, then E ⊆ E2 and E2
− E = Apr(E∪ E2) is the maximum normal subgroup of G contained

in E ∪ E2 = E2 (by Proposition 3.2).

• If E2 = Apr(E∪ E2), then E2 ◁G and by Lemma 3.6, [E∪ E2 : Apr(E∪ E2)] = 2. Consequently, E is a left
coset of Apr(E ∪ E2) within E ∪ E2. This implies that |E| = |Apr(E ∪ E2)| = |E2

|.
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Thus condition (iii) is satisfied, and hence the necessary direction is proven. For the converse, suppose
E is a subset of G that satisfies conditions (i)-(iii). We will demonstrate in the following steps that E ∪ E2 is
a unique subgroup of G with internal edge E.

1. If |E| = |E2
|, then each element in E ∪ E2 has its inverse also within E ∪ E2.

Let x ∈ E ∪ E2. By condition (i), if x ∈ E2, then x−1
∈ E2

⊆ E ∪ E2. Now consider x ∈ E. Assume
E = {11, 12, ..., 1n}. Then xE = {x11, x12, ..., x1n}. Clearly, if x1i = x1 j for some 1i, 1 j ∈ E with i , j, then
1i = 1 j, a contradiction. Thus |xE| = |E| = |E2

|. However xE ⊆ E2 which follows that xE = E2. Similarly,
Ex = E2. Therefore, xE = Ex = E2

∀x ∈ E. By condition (i), e ∈ E2 (where e is the identity element).
Then there exist 1 ∈ E such that x1 = 1x = e. This implies that x−1 = 1 ∈ E. Thus, x−1

∈ E2
∪ E ∀

x ∈ E ∪ E2.

2. E ∪ E2 is a subgroup of G.
By condition (ii), either E ⊆ E2 or |E| = |E2

|. If E ⊆ E2, then E2
∪ E = E2 and by condition (i),

E ∪ E2
≤ G. Therefore, we can assume that |E| = |E2

|. Let x, y ∈ E ∪ E2. Clearly, if both x and y ∈ E,
then xy ∈ E2

⊆ E∪E2. Similarly, if both x and y ∈ E2, then by condition (i), xy ∈ E2
⊆ E∪E2. Consider

the case where x ∈ E and y ∈ E2. As shown in (1), x−1E = E2. Then E has an element u, say, such that
y = x−1u. Then xy = xx−1u = u ∈ E ⊆ E ∪ E2. Therefore xy ∈ E ∪ E2

∀x, y ∈ E ∪ E2 and by (1), each
element in E ∪ E2 has its inverse also within E ∪ E2. Hence E ∪ E2 is a subgroup of G.

3. Ed1e(E ∪ E2) = E.

By condition (ii), either |E| = |E2
| and E2 ◁ G or E ⊆ E2 and E2

− E is the maximum normal subgroup
of G contained in E2. If E ⊆ E2, then according to Proposition 3.2, E2

− E = Apr(E ∪ E2). Therefore,
E2 = E∪ (E2

−E) = Ed1e(E∪E2)∪Apr(E∪E2) and E∩ (E2
−E) = Ed1e(E∪E2)∩Apr(E∪E2) = ϕ, which

implies that Ed1e(E ∪ E2) = E. Now Let |E| = |E2
| and E2 ◁ G. Then

|E ∪ E2
| = |E| + |E2

| − |E ∩ E2
| = 2|E2

| − |E ∩ E2
|

=⇒ |E ∩ E2
| = 2|E2

| − |E ∪ E2
|

Since E2
≤ E ∪ E2, we have |E ∪ E2

| = α|E2
| where α is a positive integer number. Consequently,

|E ∩ E2
| = (2 − α)|E2

|. Clearly. if α = 1, then E ∪ E2 = E2 which implies E ⊆ E2, leading to a
contradiction. The only possible value for α is 2, which follows that E ∩ E2 = ϕ and |E ∪ E2

| = 2|E2
|.

Therefore E2 is a maximal subgroup of E∪ E2 and by Preposition 3.2, we get E2 = Apr(E∪ E2). Hence
Ed1e(E ∪ E2) = E.

By Preposition 3.7, E ∪ E2 is the unique subgroup of G with internal edge E, and the proof is complete.

Corollary 3.14. Let E be a non-empty subset of a group G. If E is an internal edge of a subgroup H of G, then
H = E ∪ E2.

We provide some examples to demonstrate that we cannot omit any hypothesis of Theorem 3.13. In
these examples, we choose E ⊆ G so that it does not represent an internal edge of any subgroup of G and
attempt to determine which condition of the theorem is not satisfied.

1. G = S3 and E = {(12), (13), (23)}. Then E2 = ⟨(123)⟩ ≤ G, |E| = |E2
| and E2 ◁ G but E ∪ E2 = S3 ◁ G.

2. G = A5 and E = {(12)(45), (13)(45), (23)(45)}. Then E2 = ⟨(123)⟩ ≤ G, E ∪ E2 is not normal in G and
|E| = |E2

| but E2 is not normal in G.
3. G = A5 and E = {(123), (12)(45), (13)(45), (23)(45)}. Then E2 = ⟨(123), (12)(45)⟩ ≤ G, E∪E2 is not normal

in G and E ⊆ E2 but E2
− E = {e, (132)} is not normal in G.

4. G = D6 = {e, a2, a3, a4, a5, b, ba, ba2, ba3, ba4, ba5
} (Dihedral group of order 12) and E = {a3, b, a3b}. Then

E2 = {e, a3, b, a3b} ≤ G, E ∪ E2 is not normal in G, E ⊆ E2 and E2
− E = {e} is normal in G but E2

− E is
not the maximum normal subgroup of G contained in E2.
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Proposition 3.15. Let f : G −→ G‵ be an isomorphism from a group G to a group G‵ and E be a non-empty subset
of G. If E represents an internal edge of a rough subgroup of G, then the following holds:

(i) f (E2) = [ f (E)]2.

(ii) f (E ∪ E2) = f (E) ∪ [ f (E)]2.

(iii) [ f (E)]2 and f (E) ∪ [ f (E)]2 are subgroups of G‵.

(iv) f (E) ∪ [ f (E)]2 is not normal in G‵.

(v) Either | f (E)| = |[ f (E)]2
| and [ f (E)]2 ◁G‵ or f (E) ⊆ [ f (E)]2 and [ f (E)]2

− f (E) is the maximum normal subgroup
of G‵ contained in [ f (E)]2.

Proof. (i) Let f (z) ∈ f (E2) ⇐⇒ z ∈ E2
⇐⇒ ∃ x, y ∈ E such that z = xy ⇐⇒ ∃ f (x), f (y) ∈ f (E) such that

f (z) = f (xy) = f (x) f (y)⇐⇒ f (z) ∈ [ f (E)]2.

(ii) Let f (z) ∈ f (E ∪ E2) ⇐⇒ z ∈ E ∪ E2
⇐⇒ z ∈ E ∨ z ∈ E2

⇐⇒ f (z) ∈ f (E) ∨ f (z) ∈ f (E2) ⇐⇒ f (z) ∈
f (E) ∨ f (z) ∈ [ f (E)]2

⇐⇒ f (z) ∈ f (E) ∪ [ f (E)]2.

(iii) Since E2 and E ∪ E2 are subgroups of G, we get f (E2) = [ f (E)]2 and f (E ∪ E2) = f (E) ∪ [ f (E)]2 are
subgroups of G‵.

(iv) Since E ∪ E2 is not normal in G =⇒ ∃ 1 ∈ G and x ∈ E ∪ E2 such that 1−1x1 < E ∪ E2 =⇒ f (1−1x1) =
[ f (1)]−1 f (x) f (1) < f (E ∪ E2) = f (E) ∪ [ f (E)]2. Thus f (E) ∪ [ f (E)]2 is not normal in G‵.

(v) As f is isomorphism and [ f (E2)] = [ f (E)]2, we have

|E| = |E2
| ⇐⇒ | f (E)| = |[ f (E)]2

|

E2 ◁ G⇐⇒ [ f (E)]2 ◁ G‵

E ⊆ E2
⇐⇒ f (E) ⊆ [ f (E)]2

E2
− E ◁ G⇐⇒ [ f (E)]2

− f (E) ◁ G‵

Since E2
− E is the maximum normal subgroup of G contained in E2 if and only if [ f (E)]2

− f (E) is the
maximum normal subgroup of G‵ contained in [ f (E)]2, it follows that, by Theorem 3.13, the proof is
complete.

Corollary 3.16. Let f : G −→ G‵ be an isomorphism from a group G to a group G‵ and E be a non-empty subset of
G. Then E represents an internal edge of a rough subgroup of G if and only if f (E) represents an internal edge of a
rough subgroup of G‵.

Conclusion: This work focuses on rough subgroups by considering the conjugacy relation as an equivalence
relation on a group. Several interesting properties of internal edges and lower approximations of rough
subgroups are investigated. However, some limitations of the study should be acknowledged. The results
obtained hold specifically for the conjugacy relation, but they do not necessarily generalize to arbitrary
equivalence relations. An open question remains as to whether these results can be extended to a broader
class of equivalence relations. Moreover, this paper represents a first step in a series of studies. Future
research could explore similar properties in the context of other algebraic structures related to rough
subgroups. This naturally leads to the following question: What conditions must a subset E of a group G
satisfy in order to be an external edge, boundary region, lower approximation, or upper approximation of
some rough subgroup of G?
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