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Abstract. In this article, we explore the concepts of point-wise statistical convergence, equi-statistical
convergence, and uniform statistical convergence for sequences of functions of two variables, employing
the deferred power-series method. We then demonstrate the inclusion relationships among these concepts,
supplemented by several illustrative numerical examples. Furthermore, from an application perspective,
we introduce a Korovkin-type theorem that utilizes our proposed method to examine the equi-statistical
convergence of sequences of positive linear operators. Additionally, we consider an example involving
the Meyer-König and Zeller operator and use MATLAB software to illustrate the convergence behavior
of the operator. Finally, we provide an estimation of the equi-statistical convergence rates to assess the
effectiveness of the findings in our research.

1. Introduction, Preliminaries and Motivation

The gradual development in the study of sequence spaces has significantly advanced the concept of
statistical convergence, which is broader and more comprehensive than traditional convergence. This
progress is largely attributed to the pioneering work of mathematicians Fast [12] and Steinhaus [46], who
expanded the scope of statistical convergence analysis. Today, this influential concept finds applications
across various fields of mathematics, as well as in analytical statistics. It is particularly valuable in areas
such as operator theory, finance mathematics, industrial mathematics and probability theory. For more
recent studies, interested readers may refer to [13] and [14].
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Statistical convergence is a generalization of the classical notion of convergence for real sequences.
For a real sequence (ak) statistical convergence is defined based on the concept of density of the set of
indices. Specifically, a sequence (ak) is said to be statistically convergent to a real number L if, for every
ϵ > 0, the set of indices k for which |ak − L| ≧ ϵ has natural density zero. In other words, the proportion
of terms in the sequence that deviate from L by at least ϵ becomes arbitrarily small as the sequence
progresses. Unlike ordinary convergence, which requires the terms to approach L for all sufficiently large
indices, statistical convergence allows for exceptions as long as they occur with vanishing frequency. This
concept is particularly useful in dealing with sequences that exhibit irregular behavior or outliers, and
it has important applications in various areas of mathematics, including number theory, probability, and
functional analysis.
Let we write it as

stat lim ak = L (k→∞).

Pringsheim [29], in the year 1900 studied the classical convergence of a double real sequence refers
to the convergence of a sequence indexed by two integers, typically denoted as (aα,β) where α and β are
positive integers. A double sequence (aα,β) is said to converge to a real number L if, for every ϵ > 0, there
exists positive integers M and N such that for all α ≧ M and β ≧ N, the inequality |aα,β − L| < ϵ holds. This
definition implies that as both indices α and β tend to infinity, the terms of the sequence get arbitrarily close
to the limit L. The notion of convergence here is essentially an extension of the concept of convergence of
single-indexed sequences to a double-indexed scenario, requiring that the sequence stabilize around L in
every direction of the (α, β) plane.

Statistical convergence of a double sequence (aα,β) is a generalization of convergence that involves a
probabilistic approach rather than the traditional point-wise criterion. A double sequence (aα,β) is said to
be statistically convergent to a real number L if, for every ϵ > 0, the proportion of indices (α, β) for which
|aα,β − L| ≧ ϵ becomes negligible as α and β increase. Formally, this can be expressed using the concept of
the density of a set: (aα,β) is statistically convergent to L if

δ(Hϵ(i, j)) = 0

where
δ(Hϵ(i, j)) = {(α, β) : α ≦ i, β ≦ j and |aα,β − L| ≧ ϵ}.

Here, we write
stat2 lim

α,β
aα,β = L.

It is important to note that every double sequence that converges in the probabilistic sense (often
denoted as P- convergence) will also converge statistically in the sense of stat2 to the same limit. However,
the converse is not necessarily true. This means that a double sequence which is stat2 convergent may not
always be P-convergent to the same limit.

Example 1.1. Suppose we consider a double sequence a = (aα,β) as

aα,β =


√
αβ (α = k2, β = l2; ∀ k, l ∈N)

0 otherwise.

It is apparent that the sequence (aα,β) does not exhibit P-convergent in the usual sense. Nonetheless, 0 serves as
its statistical limit.

Building on the concept of statistical convergence, Karakaya and Chishti [24] introduced the notion of
weighted statistical convergence for single sequences. This concept has since been expanded by several
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researchers (see [6], [7] and [23]). Additionally, Srivastava et al. [44] introduced and examined deferred
weighted statistical convergence, which has been explored further in subsequent works (see [16], [25], [28],
[42], and [43]).

Recalling Agnew [1], let (ζβ) and (ηβ) be the sequences in Z0+ such that

ζβ < ηβ and lim
β→∞

ηβ = ∞,

are the regularity conditions for deferred summability technique.
We now introduce the deferred power series convergence technique for double sequence under a specific

summability mean.
Let (qα,β) be a double sequence of non-negative numbers with q00 > 0. The associated deferred power

series method is defined as

q(χ,ψ) =
ηα,ηβ∑
i=ζα+1
j=ζβ+1

qi, j χ
iψ j.

The radius of convergence R− satisfies the condition 0 < R− ≦ ∞.

A double sequence (aα,β) is convergent to a finite real number a under the deferred power series (or
DP-method) method, if

lim
0<χ,ψ→R−

1
q(χ,ψ)

ηα,ηβ∑
i=ζα+1
j=ζβ+1

qi, j χ
iψ jai, j = a (∵ χ,ψ ∈ I = [0, 1/2] × [0, 1/2]).

Note that the DP-method is considered to be regular (refer to [8]) if and only if the following condition
holds:

lim
0<χ,ψ→R−

qi, j χiψ j

q(χ,ψ)
= 0 (∀ i, j ∈N).

We next introduce the statistical versions of convergence under the DP- method.

Let G ⊂N ×N and let

Gϵ =
{
α ≦ ηα, β ≦ ηβ and α, β ∈ G

}
. (1)

The DP-density of G, denoted as δDP(Gϵ) is given by

δDP(Gϵ) = lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈Gϵ

qα,βχαψβ

provided that the limit exists.

Definition 1.2. A double sequence (aα,β) is statistically convergent to L under the DP- method if, for every ϵ > 0 the
following condition is satisfied:

lim
0<χ,ψ→R−

1
q
(
χ,ψ

) ∑
α,β∈Gϵ

qα,β χαψβ = 0,

where

Gϵ =
{
α ≦ ηα, β ≦ ηβ and |aα,β − L| ≧ ϵ

}
,
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which implies

δDP (Gϵ) = 0 (∀ ϵ > 0).

We denote this by

statDP lim aα,β = L.

The example below, demonstrates that statistical convergence and statDP convergence are not fairly
analogous.

Example 1.3. Let

qα,β =


1 (α = k2, β = ℓ2; k, ℓ ∈N)

0 (otherwise)

and

aα,β =


0, (α = k2, β = ℓ2; k, ℓ ∈N)

αβ, (otherwise).

It is evident that (aα,β) does not converge statistically to 0. However, according to Definition 1.2, we fairly have

lim
0<s,t→R−

1
q(χ,ψ)

∑
α,β∈{α≦ηα,β≦ηβ:|aα,β|≧ϵ}

qα,βχαψβ = 0,

where ζβ = 2β and ηβ = 4β.

Consequently, (aα,β) converges statistically to 0 under the DP-method.

Again, let

aα,β =


1
αβ (α = k2, β = ℓ2; α, β ∈N)

0 (otherwise),

where ζβ = 2β and ηβ = 4β.

Indeed, (aα,β) statistically converges to 0.

However,

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈{α≦ηα,β≦ηβ:|aα,β |≥ϵ}

qα,β χαψβ , 0.

Therefore, the sequence (aα,β) is not statDP convergent.

The concept of fundamental statistical limits, along with suitable theorems and illustrative examples was
first established by the distinguished scientist Móricz [21]. Subsequently, Mohiuddine et al. [20] provided
significant insights into statistical Cesàro summability means, including illustrative examples and proofs of
related Korovkin’s results. Later, Mursaleen et al. [22] refined the elementary limit concepts and established
inclusion relations among them. Recently, Saini et al. [31] proved Korovkin-type theorems using a certain
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class of equi-statistical convergence. In 2018, Srivastava et al. [42] investigated equi-statistical convergence
using the deferred Nörlund mean and established related approximation theorems. Subsequently, Parida
et al. [27] presented results concerning sequences converging equi-statistically through the deferred Cesàro
mean, proving corresponding Korovkin-type theorems. More recently, Srivastava et al. [36] and Demirci et
al. [9] examined equi-statistical convergence of sequences via the power-series method, deriving various
approximation theorems. Interested readers can explore more recent studies in [5], [17], [32], [33], and [45]
for further reference.

Inspired by the aforementioned results and advancements, our goal is to introduce the notions of point-
wise statistical convergence, equi-statistical convergence, and uniform statistical convergence for sequences
of functions of two variables, utilizing the deferred power series method (DP-method). We then explore
inclusion relations among these convergence types and offer several illustrative numerical examples. Ad-
ditionally, we present a Korovkin-type approximation theorem, which is derived from our approach for the
equi-statistical convergence of sequences of linear operators. Lastly, we assess the rates of equi-statistical
convergence to highlight the effectiveness of our findings.

Let I ⫅ R2 and consider 1(χ,ψ) ∈ C(I), where C(I) denotes the class of real-valued continuous functions
defined on I =

[
0, 1

2

]
×

[
0, 1

2

]
. Additionally, let 1α,β(χ,ψ) ∈ C(I) for each α, β. Define the supremum norm on

C(I) as ∥ 1(χ,ψ) ∥C(I).

We now explore the concepts of deferred point-wise statistical (stat − pointwiseD) convergence, deferred
equi-statistical (equi − statD) convergence, and deferred uniform statistical (stat − uniformlyD) convergence
for sequences of functions in two variables as follows.

(a) If, for every ϵ > 0 and for all χ,ψ ∈ I, the following condition holds:

lim
Kα,β(χ,ψ; ϵ)

αβ
= 0 (α, β→∞)

where

Kα,β(χ,ψ; ϵ) := |{α ≦ ηα, β ≦ ηβ and |1α,β(χ,ψ) − 1(χ,ψ)| ≧ ϵ}|,

then the sequence (1α,β) is deferred statistically point-wise convergent to 1 on I. We denote this by

1α,β → 1 (stat − pointwiseD).

(b) If, for every ϵ > 0, the following holds uniformly with respect to χ,ψ ∈ I:

lim
α,β→∞

Kα,β(χ,ψ; ϵ)
αβ

= 0 uniformly with regards to χ,ψ ∈ I,

then the sequence (1α,β) is deferred equi-statistically convergent to 1 on I. We denote this by

1α,β =⇒ 1 (equi − statD).

(c) If, for every ϵ > 0, the following condition is satisfied:

lim
α,β→∞

Dα,β(χ,ψ; ϵ)
αβ

= 0,

where

Dk(χ,ψ; ϵ) = |{α ≦ ηα, β ≦ ηβ and ∥ 1α,β − 1 ∥C(I)≧ ϵ}|,

then the sequence (1α,β) is deferred statistically uniformly convergent to 1 on I. We denote this by

1α,β ⇒ 1 (stat − unifomlyD).
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For the purposes of this study, we now introduce the following definitions in accordance with the
DP-method.

Definition 1.4. For every ϵ > 0 and for all χ,ψ ∈ I, if

δDP

(
Kα,β(χ,ψ; ϵ)

)
= lim

0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈Kα,β(χ,ψ;ϵ)

qα,βχαψβ = 0,

then the sequence (1α,β) is said to be point-wise statistically convergent to 1 on I under the DP- method. We denote
this by

1α,β → 1 (stat − pointDP).

Definition 1.5. For every ϵ > 0, if

δDP
(
Kk(χ,ψ; ϵ)

)
= lim

0<χ,ψ→R−

1
q(χ,ψ)

∑
χ,ψ∈Kα,β(χ,ψ;ϵ)

qα,β χαψβ = 0 (uniformly in χ,ψ),

then the sequence (1α,β) is equi-statistically convergent to 1 on I under the DP- method. This is denoted by

1α,β → 1 (equi − statDP).

Definition 1.6. For every ϵ > 0, if

δDP

(
Dα,β(χ,ψ; ϵ)

)
= lim

0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈Dα,β(χ,ψ;ϵ)

qα,βχαψβ = 0,

then the sequence (1α,β) is uniformly statistically convergent to 1 on I under the DP- method. This is denoted by

1α,β ⇒ 1 (stat − uniDP).

Considering Definitions 1.4, 1.5, and 1.6, we now introduce an inclusion relation, which is further illus-
trated with various examples as detailed below.

Lemma 1.7. For a double sequence (1α,β), the following implications are valid:

1α,β ⇒ 1 (stat − uniDP) =⇒ 1α,β → 1 (equi − statDP)
=⇒ 1α,β → 1 (stat − pointDP). (2)

Also, the implications are strict, meaning that the reverse directions of the implications under (2) generally do not
hold.

To illustrate that the implications are indeed strict, as stated in Lemma 1.7, we provide the following
numerical examples.

Example 1.8. Let ζβ = 2β and ηβ = 4β, and let

1α,β(χ,ψ) =



−2αβ(χψ − 1
2α−1 ) (α = k2, β = ℓ2, k, ℓ ∈N; χ,ψ ∈ A)

2αβ(χψ − 1
2αβ ) (α = k2, β = ℓ2, k, ℓ ∈N; χ,ψ ∈ B)

0 (α = k2, β = ℓ2, k, ℓ ∈N;χ,ψ < A∪B)

αβ (elsewhere),

(3)
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where

A =
[
2−(αβ−1)

− 2−αβ, 2−(αβ−1)
]

and B =
[
2−αβ, 2−(αβ−1)

− 2−αβ
]
.

Let us also assume that

qα,β =


1 (α = k2, β = k2, k ∈N)

0 (otherwise).

Clearly, from Definition 1.2, we have

δDP

({
α ≦ ηα, β ≦ ηβ and

∣∣∣1α,β − 1∣∣∣ ≧ ϵ}) = 0.

Thus, for any χ,ψ ∈ I,

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
{α≦ηα,β≦ηβ and |1α,β−1|≧ϵ}

qα,βχαψβ ≦ lim
0<χ,ψ→R−

1
q(χ,ψ)

qα0β0χ
α0ψβ0 = 0.

We thus obtain

1α,β → 1 (equi − statDP) on I.

However, since

∥ 1α,β − 1 ∥C(I), 0,

the sequence (1α,β) fails to converge to 0 statistically or uniformly statistically under the DP- method.

Example 1.9. Let I =
[
0, 1

2

]
×

[
0, 1

2

]
, and let

1α,β
(
χ,ψ

)
=


0 (α = k2, β = ℓ2; k, ℓ ∈N)

χαβψαβ (otherwise),

and

lim
α,β→∞

1α,β(χ,ψ) = 1(χ,ψ) (χ,ψ ∈ I),

where

1(χ,ψ) =


0 χ,ψ ∈ [0, 1)

1 (χ = 1 & ψ = 1).

Also let

qα,β =


0 (α = k2, β = ℓ2; k, ℓ ∈N)

1 (otherwise).

Then

1α,β → 1 (stat − pointDP).
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Furthermore, if we set ϵ = 1
2 , then for every χ,ψ with ψ ∈

(
αβ

√
1
2 , 1

)
and ψ ∈

(
α,β

√
1
2 , 1

)
,

|1α,β(χ,ψ)| = |χαβψαβ| >

∣∣∣∣∣∣∣
 αβ

√
1
2

αβ  αβ

√
1
2

αβ
∣∣∣∣∣∣∣ = 1

4
.

Therefore, we conclude that the statement

1α,β → 1 (equi − statDP)

is ultimately not valid.

2. A New Korovkin-Type Theorem

Korovkin-type approximation theorems provide fundamental tools in approximation theory, particu-
larly for studying the convergence of sequences of linear positive operators. These theorems are named
after Korovkin, who introduced the concept in the 1950s. The classical Korovkin theorem gives simple
conditions under which a sequence of linear operators converges to the identity operator for continuous
functions. Specifically, the theorem states that if a sequence of positive linear operators converges on a set of
test functions-typically polynomials like 1, x and x2 then it converges uniformly for all continuous functions
on a given interval. These results have broad applications, ranging from numerical analysis to functional
analysis, and have been extended to various settings, such as multivariate functions, abstract spaces, and
quantum spaces. Korovkin-type theorems offer a powerful framework for ensuring convergence while
only verifying the behavior of the operators on a small set of simple functions.

Recent studies have investigated Korovkin-type results through different approaches to statistical con-
vergence techniques, as documented in sources such as [3], [10], [13], [15], [20], [37], [38], [39], [40], and
[41]. Additionally, Balcerzak et al. [4] presented a powerful result using equi-statistical convergence in
place of uniform statistical convergence. Numerous researchers have established different results based on
equi-statistical convergence in various contexts (see, for instance, [11], [19], [26], [27], and [42]). Building
on these advanced studies, we apply the DP-method to develop a Korovkin-type theorem that utilizes the
notion of equi-statistical convergence for sequences of functions.

Let L be a linear operator acting on C(I). The operator L is called a positive linear operator if, for
1(χ,ψ) ≧ 0 it follows that

L(1(s, t);χ,ψ) ≧ 0.

Building upon certain approximation theorems, we aim to establish a new Korovkin-type theorem in
this section by utilizing our proposed DP-method under the equi-statistical convergence of sequences of
positive linear operators. To prove the desired theorem, we consider the following test functions:

10(χ,ψ) = 1, 11(χ,ψ) =
χ

1 − χ
, 12(χ,ψ) =

ψ

1 − ψ
and 13(χ,ψ) =

(
χ

1 − χ

)2

+

(
ψ

1 − ψ

)2

.

Before presenting the main results, we begin by revisiting the classical Korovkin-type theorem (see [18])
as well as several statistical Korovkin-type theorems developed within the context of power series methods
(see [48] and [9]) as follows.

Theorem 2.1. (see [18]) Let (Lα) be a sequences of positive linear operators on C(I). For each 1 ∈ C(I), the following
is true:

lim
α→∞

∥ Lα(1) − 1 ∥C(I)= 0
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if and only if

lim
α→∞

∥ Lα(1i;χ) − 1i ∥C(I)= 0 (i = 0, 1, 2).

Theorem 2.2. (see [48]) Let (Lα) be a sequences of positive linear operators on C(I). For each 1 ∈ C(I), the following
is true:

statp lim
α→∞

∥ Lα(1;χ) − 1 ∥C(I)= 0

if and only if

statp lim
α→∞

∥ Lα(1i;χ) − 1i ∥C(I)= 0 (i = 0, 1, 2).

Theorem 2.3. (see [9]) Let (Lα) be a sequence of (positive) linear operators on C(I). For each 1 ∈ C(I), the following
is true:

Lα(1;χ) −→ 1 (equi − statP) on I (4)

if and only if

Lα(1i;χ) −→ 1i (equi − statP) (i = 0, 1, 2). (5)

As a key result of this study, we now present below a new Korovkin-type theorem.

Theorem 2.4. Let (ζβ) and (ηβ) be sequences in Z0+, and let (Lα,β) denote a sequence of linear operators on C(I).
For every 1 ∈ C(I), the following is true:

Lα,β(1(s, t);χ,ψ) −→ 1(χ,ψ) (equi − statDP) on I (6)

if and only if

Lα,β(1i(s, t);χ,ψ) −→ 1i(χ,ψ) (equi − statDP) (i = 0, 1, 2, 3). (7)

Proof. Since 1i(χ,ψ) ∈ C(I) for i = 0, 1, 2, 3 is continuous, the implication:

(6) =⇒ (7)

is clearly trivial.

To finish the proof of Theorem 2.4, we start by assuming that (7) holds. Let 1 ∈ C(I), and for all χ,ψ ∈ I,
there exists a constant E such that∣∣∣1(χ,ψ)

∣∣∣ ≦ E (χ,ψ ∈ I), (8)

we have∣∣∣1(s, t) − 1(χ,ψ)
∣∣∣ ≦ 2E (s, t, χ, ψ ∈ I).

Therefore, for any ϵ > 0, there is a δ > 0 such that

|1(s, t) − 1(χ,ψ)| < ϵ (∀ χ,ψ, s, t ∈ I), (9)

whenever∣∣∣∣∣ s
1 − s

−
χ

1 − χ

∣∣∣∣∣ < δ and
∣∣∣∣∣ t
1 − t

−
ψ

1 − ψ

∣∣∣∣∣ < δ.
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Using (8) and (9), we have

|1(s, t) − 1(χ,ψ)| < ϵ +
2E
δ2 ([ϑ(s, χ)]2 + ϑ(t, ψ)]2) (∀ χ,ψ, s, t ∈ I),

where

ϑ(s, χ) =
s

1 − s
−

χ
1 − χ

and ϑ(t, ψ) =
t

1 − t
−

ψ

1 − ψ
.

As a consequence of the linearity and positivity of
(
Lm(1, χ, ψ)

)
, we obtain

|Lα,β(1(s, t);χ,ψ) − 1(χ,ψ)| = |Lα,β(1(s, t) − 1(χ,ψ);χ,ψ) + 1(χ,ψ)[Lα,β(10;χ,ψ) − 10]|
≦ Lα,β(|1(s, t) − 1(χ,ψ)|;χ,ψ) + E|Lα,β(10;χ,ψ) − 10|

≦

∣∣∣∣∣Lα,β (ϵ + 2E
δ2 ([ϑ(s, χ)]2 + ϑ(t, ψ)]2);χ,ψ

)∣∣∣∣∣ + E|Lα,β(10;χ,ψ) − 10|

= ϵ + (ϵ + E)
∣∣∣Lα,β(10;χ,ψ) − 10(χ,ψ)

∣∣∣
+

2E
δ2

∣∣∣Lα,β(13;χ,ψ) − 13(χ,ψ)
∣∣∣ − 4E

δ2

(
χ

1 − χ

) ∣∣∣Lα,β(11;χ,ψ) − 11(χ,ψ)
∣∣∣

−
4E
δ2

(
χ

1 − χ

) ∣∣∣Lα,β(12;χ,ψ) − 12(χ,ψ)
∣∣∣

+
2E
δ2

( χ
1 − χ

)2

+

(
ψ

1 − ψ

)2 ∣∣∣Lα,β(10;χ,ψ) − 10(χ,ψ)
∣∣∣

= ϵ +
(
ϵ + E +

4E
δ2

) ∣∣∣Lα,β(10;χ,ψ) − 10(χ,ψ)
∣∣∣

+
4E
δ2

∣∣∣Lα,β(11;χ,ψ) − 11(χ,ψ)
∣∣∣ + 4E

δ2

∣∣∣Lα,β(12;χ,ψ) − 12(χ,ψ)
∣∣∣

+
2E
δ2

∣∣∣Lα,β(13;χ,ψ) − 13(χ,ψ)
∣∣∣ .

By considering supremum norm, we consequently get

∥∥∥Lα,β(1(s, t);χ,ψ) − 1(χ,ψ)
∥∥∥

C(I) ≦ ϵ +M
3∑

j=0

∥Lα,β(1i(s, t);χ,ψ) − 1i(χ,ψ)∥C(I), (10)

where

M =
{
ϵ + E +

4E
δ2

}
.

Next, for λ > 0, we select ϵ > 0 with 0 < ϵ < λ. Then, by setting

Hα,β =
{
α ≦ ηα, β ≦ ηβ and |Lα,β(1(s, t);χ,ψ) − 1(χ,ψ)| ≧ λ

}
and

Hi;α,β =
{
α ≦ ηα, β ≦ ηβ and |Lα,β(1i(s, t);χ,ψ) − 1i(χ,ψ)| ≧

λ − ϵ
3M

}
, and

using (10), we thus obtain

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
(α,β)∈Hα,β

qαβχαψβ ≦
3∑

i=0

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
(α,β)∈Hi;α,β

qαβχαψβ. (11)
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Finally, under the given assumption related to the implication in (7) and by applying Definition 1.5, the
right-hand side of (11) approaches zero. Consequently, we obtain

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
(α,β)∈Hα,β

qαβχαψβ = 0.

Hence, the implication in (6) is indeed valid, thereby proving Theorem 2.4.

3. Computational and Geometrical Approaches of Theorem 2.4

In light of Theorem 2.4, we provide a numerical example below using certain specific positive linear
polynomials known as the Meyer-König and Zeller (or MKZ-operator) operator for two variables (see [2],
[47]).

Example 3.1. Let I =
[
0, 1

2

]
×

[
0, 1

2

]
, and consider the MKZ operatorMα,β(1(s, t);χ,ψ) of two variables defined as

Mα,β(1(s, t);χ,ψ) =
1

Ψα,β(χ,ψ, s, t)

∞∑
i=0
j=0

f
(

ai,α

ai,α + bα
,

c j,β

c j,β + dβ

)
Γ
α,β
i, j (s, t)χiψ j (12)

for

0 ≦
ai,α

ai,α + bα
≦ A and 0 ≦

c j,β

c j,β + dβ
≦ B, A,B ∈ (0, 1)

where {Ψα,β(χ,ψ, s, t)}α,β∈N represents the multiple generating functions for the sequence of functions {Γα,βi, j (s, t)χiψ j
}N∪{0}

such that

Ψα,β(χ,ψ, s, t) =
∞∑
i=0
j=0

Γ
α,β
i, j (s, t)χiψ j with Γ

α,β
i, j (s, t) ≧ 0; χ,ψ ∈ I.

Let us assume that the following conditions hold:

(i) Ψα,β(χ,ψ, s, t) = (1 − χ)Ψα+1,β(χ,ψ, s, t)

(ii) ai+1,αΓ
α,β
i+1, j(χ,ψ) = bαΓ

α+1,β
i, j (χ,ψ)

(iii) ai+1,α = ai,α+1 + φα, |φα| ≦ α1 < ∞ and a0,α = 0

(iv) bα →∞, bα+1
bα
→∞ and bβ , 0, ∀ β ∈N

(v) Ψα,β(χ,ψ, s, t) = (1 − ψ)Ψα,β+1(χ,ψ, s, t)

(vi) c j+1,βΓ
α,β
i, j+1(χ,ψ) = dβΓ

α,β+1
i, j (χ,ψ)

(vii) c j+1,β = ci,β+1 + φβ, |φβ| ≦ β1 < ∞ and c0,β = 0

(viii) dβ →∞,
dβ+1

dβ
→∞ and dβ , 0, ∀ β ∈N.
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We now define Lα,β(1(s, t);χ,ψ) as the sequence of linear operators obtained from the composition of the MKZ
operators for two variables and sequences of functions, as follows:

Lα,β(1(s, t);χ,ψ) =
(
1 + 1α,β(χ,ψ)

)
Mα,β(1(s, t);χ,ψ)

(
χ,ψ ∈ I; 1 ∈ C(I)

)
, (13)

where the sequence (1α,β) is specified by (3) with

qα,β =


1 (α = k2, β = ℓ2; k, ℓ ∈N)

0 (elsewhere).

We then evaluate the positive linear operators Lα,β(1i(s, t);χ,ψ) for each values of i = 0, 1, 2, 3, which are given by:

Lα,β(10;χ,ψ) =
(
1 + 1χ,ψ(χ,ψ)

)
Mα,β(1;χ,ψ)

=
(
1 + 1α,β(χ,ψ)

)
· 1,

Lα,β(11;χ,ψ) =
(
1 + 1α,β(χ,ψ)

)
Mα,β(11;χ,ψ)

=
(
1 + 1α,β(χ,ψ)

) χ
1 − χ

,

Lα,β(12;χ,ψ) =
(
1 + 1α,β(χ,ψ)

)
Mα,β(12;χ,ψ)

=
(
1 + 1α,β(χ,ψ)

) ψ

1 − ψ

and

Lα,β(13;χ,ψ) =
(
1 + 1α,β(χ,ψ)

)
Mα,β(13;χ,ψ)

=
(
1 + 1α,β(χ,ψ)

) χ2

1 − χ2

bα+1

bα
+

ψ2

1 − ψ2

dβ+1

dβ
+

χ
1 − χ

φα
bα
+

ψ

1 − ψ
ξβ
dβ
,

where

Mα,β(1;χ,ψ) = 1, Mα,β

( s
1 − s

;χ,ψ
)
=

χ
1 − χ

, Mα,β

( t
1 − t

;χ,ψ
)
=

ψ

1 − ψ
,

and

Mα,β

{( s
1 − s

)2
+

( t
1 − t

)2
;χ,ψ

}
=

χ2

1 − χ2

bα+1

bα
+

ψ2

1 − ψ2

dβ+1

dβ
+

χ
1 − χ

φα
bα
+

ψ

1 − ψ
ξβ
dβ
.

Since

1α,β → 1 = 0 (equi − statDP) on I,

for the sequence (1α,β), as specified in Example 1.8, it follows that

Lα,β(1i(s, t);χ,ψ)→ 1i(χ,ψ) (equi − statDP) on I,

for each value of i = 0, 1, 2, 3. Thus, according to Theorem 2.4, it can be observed that

Lα,β(1(s, t);χ,ψ)→ 1(χ,ψ) (equi − statDP) on I

for any f ∈ C(I).
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It is observed that the sequence (1α,β) defined in (3) does not converge statistically and uniformly to
1 = 0 over I using the DP-method. As a result, the findings of Srivastava et al. [36], Demirci et al. [9], and
Ünver and Orhan [48] are not applicable to the operators

(
Lα,β(1;χ,ψ)

)
introduced in (13). Moreover, since

(1α,β) fails to converge uniformly to 1 = 0 in the conventional sense on I, the classical Korovkin’s theorem
[18] is also inapplicable. Therefore, the operators in (13) satisfy Theorem 2.4. We use MATLAB to illustrate
the behavior of Lα,β(1i;χ,ψ), for i = 0, 1, 2, 3 in Figures 1 to 4.
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Figure 1: Behavior of the operator Lα,β(10;χ,ψ)

In Figure 1, the operator represents the simplest form, where the output is proportional to
(
1+1α,β(χ,ψ)

)
.

The plot will show the effect of 1α,β(χ,ψ) on the constant function. The shape of the surface indicates how
the perturbation caused by 1α,β affects the identity operator.
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Figure 2: Behavior of the operator Lα,β(11;χ,ψ)

In Figure 2, the operator involves the term χ
1−χ , which increases rapidly as χ approaches 1. The plot will
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exhibit rapid growth near χ = 1, showcasing how the function blows up near this boundary. It provides
insight into the operator’s behavior near critical values of χ.
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Figure 3: Behavior of the operator Lα,β(12;χ,ψ)

In Figure 3, the operator behaves similarly to Figure 2, but with respect to ψ. The term ψ
1−ψ dominates

as ψ → 1. The plot displays a similar rapid increase near ψ = 1, showing how the operator behaves near
the boundary.
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Figure 4: Behavior of the operator Lα,β(13;χ,ψ)

The Figure 4, is the most complex operator, involving both quadratic terms χ2

1−χ2 and ψ2

1−ψ2 , along with
linear terms. The plot has a more intricate shape, with noticeable growth near both χ = 1 and ψ = 1. The
combination of quadratic and linear terms will influence the curvature of the surface.

Overall, these plots demonstrate how the positive linear operators behave as a function of χ and ψ,
especially in regions where χ and ψ approach critical values (close to 1). The rapid growth in these regions
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suggests that the operators exhibit significant sensitivity near the boundaries of the domain, which may be
crucial for understanding their convergence properties as 1α,β tends to 1(χ,ψ).

4. Rate of Equi-Statistical Convergence

We aim to explore the rates of (equi − statDP)-method for sequences of positive linear operators, with a
focus on the modulus of continuity.

Definition 4.1. Let (aα,β) be a positive, non-increasing sequence. If for each ϵ > 0,

lim
0<s,t→R−

1
aα,βq(s, t)

∑
α,β∈Kα,β(χ,ψ;ϵ)

qα,βsαtβ = 0 (uniformly) in χ,ψ ∈ I,

then the sequence (1α,β) converges equi-statistically to 1 using the DP- method, with a rate of convergence of o(aα,β).
We denote this as

1α,β − 1 = o(aα,β) (equi − statDP) on I.

Prior to presenting the theorem on rates of equi-statistical convergence, we will first deduce Lemma 4.2.

Lemma 4.2. Let (1α,β) and (hα,β) be sequences in C(I) such that

1α,β(χ,ψ) − 1(χ,ψ) = o(uα,β) (equi − statDP) on I

and

hα,β(χ,ψ) − h(χ,ψ) = o(vα,β) (equi − statDP) on I.

As a result, each of the following statements is true:

(i) [1α,β(χ,ψ) + hα,β(χ,ψ)] − [1(χ,ψ) + h(χ,ψ)] = o(wα,β) (equi − statDP) on I

(ii) [1α,β(χ,ψ) − 1(χ,ψ)][hα,β(χ,ψ) − h(χ,ψ)] = o(uα,βvα,β) (equi − statDP) on I

(iii) λ[1α,β(χ,ψ) − 1(χ,ψ)] = o(uα,β) (equi − statDP) on I for any scalar λ

(iv)
√
|1α,β(χ,ψ) − 1(χ,ψ)| = o(vα,β) (equi − statDP) on I,

where

wα,β = max{uα,β, vα,β}. (14)

Proof. To prove assertion (i), let χ,ψ ∈ I and ϵ > 0. The following sets are defined in the following way:

Aα,β(χ,ψ; ϵ) =
∣∣∣∣{α ≦ ηα, β ≦ ηβ and |(1α,β + hα,β)(χ,ψ) − (1 + h)(χ,ψ)| ≧ ϵ

}∣∣∣∣ ,
A0;α,β(χ,ψ; ϵ) =

∣∣∣∣∣{α ≦ ηα, β ≦ ηβ and |1α,β(χ,ψ) − 1(χ,ψ)| ≧
ϵ
2

}∣∣∣∣∣
and

A1;α,β(χ,ψ; ϵ) =
∣∣∣∣∣{α ≦ ηα, β ≦ ηβ and |hα,β(χ,ψ) − h(χ,ψ)| ≧

ϵ
2

}∣∣∣∣∣ .
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Clearly, this implies that

Aα,β(χ,ψ; ϵ) ≦ A0;α,β(χ,ψ; ϵ) + A1;α,β(χ,ψ; ϵ).

Furthermore, given that
wα,β = max{uα,β, vα,β},

and under the condition (6) of Theorem 2.4, we consequently obtain

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈Aα,β(χ,ψ;ϵ)

qαβχαψβ ≦ lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈A0;α,β(χ,ψ;ϵ)

qαβχαψβ

+ lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈A1;α,β(χ,ψ;ϵ)

qαβχαψβ.

Moreover, considering condition (7) of Theorem 2.4, we have

lim
0<χ,ψ→R−

1
q(χ,ψ)

∑
α,β∈Aα,β(χ,ψ;ϵ)

qαβχαψβ = 0.

This completes the proof for condition (i). Conditions (ii) to (iv) are analogous to condition (i), so their
details are omitted. Hence, the proof of Lemma 4.2 is complete.

We now revisit the modulus of continuity ω(1, µ) for a function 1 ∈ C(I), which is defined as follows:

ω(1, µ) = sup
χ,ψ,s,t∈I

{
|1(s, t) − 1(χ,ψ)| : |(s, t) − (χ,ψ)| ≦ µ

}
, and

demonstrate the following theorem.

Theorem 4.3. Let
(
Lα,β(1(s, t);χ,ψ)

)
: C(I) → C(I) denote a sequence of positive linear operators. Let us assume

that the following conditions hold:

(i) Lα,β(1;χ,ψ) − 1 = o(uα,β) (equi − statDP) on I;

(ii) ω(1, µα,β) = o(vα,β) (equi − statDP) on I,

where

µα,β(χ,ψ) =
√
Lα,β(ϑ2;χ,ψ) with ϑ(χ,ψ) =

(
s

1 − s
−

χ
1 − ψ

)2

+

(
t

1 − t
−

ψ

1 − ψ

)2

.

Then, for 1 ∈ C(I), the following assertion holds:

Lα,β(1(s, t);χ,ψ) − 1(χ,ψ) = o(wα,β) (equi − statDP) on I, (15)

where wα,β is defined in (14).

Proof. : Let 1 ∈ C(I) and χ,ψ ∈ I. Thus, we have:

|Lα,β(1(s, t);χ,ψ) − 1(χ,ψ)| ≦M|Lα,β(1;χ,ψ) − 1| +
(
Lα,β(1;χ,ψ) +

√
Lα,β(1;χ,ψ)

)
ω(1, µα,β),

where

M = ∥1∥C[I].

This clearly results in

|Lα,β(1;χ,ψ) − 1(χ,ψ)| ≦M|Lα,β(1;χ,ψ) − 1| + 2ω(1, µα,β)

+ ω(1, µα,β)|Lα,β(1;χ,ψ) − 1| + ω(1, µα,β)
√
|Lα,β(1;χ,ψ) − 1|. (16)

Given the conditions (i) and (ii) of Theorem 4.3 and applying Lemma 4.2, the final inequality in (16)
allows us to derive the conclusion in (15) of Theorem 4.3. Consequently, Theorem 4.3 is proved.
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5. Conclusion and Future Scope

In this section, we provide several additional remarks and observations related to the various results
we have established.

Remark 5.1. Let (1α,β)α,β∈N be the sequence of functions provided in Example 1.8. Then, since

1α,β → 1 (equi − statDP) on I,

we immediately have

Lα,β(1i;χ,ψ)→ 1i(χ,ψ) (equi − statDP) on
[
0,

1
2

]
×

[
0,

1
2

]
(i = 0, 1, 2, 3). (17)

Thus, by applying Theorem 2.4, we obtain

Lα,β(1;χ,ψ)→ 1i(χ,ψ) (equi − statDP) on I (18)

for all 1 ∈ C(I). Additionally, since (1α,β) does not converge uniformly statistically to 1 = 0 on I using the DP-
method, and is not simply uniformly convergent, the classical Korovkin-type theorem does not apply to the operator
described in (13). Therefore, these observations indicate that Theorem 2.4 provides a significant generalization of
several well-established results (see [18], [26], and [27]).

Remark 5.2. By substituting (ζα,0) = 0 and (ηα,0) = α into our main Theorem 2.4, we recover the previously
published results by Srivastava et al. [36], Demirci et al. [9], and Ünver and Orhan [48]. In this regard, Theorem
2.4 can be considered a significant generalization of these earlier results (see [9] and [48]).

Remark 5.3. In this study, we introduced the concept of statistical convergence for functions of two variables using
the DP-technique. We defined several new concepts and established new theorems based on these definitions. We
also estimated the rates of equi-statistical convergence for functions of two variables under our proposed DP-method
applied to sequences of positive linear operators.

Inspired by the work of Srivastava et al. [36] and Demirci et al. [9], we highlight the potential for developing
Korovkin-type approximation theorems in both sequence spaces and probability spaces. Moreover, in light of the
findings by Paikray et al. [26] and Saini and Raj [30], we encourage further research into fuzzy approximation
theorems. Additionally, the recent contributions of Srivastava et al. [34, 35] underscore the scope for advancing
Korovkin-type theorems through the formulation of a new class in double sequence spaces and the introduction of the
statistical derivative of deferred weighted summability means for positive linear operators.
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[31] K. Saini, K. Raj and M. Mursaleen, Deferred Cesàro and deferred Euler equi-statistical convergence and its applications to Korovkin-type

approximation theorem, Int. J. Gen. Syst. 50 (2021), 567–579.
[32] H. M. Srivastava, E. Aljimi and B. Hazarika, Statistical weighted (Nλ, p, q)(Eλ, 1)A-summability with application to Korovkin’s type

approximation theorem, Bull. Sci. Math. 178 (2022), Article 103146, 1–21.
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[48] M. Ünver and C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numer.

Funct. Anal. Optim. 40 (2019), 535–547.


