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Some Fredholm left invertible completion problems for operator
matrices

Jiong Dong?

*Department of Mathematics, Changzhi University, Changzhi, 046011, China

Abstract. The structure of the weak approximate spectrum of two-by-two upper triangular operator
matrix

A C
v 5 )
acting on a Hilbert space H & K is studied. First, we characterize the relationship between the spectrum
0(Mc) and the weak approximate spectrum o, (Mc) and give the equivalent conditions that make

0,,(Mc) = o(Mc)
and
0, (Mc) = 0,,(A) Vo, (B)

according to the properties that the operators A and B satisfy. Then, we study the weak property (w;) of
M and explore the relationship between o(Mc) = ¢,,(Mc) and the weak property (w:1) of Mc.

1. Introduction

In the study of linear operators theory, it is a popular method and idea to analyze the properties of linear
operators by studying operator matrices. In fact, for a linear operator T from an infinite complex separable

Hilbert space H to another infinite complex separable Hilbert space K, if H and K can be decomposed into

the direct sum of Hilbert spaces H; and H, and the direct sum of Hilbert spaces K7 and K3, respectively,
then T can naturally be written as the following operator matrix:

T11 T12 7'{1 (]<1
T= : - .
( Tn T H, K>
For this T, if the range of the restriction of T to the subspace H; is contained in K3, then To; = 0. Now, T
is an upper triangular operator matrix. In recent years, researchers have characterized operator matrices
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from various aspects, such as the closedness (see [12]), the Fredholmness (see [11]), the Weylness (see [18]),
the invertibility (see [13]), the Weyl type theorems (see [4]), the spectral problems (see [2, 15]) and so on.
For these investigations, the most common problem is the exploration of completion problems for operator
matrices. The completion problems for operator matrices refer to studying the properties of the known
operator entries in the operator matrix such that it has given properties when adding unknown the operator
entries.

This paper focuses on the completion problem of two-by-two upper triangular operator matrices. Let
B(H,K) be the set of all bounded linear operators from H to K. It is abbreviated as B(H) or B(K) if
‘H = K. For given A € B(H) and B € B(K), we denote by Mc a two-by-two upper triangular operator

matrix of the following form:
Mo = A C\ [(H . H
c7\o B\ % K )

where C € B(K,H). If C = 0, then we write Mc as My. Recently, many published articles focus on the
completion problems for Mc. In 2009, Dou et al. characterize the closedness of the range for M (see [8]).
Since then, Hai and Chen explore the consistent invertibility (see [9]), Yang and Cao characterize the upper
semi-Fredholmness (see [19]), Dong and Cao investigate the consistency in Fredholm and index (see [7]),
and so on. In this paper, we will consider some problems of the left invertibility for Mc.

2. Preparations

Let C and IN be the set of complex numbers and the set of natural numbers, respectively. Let T € B(H, K).
We use N(T), R(T) and T* to denote the null space, the range and the adjoint of T, respectively. Let
n(T) £ dimN(T) and d(T) = codimR(T). If R(T) is closed, then, according to the values of n(T) and d(T) of
T, the following operators can be defined:

(1) upper semi-Fredholm operator: n(T) < oo;

(2) lower semi-Fredholm operator: d(T) < oo;

(3) semi-Fredholm operator: n(T) < oo or d(T) < oo;

(4) Fredholm operator: n(T) < oo and d(T) < oo.

If T is semi-Fredholm, then T has the index ind(T) = n(T) — d(T), and when ind(T) = 0, we call T Weyl.
If a Weyl operator T with a finite ascent asc(T) or a finite descent des(T), then we call T Browder, where
asc(T) = inf{n € N : N(T") = N(T"*1)}, des(T) = inf{n € N : R(T") = R(T™*")}. If n(T) = 0 and R(T) is closed,
then T is left invertible; if d(T) = 0, then T is right invertible; if n(T) = d(T) = 0, then the T is invertible.
Obviously, d(T) = 0 implies that R(T) is closed. In fact, if d(T) < oo, then R(T) is closed (see [1, Corollary
1.15]). Let o(T) be the normal spectrum of T:

o(T) = {A € C: T — Al is not invertible}.
Similarly defined, many local spectra of T can be given as follows:
0x(T) ={A € C: T - Alis not adj.(y},

wherex € {a,b,w, ¢, SE,SF,, SF_}and adj.) = Fredholm, adj.q) = Weyl, adj.x) = Browder, adj.;) = left invertible,
adj.;,) = upper semi-Fredholm, adj.(; ) = lower semi-Fredholm, adj.;) = semi-Fredholm. In addition,

0ea(T) = 05 (T) U{A € C : n(T = AI) > d(T — AI))

and
Op(T) = 0(T)U{A € C : n(T — AI) > d(T — AD)}

are called the essential approximate spectrum of T and the weak essential approximate spectrum of T,
respectively. We call
0,(T) ={A € C: T - Alis not Fredholm left invertible},
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the weak approximate spectrum of T. For 0_(T), we denote by p_(T) the complementary set of o3(T), where
x € {a,e, Fa,SF,SF,,SF_}.

Let M be a subspace of H. Then we denote by M* and T|, the orthogonal complement of M and the
restriction of the operator T to the subspace M, respectively. Let M and N be two closed subspaces of H.
Then we denote by M & N and M e N the orthogonal sum and the orthogonal difference of M and N,
where Me N = M N N*. Let Q be a subset of C. Then we denote by isoQ) the set of isolated points of Q.

For the convenience of expression, we define the FLI operator.

Definition 2.1. Let T € B(H, K). If T is Fredholm with n(T) = 0, then we call T a Fredholm left invertible operator,
abbreviated a FLI operator.

Next, we list some results that are useful in subsequent contents. The following conclusion can be gotten
by the Lemma 2.3 in [19].

Lemma 2.2. Let T € B(H,K). Then:

(1) if M € B(H) is invertible, then R(TM) is closed if and only if R(T) is closed, moreover, n(TM) = n(T) and
d(TM) = d(T);

(2) if N € B(K) is invertible, then R(NT) is closed if and only if R(T) is closed, moreover, n(NT) = n(T) and
A(NT) = d(T).

For My, it is easy to prove that R(M)) is closed if and only if R(A) and R(B) are closed, moreover,
n(Mp) = n(A) + n(B) and d(My) = d(A) + d(B). For Mc € B(H & K), it can be written in the following form:

oA C\o(n O)[Ix C)(A O
c“{o B/ | 0o B 0 Ix J\ 0 Ix |’

. . . T
where I3, and I are identity operators on H and K, respectively, the operator matrix H

0
on H @ K, some Fredholm properties of M¢ can be derived from [1, Remark 1.54] and [17, Theorem 13.1].

C ) isinvertible
Iy

Lemma 2.3. Let A € B(H) and B € B(K). Then, for any C € B(K, H):
(1) if Mc is upper semi-Fredholm, then A is upper semi-Fredholm;
(2) if Mc is lower semi-Fredholm, then B is lower semi-Fredholm;
(3) if Mc is Fredholm, then A is upper semi-Fredholm and B is lower semi-Fredholm;
(4) if A and B are Fredholm, then Mc is Fredholm and

ind(Mc) = ind(A) + ind(B);
(5) if Mc is Fredholm, then A is Fredholm if and only if B is Fredholm.

From [10, Proposition 2.1], we know n(A) < n(Mc) < n(A) + n(B) and d(B) < d(Mc) < d(A) + d(B) for any
C € B(K,H). So, we have:

Corollary 2.4. Let A € B(H) and B € B(K). Then, for any C € B(K, H), we have:
(1) if Mc is left invertible, then A is left invertible;
(2) if Mc is right invertible, then B is right invertible;
(3) if A and B are left invertible, then Mc is left invertible;
(4) if A and B are invertible, then Mc is invertible;
(5) if Mc is invertible, then A is invertible if and only if B is invertible.

Lemma 2.5. Let A € B(H), B € B(K) and C € B(K, H). If Clnw,) is injective from N(B) into N(A*), then n(A) = 0
if and only if n(Mc) = 0.
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Proof. From [10, Proposition 2.1], it is obvious that n(Mc) = 0 implies n(A) = 0. In addition, let ( ; ) €

N(Mc). Then Ax + Cy = 0 and By = 0, which shows y € N(B). So Ax = —Cy € R(A) N N(A*) = {0}. Dueto A
and C|n¢g) are injective, it follows x = y = 0. Thus n(Mc) =0. O

In this paper, we will explore the three questions in turn.
Question 1. What properties do A and B satisfy for

o(Mc) = 0,,(Mc)

to be true for any C € B(K, H)?
Question 2. What properties do A and B satisfy for

0, (Mc) = 0,,(A) Vo, (B)

to be true for any C € B(K, H)?
Question 3. Is there a relationship between o¢(Mc) = 7,,(Mc) and the weak property (w;) for Mc?

3. The structure of weak approximate spectrum o, (Mc)

If A and B are unconditional, then, for any C € B(K,H), neither o(Mc) = 0,,(Mc) nor ¢, (Mc) =
0, (A) U o, (B) is necessarily true. We illustrate this with the following two examples.

Remark 3.1. Let A € B(H) and B € B(K). Then there exists some C € B(K, H) such that 6(Mc) # a,,(Mc).
Example 3.2. Let A, B, C € B({?) be defined by
A(xll X2, X3, ) = (0/ X1, 0/ X2, 0/ X3, )/
B(x1,x2,x3,-+) = (x2, X4, X6, ),
C(x1,x2,%3,-++) = (0,0,x1,0,x3,0,--).
0 B
By calculations, A is upper semi-Fredholm with n(A) = 0, B is lower semi-Fredholm with d(B) = 0 and A = B*.

If Mc is decomposed in the spaces from R(A*) ® N(A) @ R(B*) ® N(B) to R(A) ® N(A*) ® R(B) ® N(B*), we have the
following matrix form:

Let Mc = ( 4 c ) We can prove that Mc is Fredholm with n(Mc) = 0, but d(Mc) > 1.

AL 0 G G R(A") R(A)
-] 00 G G| N N(AY)
€1 0o 0 B o0 || RB) || RB)
00 0 0 N(B) N(BY)

Obviously, A1 and By are invertible. Thus, according to elementary transformation of matrices and Lemma 2.2, R(Mc)
is closed if and only if R(C4)(Cys = Cln)) is closed, moreover, n(Mc) = n(Cs) + n(A) and d(Mc) = d(Cs) + d(B). By
calculations, R(Cy) is closed, and n(Cy) = 0, d(C4) = 1. Thus, for this Mc, 0 € o(Mc) but 0 ¢ o,,(Mc), which shows
o(Mc) # 0, (Mc).

Remark 3.3. Let A € B(H) and B € B(K). Then there exists some C € B(K, H) such that

Or, (MC) # 0y, (A) Vo, (B)
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Example 3.4. Let A, B, C € B((?) be defined by
A(x1,x2,x3,-++) = (0,x1, %2, X3, ),
B(x1,x2,x3,--+) = (0,0,x2, x3, X4, -+ ),

C(x1,x2,x3,-++) = (x1,0,0,0,---).

Let Mc = ( 13 g ) Then, by calculations, we have 0 ¢ o, (Mc), but 0 € ¢,,(B). Thus, for this Mc,

O, (MC) * Op, (A) U Op, (B)

From Remarks 3.1 and 3.3, it is natural to ask when o(Mc) = o,,(Mc) and ¢,,(Mc) = 0,,(A) U 0,,(B) can
be presented for any C € B(K, H). To answer the questions, we need to give some lemmas first.

Lemma 3.5. Assume that A € B(H) is left invertible and B € B(K) is lower semi-Fredholm. If d(A) = n(B) = oo
then there exists some C € B(K, H) such that Mc is FLI but not invertible.

Proof. We discuss it from two aspects: d(B) = 0 and d(B) > 0.

Case 1: d(B) =

Now, the operator B is right invertible. Take u; € N(A*) with [|p1|| = 1. Let & = span{u1} and let Cy; be
an isometric invertible operator from N(B) to N(A*) © &. We construct a C € B(K, H) as follows:

c—(C“ 0)'(N(B))_)(N(A*)68)
Lo o)\ RB) RA)®E |

It is obvious that C|yp) = Ci1 and Cy; is injective from N(B) into N(A*) © &. Thus, it follows from n(A) =
and Lemma 2.5 that n(M¢) =0
In addition, we can prove that R(Mc) is closed. Suppose

) (2) e
Yn Do

Ax, + Cyy — ug
By, — v

that is,

(n — o0).

Lety, = an + Bu(n =1,2,3,---), where {a,})”, € N(B) and {B,};7, € R(B"). Then, it follows from R(Cln()) €
N(A") and R(Clr:)) = {0} that {Ax,})”, and {Cy,} ", are Cauchy sequences, and then {a,}’ , is a Cauchy
sequence because Cy, = Cniau(n =1, 2 3 --)and C11 isinvertible. Moreover, since By, = Bﬁ,, n =1,23,---)
and Blr:) is invertible, it follows that {y,} , is a Cauchy sequence. Let y, — yo as n — oo. Since R(A) is
closed, there exists xg € H such that Ax, — Axgasn — co. Thus Axy + Cyo = up and Byy = vy, which shows
that R(Mc) is closed.

Next, we will prove d(Mc) = n(M¢) = 1. Take ( ; € N(Mp). Then x € N(A"). Let x = x; + x2, where
x1 € N(A)© Eand x; € & Now, Cj;x1 = C'x = =By € N(B) N R(B*) = {0}. Thus Cj,x; = 0 = B"y, which
implies x; = 0 and y = 0 because B is right invertible. So N(M¢) = span{( 362 )} Due to dim& = 1, it

follows that n(Mg) = dim& = 1.
Thus, the Mc is FLI but not invertible..
Case 2: d(B) > 0.
In this case, let C}; be an isometric invertible operator from N(B) to N(A") and let

5 5 (B)-(0)
0 0 R(B") R(A)
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Using the same method as in Case 1 above, we can get that R(Mc¢) is closed and n(Mc) = 0. Moreover, we
can prove 0 < d(Mc) < co. Infact, let( ; ) € N(M.). Then we have x € N(A*) and C'x = =By € N(B)NR(B"),

which implies x = 0 and y € N(B*). Thus N(M;) = {0} & N(B"). Due to d(Mc) = n(M¢) = n(B*) = d(B), we
have 0 < d(Mc) < . So, Mc is FLI but not invertible. [

It can be seen from the above proof of Case 1 that if d(B) = 0, the following conclusion can be obtained.

Corollary 3.6. Assume that A € B(H) is left invertible and B € B(K) is right invertible. If d(A) = n(B) = oo, then,
for any positive integer k, there exists some C € B(K, H) such that Mc is FLI but not invertible and d(Mc) = k.

Lemma 3.7. Assume that A € B(H) and B € B(K) are Fredholm. If n(A) = 0 and n(B) < d(A), then there exists
some C € B(K, H) such that Mc is FLI but not invertible.

Proof. Due to n(B) < d(A), it follows from [3, Corollary 2.5] that Mc is not invertible for any C € B(K, H).
Moreover, since A and B are Fredholm, it follows that Mc is Fredholm for any C € B(K, H). Next, we only
need to prove that n(Mc) = 0 for some C € B(K, H). If n(B) = 0, then it is obvious that n(Mc) = 0 for any
C e B(K,H). If n(B) > 0, let F be a closed subspace of N(A*) with dim¥ = n(B) and let N(A*) = F & F .
Then there exists an isometric invertible operator T from N(B) onto . Let

co(T OV (NGB 7
“lo o)\ rRB) RA)®N@A)OF |

From Lemma 2.5, we have n(Mc¢) = n(A) = 0. Thus M¢ is FLI but not invertible for this C. O

Lemma 3.8. Assume that A € B(H) and B € B(K) are Fredholm. If n(A) = 0, n(B) = d(A) and d(B) > 0, then
there exists some C € B(K, H) such that Mc is FLI but not invertible.

Proof. Due to d(B) > 0, it follows from [3, Corollary 2.5] that Mc is not invertible for any C € B(%, H). So,
if n(B) = 0, then Mc is FLI but not invertible for any C € B(K, H). If n(B) > 0, by the same method as the
Case 2 of Lemma 3.5, there exists some C € B(K, H) such that M is FLI but not invertible. [

Remark 3.9. In Lemma 3.8, the condition “d(B) > 0” is essential. In fact, if d(B) = 0, then Mc is Weyl for any
C € B(K,H). Now, if Mc is left invertible, then Mc is invertible.

From Lemmas 3.5, 3.7 and 3.8 and together with the Corollary 2.7 in [3], we can obtain the equivalent
conditions that make o(Mc¢) = g,,(Mc) for any C € B(K, H).

Theorem 3.10. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), o(Mc) = o,,(Mc) if and only
if the three sets S1(A, B), S2(A, B) and S3(A, B) are empty sets, where

S1(A,B) = {A € pa(A) N pg, (B) : d(A— AI) = n(B — Al) = oo;

Sa(A,B) = {A € p,,(A) N pe(B) : n(B — A) < d(A — AD);

S3(A,B) = {A € p,,(A) N pe(B) : n(B — AI) = d(A — Al), d(B — AI) > 0}.

Proof. From Lemmas 3.5, 3.7 and 3.8, we only need to prove the sufficiency. In fact, we only need to prove
d(Mc) € 0,,(Mc) for any C € B(K, H). Let Ay ¢ 0,,(Mc). Then Mc — Aol is Fredholm with n(M — A¢l) = 0,
which implies that A — Ayl is left invertible and B — Ayl is lower semi-Fredholm. Moreover, it follows from
the Corollary 2.7 in [3] that n(B — A¢l) < d(A — Apl). So, from Si(A, B) = S2(A, B) = S3(A, B) = 0, we can get
two cases.

Case 1: n(B— Agl) < d(A— Agl) = 0. In fact, this case cannot occur. Since B — Ayl is lower semi-Fredholm,
it follows from n(B — A¢l) < oo that B — A¢l is Fredholm, which, from Lemma 2.3, implies that A — Aol is
Fredholm because M¢ — Al is Fredholm. It contradicts the fact that d(A — Agl) = oo.

Case 2: n(B — A¢l) = d(A — Apl) < oo and d(B — Agl) = 0. In this case, we have that M¢ — Aol is Weyl. Thus
Mc — Aol is invertible because n(Mc — Agl) = 0, that is, Ay € 0(Mc). Thus o(Mc¢) € 0,,(Mc). O
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Example 3.11. Let A € B(¢?) and B € B((?) be the unilateral shift and the backward shift, respectively. That is,
A(xll X2, X3, ) = (O/ X1,X2,X3," " )/

B(x1,x0,x3,++) = (x2, X3, X4, ).

Then: (1) if A € pa(A) N py_(B), then n(B — Al) < co and d(A — AI) < 00. So S1(A,B) = 0. (2) If A € p,,(A) N pe(B),
then n(B — Al) = d(A — AI) but d(B — AI) = 0. Thus S(A,B) = S3(A,B) = 0. From Theorem 3.10, we have
o(Mc) = a,,(Mc) for any C € B(£?).

Next, we discuss g,,(Mc) = 0,,(A) U ,,(B) for any C € B(K, H). On the basis of Lemma 3.8 and Lemma
3.7, if n(B) > 0,then the following conclusions hold.

Lemma 3.12. Assume that A € B(H) and B € B(K) are Fredholm. If n(A) = 0. and 0 < n(B) < d(A), then there
exists some C € B(K, H) such that Mc is FLL. In particular, when n(B) < d(A), it can make the Mc non-invertible.

Proof. Suppose n(B) < d(A). Let My with dimM; = n(B) and N with dimN = d(A) — n(B) be the closed
subspaces of R(A)* such that R(A)* = M; & N. Suppose k = dimN. Take a set of linearly independent
vectors {ej, ey, -+ , e} of N(B)* and let M = spanfej, e, -+ ,ex}. Take a set of basis {u1,up, -+, i} in N
such that |lej|| = |lu;l] = 1(i = 1,2, , k). Define an isometric invertible operator Cq; from N(B) to M; and
define an operator Cx from M to N such that Cype; = u;(i = 1,2,--- k). Let H = My & N ® R(A) and
K = N(B) ® M® (N(B)* © M). Define a C as follows:

Ci 0 0 N(B) M
c={ 0 Cxn O :[ M ]—> N 1)
0 0 0 N(B)reM R(A)

Since A and B are Fredholm, it follows that M¢ is Fredholm. Moreover, since Cy; is injective from N(B)
into Mi(C N(A")) and Clng) = Ci1, it follows from n(A) = 0 and Lemma 2.5 that n(Mc) = 0. In addition,
due to {ei}i.‘:1 C N(B)* = R(B), for every e;, there exists v; such that B'v; = ¢;. Thus, it is easy to verify that

k
{( _ui' )} C N(My) because {ui}le C N(A"). Since R(M¢) is closed, we have d(Mc) = n(Mg) > 0. So, Mc
P i=1
is non-invertible.
Suppose n(B) = d(A). It can be seen from the above proof process that, at this time, M = N = {0}. Thus,

the operator C in Equation (1) can be written in the following form:

_( Cu 0) { N(B) R(A)*
C‘( 0 0)'(N(B)l ~\ r@ |
Using Lemma 2.5 again, we can know that Mcis FLI. O

From Lemma 3.12, we see that 0 € g,,(A) U g,,(B) but there exists C such that 0 ¢ o,,(Mc), which shows
that 0,,(A) U 0,,(B) € 0,,(Mc) is not always true for any C. We continue to explore the conditions under
which o, (Mc¢) = 0,,(A) U 0,,(B) is true for any C.

Theorem 3.13. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), 0,,(Mc) = 0,,(A) U, (B) if
and only if S1(A, B) = S4(A, B) = 0, where

S4(A,B) = {A € p,,(A) N pe(B) : 0 < n(B — AI) < d(A — AI)}.

Proof. Necessity. It is obvious that S4(4, B) = 0 from Lemma 3.12. Moreover, if there exists 1g € S1(A, B),
then there exists C € B(K, H) such that Ay ¢ o,,(Mc) from Lemma 3.5 but A € 0,,(A) U o, (B). It contradicts
0, (A) Vo, (B) = 0, (Mc).

Sufficiency. It is obvious that o, (Mc) € ¢,,(A) U 0,,(B) for any C € B(K, H). We only need to prove
0,(A)Uo,(B) € 0,(Mc) for any C € B(K,H). Let Ay ¢ 0,(Mc). Then Mc — Aol is Fredholm and
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n(Mc — Agl) = 0, which follows that A — Ayl is left invertible and B — Ayl is lower semi-Fredholm and
n(B — Agl) < d(A — Aol) by the Corollary 2.7 in [3]. Due to S1(4, B) = S4(A, B) = 0, it shows that A — Apl and
B — Ayl are Fredholm and n(B — Agl) = 0. So A¢ ¢ 0,,(A) U 0,,(B). Thus ¢,(A) U 0,,(B) = 0, (Mc) for any
CeB(K,H). O

Due to ¢,,(Mp) = 7,,(A) U 0,,(B), from Theorem 3.13, we can get the following conclusion.
Corollary 3.14. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H),
o(Mc) = 0,,(Mc) = 0,,(A) Vo, (B)
if and only if o(My) = 0,,(Mo) and S1(A, B) = S4(A,B) = 0.

Proof. Necessity. If C = 0, then o(My) = 0,,(Mp). From Theorem 3.13, we have S1(A4,B) = S4(A,B) = 0.
Sufficiency. We only need to prove ¢(Mc) C o,,(Mc). From Theorem 3.13, for any C € B(K, H), we have

0, (Mc) = 0,,(A) U 0,,(B) = 0,,(Mo) = 0(Mo) 2 (M)
Thus o(Mc) = 0,,(Mc) for any C € B(K, H). O
From Theorem 3.13 and Corollary 3.14, the following conclusion can be obtained immediately. Let
Si(A,B) ={A € p,,(A) N pe(B) : 0 < n(B = Al) = d(A — AI)}.

Corollary 3.15. Assume that A € B(H) and B € B(K). Then, for any C € B(K,H), o(Mc) = o,,(Mc) and
S,(A, B) = 0 if and only if the following statements hold:

(1) 6(Mo) = o, (My);

(2) 0,,(Mc¢) = 0,,(A) U, (B) for any C € B(K, H).

4. The weak property (w1) of Mc

For the FLI operators, one of its most common manifestations is the weak property (w1), which is a kind
of Weyl type theorem. Recently, various kinds of Weyl type theorems have been studied (see [6, 20, 22])
and the structural characteristics of various local spectra have been shown. When it comes to the weak
property (w1), we have to mention the property (w1) (see [16]). For T € B(H, K), we say that T has property
(w1) , if T satisfies
0a(T)\0ea(T) < 1200(T),

where 1o(T) = {A € isoo(T) : 0 < n(T — Al) < oo}. If T satisfies
5, (D, (T) < 7100(T),
then we say that T has weak property (w1). It is easy to get the following relation:
property (w1) = weak property (w1).
However, “weak property (w1)” does not necessarily follow “property (w1)”.

Example 4.1. Let A € B({?) be defined by A(x1,x2,x3,--) = (0,x1,0,x2,0,---) and let B € B(¢?) be defined by
A 0
0 B
0., (D\6,,,(T) = 0 and 1oo(T) = 0. Thus T has weak property (w1), but T has not property (w1).

B(x1,x2,x3,+-+) = (X2, X3,X4, ). Let T = . By calculations, we have 0,(T)\oea(T) = {A € C : |A] < 1},

In the following, we study the weak property (w1) of Mc. Let’s start with the following fact.

Remark 4.2. Even if My has weak property (w1), there still exist some C such that Mc has not weak property (w1).
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Example 4.3. . Let A, B, C € B(£?) be defined by
Ax1,x2,x3,-++) = (0,x1,0,x2,0,x3,--),
B(x1,x2,x3,-++) = (x2, X4, X6, -+ -),

C(x1/x2/ X3, ) = (0/ 0/ O/ O/ X3, Or Xs, O/ e )

Let My = ( 13 g ) and Mc = ( 13 g ) It is easy to verify that My has weak property (w1). In addition, by
(Mc) but

calculations, we have n(Mc) = 1 and d(Mc¢) = 2. Then ind(Mc¢) = —1. It follows that 0 € o,,(Mc)\o
0 ¢ 7190(Mc).

Fea

Next, we give some useful conclusions for further study for the weak property (w) of Mc.
Lemma 4.4. ([5, Proposition 6.9] and [17, Chapter V, Theorem 10.2]) Let T € B(H, K). Then we have
isoo(T)\o(T) = isoo(T)\ow(T) = o(T)\op(T).
Lemma 4.5. Let A € B(H), B € B(K) and C € B(K, H). Then Mc has weak property (w1) if and only if
05, (Mc)\oy,,(Mc) = a(Mc)\op(Mc).

Proof. Necessity. Let Ay € 0, (Mc)\o,,(Mc). Obviously, Ay € o(Mc). Since Mc has weak property (w1),
we have Ay € isoo(M¢). From Lemma 4.4, we know that Mc — Al is Browder. Thus Ay € o(Mc)\op(Mc).
So o,,(Mc)\o,,,(Mc) € o(Mc)\op(Mc). In addition, let py € o(Mc)\os(Mc). Then n(Mc — pol) > 0, which
shows py € 0,,(Mc). Combining with o,,,(Mc) C op(Mc), we get o € o, (Mc)\o,,(Mc). Thus, we have
o(Mc)\ow(Mc) € o, (Mc)\o,,, (Mc).

Sufficiency. Let yy € 0,,(Mc)\o,,(Mc). Due to ¢,,(Mc)\o,,,(Mc) = o(Mc)\os(Mc), it follows from Lemma
4.4 that g € mg(Mc). Thus Mc has weak property (w1). O

It is easy to prove that 0, (Mc) = 0,(Mc) if Mc has weak property (w1). From Lemma 4.5, we can get the
following conclusion.

Corollary 4.6. Let A € B(H), B € B(K)and C € B(K, H). Then Mc has weak property (w1) and o,,(Mc) = o(Mc)
if and only if
0, (Mc) = 00(Mc) = ap(Mc).

Proof. Necessity. Due to o,,(Mc) C 0,,(Mc) and 6,(Mc) € o(Mc), combining with o, (Mc) = o(Mc), it
follows from Lemma 4.5 that o,,(Mc) = 0p(Mc). Moreover, it is easy to get o,,(Mc) € 0u(Mc) € op(Mc).
Thus o,,,(Mc) = 0,(Mc) = 0p(Mc).

Sufficiency. For o,,(Mc) = o(Mc), we only prove o(Mc) € 0,,(Mc). Let A1 ¢ 0, (Mc). Then Ay ¢ o,,,(Mc)
and n(Mc — A1I) = 0. Due to o,,(Mc) = 0,(Mc), it shows d(Mc — A1I) = 0. Thus Mc — A4l is invertible.
So 0,,(Mc) = o6(Mc). Now, we have o, (Mc)\o,,,(Mc) = o(Mc)\op(Mc). From Lemma 4.5, Mc has weak
property (w1). [

From [21, Lemma 3], we can get the following result.

Lemma 4.7. Assume that A € B(H) is upper semi-Fredholm and B € B(K) is lower semi-Fredholm. If d(A) =
n(B) = co, then there exists some non-zero C € B(K, H) such that 0 € o, (Mc)\o,,,(Mc) and ind(Mc¢) < 0.

Theorem 4.8. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), Mc has weak property (w1) if
and only if My has weak property (w1) and Ss(A, B) = 0, where

S5(A,B) = {1 € py;, (A) N py,(B) : d(A — AI) = n(B — AI) = oo},
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Proof. Necessity. If C = 0, then My has weak property (w1). For Ss(A4, B), if there exists Ag € S5(A, B),
then from Lemma 4.7, there exists some non-zero C € B(K,H) such that Ay € o, (Mc)\o,, (Mc) and
ind(Mc — Aol) < 0. Since Mc has weak property (w1), it follows from Lemma 4.4 that A ¢ 0,(Mc), which
implies ind(Mc — Agl) = 0. It contradicts ind(Mc — AgI) < 0. So S5(A, B) = 0.

Sufficiency. Take an arbitrary C € B(K, H). Let yg € o,,(Mc)\o,,,(Mc). Then0 < n(Mc—pol) < 0o, and we
have that A — ol is upper semi-Fredholm and B — io! is lower semi-Fredholm. Since S5(A, B) = 0, according
to Lemma 2.3, we can only conclude that A — uol and B — ol are Fredholm. From g € o,,(Mc)\o,,,(Mc), we
have that

Fea

ind(Mc — pol) = ind(A — pol) +ind(B — pol) = ind(Myp — pol) <0

and
0 < n(Mc — pol) < n(A — pol) + n(B — pol) = n(Mop — pol).

So g € 0,,(Mo)\o,,(Mp). Since My has weak property (w1), it follows that o € 190(Mp). Then g € isoo(My).
At this point, we can prove g € isooc(Mc). In fact, there exists €; such that A — ul and B — ul are invertible
forany 0 < |u — pol < €1, which shows g € isoo(Mc) U p(Mc), where p(Mc) is the complement of o(Mc¢). We
can claim that pg € o(Mc). If not, from the Corollary 2.5 in [3], A — ol is left invertible and B — pol is right
invertible. It follows from [14, Theorem 5.31] that there exists €2(< €1) such thatind(A—pol) = ind(A—ul) =0
and ind(B — pol) = ind(B — ul) = 0 for any 0 < |y — uo| < €2. Thus A — uol and B — pol are invertible. It
contradicts i € 0(My). So g € isoo(Mc). Thus, we have g € moo(Mc). O

Next, we explore the relationship between o(Mc) = 0,,(Mc) and the weak property (w1) of Mc.

Remark 4.9. (1) Assume that A € B(H) and B € B(K). Even if, for any C € B(K, H), Mc has weak property
(1), it does not follow o(Mc) = o,,(Mc) for any C € B(K, H).

Example 4.10. Let A, B € B((?) be defined by
A(xlf X2,X3," " ) = (Or X1,X2,X3," " )r

B(x1,x2,x3,-++) =(0,0,x1,x2, %3, ++).

By calculations, My has weak property (w1) and Ss(A, B) = 0. Thus, from Theorem 4.8, it follows that Mc has weak
property (w1) for C € B((*). However, 6(Mo) # a,,(Mo).

(2) Assume that A € B(H) and B € B(K). Even if 6(Mc) = o,,(Mc) for any C € B(K, H), there exists some
C € B(K, H) such that Mc has not weak property (w1).

Example 4.11. Let A, B € B((?) be defined by

A(xll X2,X3,° " ) = (O/ 0/ 0/ X2, Or X3, Or o )r

B(x1,x2,x3, ) = (X2, X4, X, " *)-

By calculations, (M) = o,,(Mo) and S1(A, B) = Si(A,B) = 0. Thus, from Corollary 3.14, we have o(Mc¢) =
o,,(Mc) for C € B(*). However, S5(A, B) is not an empty set. Thus, from Theorem 4.8, there exists Cy € B((?) such
that Mc, has not weak property (w1).

Theorem 4.12. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), Mc has weak property (w1)
and o(My) = o,,(My) if and only if

(1) 6(Mc) = 0,,(Mc) for any C € B(K, H);

(2) My has weak property (w1);

(3) S6(A,B) = {A € py. (A) N pg, (B) : n(A = Al) >0, d(A - Al) = n(B — Al) = oo} = 0.
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Proof. Necessity. From Theorem 4.8, we know that My has weak property (w1) and Se(A, B) € S5(A, B) = 0.
Next, we prove that the conclusion (1) holds. First, due to S1(A, B) € Ss(A, B), it follows from Theorem 4.8
that S1(4, B) = 0. Second, let Ay € Sz2(A, B). Then, if n(B—Ayl) = 0, we have Ay ¢ g, (My); if n(B—ApI) > 0, we
have Ay € o,,(Mo)\o,,(Mp). Since 6(My) = o,,(Mop) and My has weak property (w1), it follows that My — Aol
is Browder either in the case n(B — A¢l) = 0 or in the case n(B — Agl) > 0. Thus A — Ayl is Weyl, which implies
d(A - Aol) = 0because n(A —Apl) = 0. It contradicts n(B — Apl) < d(A—Apl). So S2(A, B) = 0. Let up € S3(A, B).
Then we have that My — ol is Fredholm and ind(My — uol) < 0. Since o(My) = 0,,(Mo) and M, has weak
property (w1), it follows that My — ol is Weyl either in the case n(My — o) = 0 or in the case n(My — uol) > 0,
which contradicts ind(My — Aol) < 0. So S3(A, B) = 0. From Theorem 3.10, we know o(Mc) = o,,(Mc) for
any C € B(K, H).

Sufficiency. In the condition (1), let C = 0, then c(My) = 0,,(Mo). Moreover, from Theorem 4.8, we only
need to verify S5(A, B) = 0 to prove that M¢ has weak property (w1) for any C € B(K, H). Let vy € Ss5(A, B).
From the condition (3), it follows n(A — vol) = 0, which shows vy € S1(A, B). It contradicts S;1(A, B) = 0. So
S5(A, B) = 0. This completes the proof. [J

Lemma 4.13. Assume that A € B(H) and B € B(K). If My has weak property (w1) and o(My) = o,,(My), then
SZ(A/ B) = 83(A/ B) =0.

Proof. Let A € §3(A, B)US3(A, B). Then My — Al is Fredholm and ind(M, — Al) < 0, which shows A ¢ ¢, (M)
or A € 0,,(Mo)\o,,(Mp). Since My has weak property (w1) and o(My) = o,,(Mp), it follows that My — Al is
Browder. So A — Al and B — Al are Browder. Due to n(A — AI) = 0, it shows that A — Al is invertible. If
A € 83(A, B), then it contradicts n(B — AI) < d(A — Al). If A € S3(A, B), then it contradicts d(B — AI) > 0
because d(B — AI) = n(B — AI) = d(A — AI). So S2(A,B)US3(A,B)=0. O

Due to S1(4, B) € Ss(A, B), it follows from Theorems 3.10 and 4.8 and Lemma 4.13 that the following
corollary holds.

Theorem 4.14. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), Mc has weak property (w1)
and o(Mc) = o,,(Mc) if and only if

(1) o(My) = o, (Mo);

(2) My has weak property (w1);

(3) S5(A, B) = 0.

From Corollary 4.6 and Theorem 4.14, we have the following conclusion.

Corollary 4.15. Assume that A € B(H) and B € B(K). Then, for any C € B(K, H), Mc has weak property (w1)
and o(Mc) = 0,(Mc) if and only if o,,,(Mo) = 0s(Mo) and S5(A, B) = 0.
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