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Available at: http://www.pmf.ni.ac.rs/filomat

Some Fredholm left invertible completion problems for operator
matrices
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Abstract. The structure of the weak approximate spectrum of two-by-two upper triangular operator
matrix

MC =

(
A C
0 B

)
acting on a Hilbert space H ⊕ K is studied. First, we characterize the relationship between the spectrum
σ(MC) and the weak approximate spectrum σFa (MC) and give the equivalent conditions that make

σFa (MC) = σ(MC)

and
σFa (MC) = σFa (A) ∪ σFa (B)

according to the properties that the operators A and B satisfy. Then, we study the weak property (ω1) of
MC and explore the relationship between σ(MC) = σFa (MC) and the weak property (ω1) of MC.

1. Introduction

In the study of linear operators theory, it is a popular method and idea to analyze the properties of linear
operators by studying operator matrices. In fact, for a linear operator T from an infinite complex separable
Hilbert spaceH to another infinite complex separable Hilbert spaceK , ifH andK can be decomposed into
the direct sum of Hilbert spaces H1 and H2 and the direct sum of Hilbert spaces K1 and K2, respectively,
then T can naturally be written as the following operator matrix:

T =
(

T11 T12
T21 T22

)
:
(
H1
H2

)
→

(
K1
K2

)
.

For this T, if the range of the restriction of T to the subspace H1 is contained in K1, then T21 = 0. Now, T
is an upper triangular operator matrix. In recent years, researchers have characterized operator matrices
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from various aspects, such as the closedness (see [12]), the Fredholmness (see [11]), the Weylness (see [18]),
the invertibility (see [13]), the Weyl type theorems (see [4]), the spectral problems (see [2, 15]) and so on.
For these investigations, the most common problem is the exploration of completion problems for operator
matrices. The completion problems for operator matrices refer to studying the properties of the known
operator entries in the operator matrix such that it has given properties when adding unknown the operator
entries.

This paper focuses on the completion problem of two-by-two upper triangular operator matrices. Let
B(H ,K ) be the set of all bounded linear operators from H to K . It is abbreviated as B(H) or B(K ) if
H = K . For given A ∈ B(H) and B ∈ B(K ), we denote by MC a two-by-two upper triangular operator
matrix of the following form:

MC =

(
A C
0 B

)
:
(
H

K

)
→

(
H

K

)
,

where C ∈ B(K ,H). If C = 0, then we write MC as M0. Recently, many published articles focus on the
completion problems for MC. In 2009, Dou et al. characterize the closedness of the range for MC (see [8]).
Since then, Hai and Chen explore the consistent invertibility (see [9]), Yang and Cao characterize the upper
semi-Fredholmness (see [19]), Dong and Cao investigate the consistency in Fredholm and index (see [7]),
and so on. In this paper, we will consider some problems of the left invertibility for MC.

2. Preparations

LetC andNbe the set of complex numbers and the set of natural numbers, respectively. Let T ∈ B(H ,K ).
We use N(T), R(T) and T∗ to denote the null space, the range and the adjoint of T, respectively. Let
n(T) ≜ dimN(T) and d(T) ≜ codimR(T). If R(T) is closed, then, according to the values of n(T) and d(T) of
T, the following operators can be defined:

(1) upper semi-Fredholm operator: n(T) < ∞;
(2) lower semi-Fredholm operator: d(T) < ∞;
(3) semi-Fredholm operator: n(T) < ∞ or d(T) < ∞;
(4) Fredholm operator: n(T) < ∞ and d(T) < ∞.

If T is semi-Fredholm, then T has the index ind(T) = n(T) − d(T), and when ind(T) = 0, we call T Weyl.
If a Weyl operator T with a finite ascent asc(T) or a finite descent des(T), then we call T Browder, where
asc(T) = inf{n ∈ N : N(Tn) = N(Tn+1)}, des(T) = inf{n ∈ N : R(Tn) = R(Tn+1)}. If n(T) = 0 and R(T) is closed,
then T is left invertible; if d(T) = 0, then T is right invertible; if n(T) = d(T) = 0, then the T is invertible.
Obviously, d(T) = 0 implies that R(T) is closed. In fact, if d(T) < ∞, then R(T) is closed (see [1, Corollary
1.15]). Let σ(T) be the normal spectrum of T:

σ(T) = {λ ∈ C : T − λI is not invertible}.

Similarly defined, many local spectra of T can be given as follows:

σx(T) = {λ ∈ C : T − λI is not adj.(x)},

where x ∈ {a, b,w, e,SF,SF+,SF−} and adj.(e) ≜ Fredholm, adj.(w) ≜Weyl, adj.(b) ≜ Browder, adj.(a) ≜ left invertible,
adj.(SF+ ) ≜ upper semi-Fredholm, adj.(SF− ) ≜ lower semi-Fredholm, adj.(SF) ≜ semi-Fredholm. In addition,

σea(T) = σSF+
(T) ∪ {λ ∈ C : n(T − λI) > d(T − λI)}

and
σFea (T) = σe(T) ∪ {λ ∈ C : n(T − λI) > d(T − λI)}

are called the essential approximate spectrum of T and the weak essential approximate spectrum of T,
respectively. We call

σFa (T) = {λ ∈ C : T − λI is not Fredholm left invertible},
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the weak approximate spectrum of T. For σx (T), we denote by ρx (T) the complementary set of σx(T), where
x ∈ {a, e,Fa,SF,SF+,SF−}.

LetM be a subspace ofH . Then we denote byM⊥ and T|M the orthogonal complement ofM and the
restriction of the operator T to the subspaceM, respectively. LetM and N be two closed subspaces ofH .
Then we denote by M⊕N and M⊖N the orthogonal sum and the orthogonal difference of M and N ,
whereM⊖N =M∩N⊥. Let Ω be a subset of C. Then we denote by isoΩ the set of isolated points of Ω.

For the convenience of expression, we define the FLI operator.

Definition 2.1. Let T ∈ B(H ,K ). If T is Fredholm with n(T) = 0, then we call T a Fredholm left invertible operator,
abbreviated a FLI operator.

Next, we list some results that are useful in subsequent contents. The following conclusion can be gotten
by the Lemma 2.3 in [19].

Lemma 2.2. Let T ∈ B(H ,K ). Then:
(1) if M ∈ B(H) is invertible, then R(TM) is closed if and only if R(T) is closed, moreover, n(TM) = n(T) and

d(TM) = d(T);
(2) if N ∈ B(K ) is invertible, then R(NT) is closed if and only if R(T) is closed, moreover, n(NT) = n(T) and

d(NT) = d(T).

For M0, it is easy to prove that R(M0) is closed if and only if R(A) and R(B) are closed, moreover,
n(M0) = n(A) + n(B) and d(M0) = d(A) + d(B). For MC ∈ B(H ⊕K ), it can be written in the following form:

MC =

(
A C
0 B

)
=

(
IH 0
0 B

) (
IH C
0 IK

) (
A 0
0 IK

)
,

where IH and IK are identity operators onH andK , respectively, the operator matrix
(

IH C
0 IK

)
is invertible

onH ⊕K , some Fredholm properties of MC can be derived from [1, Remark 1.54] and [17, Theorem 13.1].

Lemma 2.3. Let A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H):
(1) if MC is upper semi-Fredholm, then A is upper semi-Fredholm;
(2) if MC is lower semi-Fredholm, then B is lower semi-Fredholm;
(3) if MC is Fredholm, then A is upper semi-Fredholm and B is lower semi-Fredholm;
(4) if A and B are Fredholm, then MC is Fredholm and

ind(MC) = ind(A) + ind(B);

(5) if MC is Fredholm, then A is Fredholm if and only if B is Fredholm.

From [10, Proposition 2.1], we know n(A) ≤ n(MC) ≤ n(A) + n(B) and d(B) ≤ d(MC) ≤ d(A) + d(B) for any
C ∈ B(K ,H). So, we have:

Corollary 2.4. Let A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), we have:
(1) if MC is left invertible, then A is left invertible;
(2) if MC is right invertible, then B is right invertible;
(3) if A and B are left invertible, then MC is left invertible;
(4) if A and B are invertible, then MC is invertible;
(5) if MC is invertible, then A is invertible if and only if B is invertible.

Lemma 2.5. Let A ∈ B(H), B ∈ B(K ) and C ∈ B(K ,H). If C|N(B) is injective from N(B) into N(A∗), then n(A) = 0
if and only if n(MC) = 0.
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Proof. From [10, Proposition 2.1], it is obvious that n(MC) = 0 implies n(A) = 0. In addition, let
(

x
y

)
∈

N(MC). Then Ax + Cy = 0 and By = 0, which shows y ∈ N(B). So Ax = −Cy ∈ R(A) ∩N(A∗) = {0}. Due to A
and C|N(B) are injective, it follows x = y = 0. Thus n(MC) = 0.

In this paper, we will explore the three questions in turn.
Question 1.What properties do A and B satisfy for

σ(MC) = σFa (MC)

to be true for any C ∈ B(K ,H)?
Question 2.What properties do A and B satisfy for

σFa (MC) = σFa (A) ∪ σFa (B)

to be true for any C ∈ B(K ,H)?
Question 3. Is there a relationship between σ(MC) = σFa (MC) and the weak property (ω1) for MC?

3. The structure of weak approximate spectrum σFa (MC)

If A and B are unconditional, then, for any C ∈ B(K ,H), neither σ(MC) = σFa (MC) nor σFa (MC) =
σFa (A) ∪ σFa (B) is necessarily true. We illustrate this with the following two examples.

Remark 3.1. Let A ∈ B(H) and B ∈ B(K ). Then there exists some C ∈ B(K ,H) such that σ(MC) , σFa (MC).

Example 3.2. Let A,B,C ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1, 0, x2, 0, x3, · · · ),

B(x1, x2, x3, · · · ) = (x2, x4, x6, · · · ),

C(x1, x2, x3, · · · ) = (0, 0, x1, 0, x3, 0, · · · ).

Let MC =

(
A C
0 B

)
. We can prove that MC is Fredholm with n(MC) = 0, but d(MC) > 1.

By calculations, A is upper semi-Fredholm with n(A) = 0, B is lower semi-Fredholm with d(B) = 0 and A = B∗.
If MC is decomposed in the spaces from R(A∗) ⊕N(A) ⊕ R(B∗) ⊕N(B) to R(A) ⊕N(A∗) ⊕ R(B) ⊕N(B∗), we have the
following matrix form:

MC =


A1 0 C1 C2
0 0 C3 C4
0 0 B1 0
0 0 0 0

 :


R(A∗)
N(A)
R(B∗)
N(B)

→


R(A)
N(A∗)
R(B)
N(B∗)

 .
Obviously, A1 and B1 are invertible. Thus, according to elementary transformation of matrices and Lemma 2.2, R(MC)
is closed if and only if R(C4)(C4 = C|N(B)) is closed, moreover, n(MC) = n(C4) + n(A) and d(MC) = d(C4) + d(B). By
calculations, R(C4) is closed, and n(C4) = 0, d(C4) = 1. Thus, for this MC, 0 ∈ σ(MC) but 0 < σFa (MC), which shows
σ(MC) , σFa (MC).

Remark 3.3. Let A ∈ B(H) and B ∈ B(K ). Then there exists some C ∈ B(K ,H) such that

σFa (MC) , σFa (A) ∪ σFa (B).
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Example 3.4. Let A,B,C ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

B(x1, x2, x3, · · · ) = (0, 0, x2, x3, x4, · · · ),

C(x1, x2, x3, · · · ) = (x1, 0, 0, 0, · · · ).

Let MC =

(
A C
0 B

)
. Then, by calculations, we have 0 < σFa (MC), but 0 ∈ σFa (B). Thus, for this MC,

σFa (MC) , σFa (A) ∪ σFa (B).

From Remarks 3.1 and 3.3, it is natural to ask when σ(MC) = σFa (MC) and σFa (MC) = σFa (A) ∪ σFa (B) can
be presented for any C ∈ B(K ,H). To answer the questions, we need to give some lemmas first.

Lemma 3.5. Assume that A ∈ B(H) is left invertible and B ∈ B(K ) is lower semi-Fredholm. If d(A) = n(B) = ∞,
then there exists some C ∈ B(K ,H) such that MC is FLI but not invertible.

Proof. We discuss it from two aspects: d(B) = 0 and d(B) > 0.
Case 1: d(B) = 0.
Now, the operator B is right invertible. Take µ1 ∈ N(A∗) with ∥µ1∥ = 1. Let E = span{µ1} and let C11 be

an isometric invertible operator from N(B) to N(A∗) ⊖ E. We construct a C ∈ B(K ,H) as follows:

C =
(

C11 0
0 0

)
:
(

N(B)
R(B∗)

)
→

(
N(A∗) ⊖ E
R(A) ⊕ E

)
.

It is obvious that C|N(B) = C11 and C11 is injective from N(B) into N(A∗) ⊖ E. Thus, it follows from n(A) = 0
and Lemma 2.5 that n(MC) = 0.

In addition, we can prove that R(MC) is closed. Suppose

MC

(
xn
yn

)
→

(
u0
v0

)
as n→∞,

that is, {
Axn + Cyn → u0

Byn → v0
(n→∞).

Let yn = αn + βn(n = 1, 2, 3, · · · ), where {αn}
∞

n=1 ⊆ N(B) and {βn}
∞

n=1 ⊆ R(B∗). Then, it follows from R(C|N(B)) ⊆
N(A∗) and R(C|R(B∗)) = {0} that {Axn}

∞

n=1 and {Cyn}
∞

n=1 are Cauchy sequences, and then {αn}
∞

n=1 is a Cauchy
sequence because Cyn = C11αn(n = 1, 2, 3, · · · ) and C11 is invertible. Moreover, since Byn = Bβn(n = 1, 2, 3, · · · )
and B|R(B∗) is invertible, it follows that {yn}

∞

n=1 is a Cauchy sequence. Let yn → y0 as n → ∞. Since R(A) is
closed, there exists x0 ∈ H such that Axn → Ax0 as n→∞. Thus Ax0 +Cy0 = u0 and By0 = v0, which shows
that R(MC) is closed.

Next, we will prove d(MC) = n(M∗

C) = 1. Take
(

x
y

)
∈ N(M∗

C). Then x ∈ N(A∗). Let x = x1 + x2, where

x1 ∈ N(A∗) ⊖ E and x2 ∈ E. Now, C∗11x1 = C∗x = −B∗y ∈ N(B) ∩ R(B∗) = {0}. Thus C∗11x1 = 0 = B∗y, which

implies x1 = 0 and y = 0 because B is right invertible. So N(M∗

C) = span
{(

x2
0

)}
. Due to dimE = 1, it

follows that n(M∗

C) = dimE = 1.
Thus, the MC is FLI but not invertible..
Case 2: d(B) > 0.
In this case, let C′11 be an isometric invertible operator from N(B) to N(A∗) and let

C =
(

C′11 0
0 0

)
:
(

N(B)
R(B∗)

)
→

(
N(A∗)
R(A)

)
.
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Using the same method as in Case 1 above, we can get that R(MC) is closed and n(MC) = 0. Moreover, we

can prove 0 < d(MC) < ∞. In fact, let
(

x
y

)
∈ N(M∗

C). Then we have x ∈ N(A∗) and C∗x = −B∗y ∈ N(B)∩R(B∗),

which implies x = 0 and y ∈ N(B∗). Thus N(M∗

C) = {0} ⊕ N(B∗). Due to d(MC) = n(M∗

C) = n(B∗) = d(B), we
have 0 < d(MC) < ∞. So, MC is FLI but not invertible.

It can be seen from the above proof of Case 1 that if d(B) = 0, the following conclusion can be obtained.

Corollary 3.6. Assume that A ∈ B(H) is left invertible and B ∈ B(K ) is right invertible. If d(A) = n(B) = ∞, then,
for any positive integer k, there exists some C ∈ B(K ,H) such that MC is FLI but not invertible and d(MC) = k.

Lemma 3.7. Assume that A ∈ B(H) and B ∈ B(K ) are Fredholm. If n(A) = 0 and n(B) < d(A), then there exists
some C ∈ B(K ,H) such that MC is FLI but not invertible.

Proof. Due to n(B) < d(A), it follows from [3, Corollary 2.5] that MC is not invertible for any C ∈ B(K ,H).
Moreover, since A and B are Fredholm, it follows that MC is Fredholm for any C ∈ B(K ,H). Next, we only
need to prove that n(MC) = 0 for some C ∈ B(K ,H). If n(B) = 0, then it is obvious that n(MC) = 0 for any
C ∈ B(K ,H). If n(B) > 0, let F be a closed subspace of N(A∗) with dimF = n(B) and let N(A∗) = F ⊕ F ⊥.
Then there exists an isometric invertible operator T from N(B) onto F . Let

C =
(

T 0
0 0

)
:
(

N(B)
R(B∗)

)
→

(
F

R(A) ⊕N(A∗) ⊖ F

)
.

From Lemma 2.5, we have n(MC) = n(A) = 0. Thus MC is FLI but not invertible for this C.

Lemma 3.8. Assume that A ∈ B(H) and B ∈ B(K ) are Fredholm. If n(A) = 0, n(B) = d(A) and d(B) > 0, then
there exists some C ∈ B(K ,H) such that MC is FLI but not invertible.

Proof. Due to d(B) > 0, it follows from [3, Corollary 2.5] that MC is not invertible for any C ∈ B(K ,H). So,
if n(B) = 0, then MC is FLI but not invertible for any C ∈ B(K ,H). If n(B) > 0, by the same method as the
Case 2 of Lemma 3.5, there exists some C ∈ B(K ,H) such that MC is FLI but not invertible.

Remark 3.9. In Lemma 3.8, the condition “d(B) > 0” is essential. In fact, if d(B) = 0, then MC is Weyl for any
C ∈ B(K ,H). Now, if MC is left invertible, then MC is invertible.

From Lemmas 3.5, 3.7 and 3.8 and together with the Corollary 2.7 in [3], we can obtain the equivalent
conditions that make σ(MC) = σFa (MC) for any C ∈ B(K ,H).

Theorem 3.10. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), σ(MC) = σFa (MC) if and only
if the three sets S1(A,B), S2(A,B) and S3(A,B) are empty sets, where
S1(A,B) = {λ ∈ ρa(A) ∩ ρSF−

(B) : d(A − λI) = n(B − λI) = ∞};
S2(A,B) = {λ ∈ ρFa (A) ∩ ρe(B) : n(B − λI) < d(A − λI)};
S3(A,B) = {λ ∈ ρFa (A) ∩ ρe(B) : n(B − λI) = d(A − λI), d(B − λI) > 0}.

Proof. From Lemmas 3.5, 3.7 and 3.8, we only need to prove the sufficiency. In fact, we only need to prove
σ(MC) ⊆ σFa (MC) for any C ∈ B(K ,H). Let λ0 < σFa (MC). Then MC − λ0I is Fredholm with n(M − λ0I) = 0,
which implies that A − λ0I is left invertible and B − λ0I is lower semi-Fredholm. Moreover, it follows from
the Corollary 2.7 in [3] that n(B − λ0I) ≤ d(A − λ0I). So, from S1(A,B) = S2(A,B) = S3(A,B) = ∅, we can get
two cases.

Case 1: n(B−λ0I) < d(A−λ0I) = ∞. In fact, this case cannot occur. Since B−λ0I is lower semi-Fredholm,
it follows from n(B − λ0I) < ∞ that B − λ0I is Fredholm, which, from Lemma 2.3, implies that A − λ0I is
Fredholm because MC − λ0I is Fredholm. It contradicts the fact that d(A − λ0I) = ∞.

Case 2: n(B−λ0I) = d(A−λ0I) < ∞ and d(B−λ0I) = 0. In this case, we have that MC −λ0I is Weyl. Thus
MC − λ0I is invertible because n(MC − λ0I) = 0, that is, λ0 < σ(MC). Thus σ(MC) ⊆ σFa (MC).
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Example 3.11. Let A ∈ B(ℓ2) and B ∈ B(ℓ2) be the unilateral shift and the backward shift, respectively. That is,

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

B(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ).

Then: (1) if λ ∈ ρa(A)∩ ρSF−
(B), then n(B−λI) < ∞ and d(A−λI) < ∞. So S1(A,B) = ∅. (2) If λ ∈ ρFa (A)∩ ρe(B),

then n(B − λI) = d(A − λI) but d(B − λI) = 0. Thus S2(A,B) = S3(A,B) = ∅. From Theorem 3.10, we have
σ(MC) = σFa (MC) for any C ∈ B(ℓ2).

Next, we discuss σFa (MC) = σFa (A) ∪ σFa (B) for any C ∈ B(K ,H). On the basis of Lemma 3.8 and Lemma
3.7, if n(B) > 0,then the following conclusions hold.

Lemma 3.12. Assume that A ∈ B(H) and B ∈ B(K ) are Fredholm. If n(A) = 0 and 0 < n(B) ≤ d(A), then there
exists some C ∈ B(K ,H) such that MC is FLI. In particular, when n(B) < d(A), it can make the MC non-invertible.

Proof. Suppose n(B) < d(A). Let M1 with dimM1 = n(B) and N with dimN = d(A) − n(B) be the closed
subspaces of R(A)⊥ such that R(A)⊥ = M1 ⊕ N . Suppose k = dimN . Take a set of linearly independent
vectors {e1, e2, · · · , ek} of N(B)⊥ and let M = span{e1, e2, · · · , ek}. Take a set of basis {u1,u2, · · · ,uk} in N
such that ∥ei∥ = ∥ui∥ = 1(i = 1, 2, · · · , k). Define an isometric invertible operator C11 from N(B) toM1 and
define an operator C22 from M to N such that C22ei = ui(i = 1, 2, · · · , k). Let H = M1 ⊕ N ⊕ R(A) and
K = N(B) ⊕M⊕ (N(B)⊥ ⊖M). Define a C as follows:

C =

 C11 0 0
0 C22 0
0 0 0

 :

 N(B)
M

N(B)⊥ ⊖M

→
 M1
N

R(A)

 . (1)

Since A and B are Fredholm, it follows that MC is Fredholm. Moreover, since C11 is injective from N(B)
intoM1(⊆ N(A∗)) and C|N(B) = C11, it follows from n(A) = 0 and Lemma 2.5 that n(MC) = 0. In addition,
due to {ei}

k
i=1 ⊆ N(B)⊥ = R(B∗), for every ei, there exists vi such that B∗vi = ei. Thus, it is easy to verify that{(

ui
−vi

)}k

i=1
⊆ N(M∗

C) because {ui}
k
i=1 ⊆ N(A∗). Since R(MC) is closed, we have d(MC) = n(M∗

C) > 0. So, MC

is non-invertible.
Suppose n(B) = d(A). It can be seen from the above proof process that, at this time,M = N = {0}. Thus,

the operator C in Equation (1) can be written in the following form:

C =
(

C11 0
0 0

)
:
(

N(B)
N(B)⊥

)
→

(
R(A)⊥

R(A)

)
.

Using Lemma 2.5 again, we can know that MC is FLI.

From Lemma 3.12, we see that 0 ∈ σFa (A) ∪ σFa (B) but there exists C such that 0 < σFa (MC), which shows
that σFa (A) ∪ σFa (B) ⊆ σFa (MC) is not always true for any C. We continue to explore the conditions under
which σFa (MC) = σFa (A) ∪ σFa (B) is true for any C.

Theorem 3.13. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), σFa (MC) = σFa (A) ∪ σFa (B) if
and only if S1(A,B) = S4(A,B) = ∅, where

S4(A,B) = {λ ∈ ρFa (A) ∩ ρe(B) : 0 < n(B − λI) ≤ d(A − λI)}.

Proof. Necessity. It is obvious that S4(A,B) = ∅ from Lemma 3.12. Moreover, if there exists λ0 ∈ S1(A,B),
then there exists C ∈ B(K ,H) such that λ0 < σFa (MC) from Lemma 3.5 but λ0 ∈ σFa (A)∪ σFa (B). It contradicts
σFa (A) ∪ σFa (B) = σFa (MC).

Sufficiency. It is obvious that σFa (MC) ⊆ σFa (A) ∪ σFa (B) for any C ∈ B(K ,H). We only need to prove
σFa (A) ∪ σFa (B) ⊆ σFa (MC) for any C ∈ B(K ,H). Let λ0 < σFa (MC). Then MC − λ0I is Fredholm and
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n(MC − λ0I) = 0, which follows that A − λ0I is left invertible and B − λ0I is lower semi-Fredholm and
n(B − λ0I) ≤ d(A − λ0I) by the Corollary 2.7 in [3]. Due to S1(A,B) = S4(A,B) = ∅, it shows that A − λ0I and
B − λ0I are Fredholm and n(B − λ0I) = 0. So λ0 < σFa (A) ∪ σFa (B). Thus σFa (A) ∪ σFa (B) = σFa (MC) for any
C ∈ B(K ,H).

Due to σFa (M0) = σFa (A) ∪ σFa (B), from Theorem 3.13, we can get the following conclusion.

Corollary 3.14. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H),

σ(MC) = σFa (MC) = σFa (A) ∪ σFa (B)

if and only if σ(M0) = σFa (M0) and S1(A,B) = S4(A,B) = ∅.

Proof. Necessity. If C = 0, then σ(M0) = σFa (M0). From Theorem 3.13, we have S1(A,B) = S4(A,B) = ∅ .
Sufficiency. We only need to prove σ(MC) ⊆ σFa (MC). From Theorem 3.13, for any C ∈ B(K ,H), we have

σFa (MC) = σFa (A) ∪ σFa (B) = σFa (M0) = σ(M0) ⊇ σ(MC).

Thus σ(MC) = σFa (MC) for any C ∈ B(K ,H).

From Theorem 3.13 and Corollary 3.14, the following conclusion can be obtained immediately. Let

S
∗

4(A,B) = {λ ∈ ρFa (A) ∩ ρe(B) : 0 < n(B − λI) = d(A − λI)}.

Corollary 3.15. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), σ(MC) = σFa (MC) and
S
∗

4(A,B) = ∅ if and only if the following statements hold:
(1) σ(M0) = σFa (M0);
(2) σFa (MC) = σFa (A) ∪ σFa (B) for any C ∈ B(K ,H).

4. The weak property (ω1) of MC

For the FLI operators, one of its most common manifestations is the weak property (ω1), which is a kind
of Weyl type theorem. Recently, various kinds of Weyl type theorems have been studied (see [6, 20, 22])
and the structural characteristics of various local spectra have been shown. When it comes to the weak
property (ω1), we have to mention the property (ω1) (see [16]). For T ∈ B(H ,K ), we say that T has property
(ω1) , if T satisfies

σa(T)\σea(T) ⊆ π00(T),

where π00(T) = {λ ∈ isoσ(T) : 0 < n(T − λI) < ∞}. If T satisfies

σFa (T)\σFea (T) ⊆ π00(T),

then we say that T has weak property (ω1). It is easy to get the following relation:

property (ω1)⇒ weak property (ω1).

However, “weak property (ω1)” does not necessarily follow “property (ω1)”.

Example 4.1. Let A ∈ B(ℓ2) be defined by A(x1, x2, x3, · · · ) = (0, x1, 0, x2, 0, · · · ) and let B ∈ B(ℓ2) be defined by

B(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ). Let T =
(

A 0
0 B

)
. By calculations, we have σa(T)\σea(T) = {λ ∈ C : |λ| < 1},

σFa (T)\σFea (T) = ∅ and π00(T) = ∅. Thus T has weak property (ω1), but T has not property (ω1).

In the following, we study the weak property (ω1) of MC. Let’s start with the following fact.

Remark 4.2. Even if M0 has weak property (ω1), there still exist some C such that MC has not weak property (ω1).
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Example 4.3. . Let A,B,C ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1, 0, x2, 0, x3, · · · ),

B(x1, x2, x3, · · · ) = (x2, x4, x6, · · · ),

C(x1, x2, x3, · · · ) = (0, 0, 0, 0, x3, 0, x5, 0, · · · ).

Let M0 =

(
A 0
0 B

)
and MC =

(
A C
0 B

)
. It is easy to verify that M0 has weak property (ω1). In addition, by

calculations, we have n(MC) = 1 and d(MC) = 2. Then ind(MC) = −1. It follows that 0 ∈ σFa (MC)\σFea (MC) but
0 < π00(MC).

Next, we give some useful conclusions for further study for the weak property (ω1) of MC.

Lemma 4.4. ([5, Proposition 6.9] and [17, Chapter V, Theorem 10.2]) Let T ∈ B(H ,K ). Then we have

isoσ(T)\σSF (T) = isoσ(T)\σw(T) = σ(T)\σb(T).

Lemma 4.5. Let A ∈ B(H), B ∈ B(K ) and C ∈ B(K ,H). Then MC has weak property (ω1) if and only if

σFa (MC)\σFea (MC) = σ(MC)\σb(MC).

Proof. Necessity. Let λ0 ∈ σFa (MC)\σFea (MC). Obviously, λ0 ∈ σ(MC). Since MC has weak property (ω1),
we have λ0 ∈ isoσ(MC). From Lemma 4.4, we know that MC − λ0I is Browder. Thus λ0 ∈ σ(MC)\σb(MC).
So σFa (MC)\σFea (MC) ⊆ σ(MC)\σb(MC). In addition, let µ0 ∈ σ(MC)\σb(MC). Then n(MC − µ0I) > 0, which
shows µ0 ∈ σFa (MC). Combining with σFea (MC) ⊆ σb(MC), we get µ0 ∈ σFa (MC)\σFea (MC). Thus, we have
σ(MC)\σb(MC) ⊆ σFa (MC)\σFea (MC).

Sufficiency. Let µ1 ∈ σFa (MC)\σFea (MC). Due to σFa (MC)\σFea (MC) = σ(MC)\σb(MC), it follows from Lemma
4.4 that µ1 ∈ π00(MC). Thus MC has weak property (ω1).

It is easy to prove that σw(MC) = σb(MC) if MC has weak property (ω1). From Lemma 4.5, we can get the
following conclusion.

Corollary 4.6. Let A ∈ B(H), B ∈ B(K ) and C ∈ B(K ,H). Then MC has weak property (ω1) and σFa (MC) = σ(MC)
if and only if

σFea (MC) = σw(MC) = σb(MC).

Proof. Necessity. Due to σFea (MC) ⊆ σFa (MC) and σb(MC) ⊆ σ(MC), combining with σFa (MC) = σ(MC), it
follows from Lemma 4.5 that σFea (MC) = σb(MC). Moreover, it is easy to get σFea (MC) ⊆ σw(MC) ⊆ σb(MC).
Thus σFea (MC) = σw(MC) = σb(MC).

Sufficiency. For σFa (MC) = σ(MC), we only prove σ(MC) ⊆ σFa (MC). Let λ1 < σFa (MC). Then λ1 < σFea (MC)
and n(MC − λ1I) = 0. Due to σFea (MC) = σw(MC), it shows d(MC − λ1I) = 0. Thus MC − λ1I is invertible.
So σFa (MC) = σ(MC). Now, we have σFa (MC)\σFea (MC) = σ(MC)\σb(MC). From Lemma 4.5, MC has weak
property (ω1).

From [21, Lemma 3], we can get the following result.

Lemma 4.7. Assume that A ∈ B(H) is upper semi-Fredholm and B ∈ B(K ) is lower semi-Fredholm. If d(A) =
n(B) = ∞, then there exists some non-zero C ∈ B(K ,H) such that 0 ∈ σFa (MC)\σFea (MC) and ind(MC) < 0.

Theorem 4.8. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), MC has weak property (ω1) if
and only if M0 has weak property (ω1) and S5(A,B) = ∅, where

S5(A,B) = {λ ∈ ρSF+
(A) ∩ ρSF−

(B) : d(A − λI) = n(B − λI) = ∞}.



J. Dong / Filomat 39:18 (2025), 6149–6160 6158

Proof. Necessity. If C = 0, then M0 has weak property (ω1). For S5(A,B), if there exists λ0 ∈ S5(A,B),
then from Lemma 4.7, there exists some non-zero C ∈ B(K ,H) such that λ0 ∈ σFa (MC)\σFea (MC) and
ind(MC − λ0I) < 0. Since MC has weak property (ω1), it follows from Lemma 4.4 that λ0 < σw(MC), which
implies ind(MC − λ0I) = 0. It contradicts ind(MC − λ0I) < 0. So S5(A,B) = ∅.

Sufficiency. Take an arbitrary C ∈ B(K ,H). Letµ0 ∈ σFa (MC)\σFea (MC). Then 0 < n(MC−µ0I) < ∞, and we
have that A−µ0I is upper semi-Fredholm and B−µ0I is lower semi-Fredholm. SinceS5(A,B) = ∅, according
to Lemma 2.3, we can only conclude that A−µ0I and B−µ0I are Fredholm. From µ0 ∈ σFa (MC)\σFea (MC), we
have that

ind(MC − µ0I) = ind(A − µ0I) + ind(B − µ0I) = ind(M0 − µ0I) ≤ 0

and
0 < n(MC − µ0I) ≤ n(A − µ0I) + n(B − µ0I) = n(M0 − µ0I).

So µ0 ∈ σFa (M0)\σFea (M0). Since M0 has weak property (ω1), it follows that µ0 ∈ π00(M0). Then µ0 ∈ isoσ(M0).
At this point, we can prove µ0 ∈ isoσ(MC). In fact, there exists ϵ1 such that A − µI and B − µI are invertible
for any 0 < |µ−µ0| < ϵ1, which shows µ0 ∈ isoσ(MC)∪ρ(MC), where ρ(MC) is the complement of σ(MC). We
can claim that µ0 ∈ σ(MC). If not, from the Corollary 2.5 in [3], A − µ0I is left invertible and B − µ0I is right
invertible. It follows from [14, Theorem 5.31] that there exists ϵ2(< ϵ1) such that ind(A−µ0I) = ind(A−µI) = 0
and ind(B − µ0I) = ind(B − µI) = 0 for any 0 < |µ − µ0| < ϵ2. Thus A − µ0I and B − µ0I are invertible. It
contradicts µ0 ∈ σ(M0). So µ0 ∈ isoσ(MC). Thus, we have µ0 ∈ π00(MC).

Next, we explore the relationship between σ(MC) = σFa (MC) and the weak property (ω1) of MC.

Remark 4.9. (1) Assume that A ∈ B(H) and B ∈ B(K ). Even if, for any C ∈ B(K ,H), MC has weak property
(ω1), it does not follow σ(MC) = σFa (MC) for any C ∈ B(K ,H).

Example 4.10. Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

B(x1, x2, x3, · · · ) = (0, 0, x1, x2, x3, · · · ).

By calculations, M0 has weak property (ω1) and S5(A,B) = ∅. Thus, from Theorem 4.8, it follows that MC has weak
property (ω1) for C ∈ B(ℓ2). However, σ(M0) , σFa (M0).

(2) Assume that A ∈ B(H) and B ∈ B(K ). Even if σ(MC) = σFa (MC) for any C ∈ B(K ,H), there exists some
C ∈ B(K ,H) such that MC has not weak property (ω1).

Example 4.11. Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, 0, 0, x2, 0, x3, 0, · · · ),

B(x1, x2, x3, · · · ) = (x2, x4, x6, · · · ).

By calculations, σ(M0) = σFa (M0) and S1(A,B) = S4(A,B) = ∅. Thus, from Corollary 3.14, we have σ(MC) =
σFa (MC) for C ∈ B(ℓ2). However, S5(A,B) is not an empty set. Thus, from Theorem 4.8, there exists C0 ∈ B(ℓ2) such
that MC0 has not weak property (ω1).

Theorem 4.12. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), MC has weak property (ω1)
and σ(M0) = σFa (M0) if and only if

(1) σ(MC) = σFa (MC) for any C ∈ B(K ,H);
(2) M0 has weak property (ω1);
(3) S6(A,B) = {λ ∈ ρSF+

(A) ∩ ρSF−
(B) : n(A − λI) > 0, d(A − λI) = n(B − λI) = ∞} = ∅.
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Proof. Necessity. From Theorem 4.8, we know that M0 has weak property (ω1) and S6(A,B) ⊆ S5(A,B) = ∅.
Next, we prove that the conclusion (1) holds. First, due to S1(A,B) ⊆ S5(A,B), it follows from Theorem 4.8
thatS1(A,B) = ∅. Second, let λ0 ∈ S2(A,B). Then, if n(B−λ0I) = 0, we have λ0 < σFa (M0); if n(B−λ0I) > 0, we
have λ0 ∈ σFa (M0)\σFea (M0). Since σ(M0) = σFa (M0) and M0 has weak property (ω1), it follows that M0 − λ0I
is Browder either in the case n(B−λ0I) = 0 or in the case n(B−λ0I) > 0. Thus A−λ0I is Weyl, which implies
d(A−λ0I) = 0 because n(A−λ0I) = 0. It contradicts n(B−λ0I) < d(A−λ0I). SoS2(A,B) = ∅. Let µ0 ∈ S3(A,B).
Then we have that M0 − µ0I is Fredholm and ind(M0 − µ0I) < 0. Since σ(M0) = σFa (M0) and M0 has weak
property (ω1), it follows that M0−µ0I is Weyl either in the case n(M0−µ0I) = 0 or in the case n(M0−µ0I) > 0,
which contradicts ind(M0 − λ0I) < 0. So S3(A,B) = ∅. From Theorem 3.10, we know σ(MC) = σFa (MC) for
any C ∈ B(K ,H).

Sufficiency. In the condition (1), let C = 0, then σ(M0) = σFa (M0). Moreover, from Theorem 4.8, we only
need to verify S5(A,B) = ∅ to prove that MC has weak property (ω1) for any C ∈ B(K ,H). Let v0 ∈ S5(A,B).
From the condition (3), it follows n(A − v0I) = 0, which shows v0 ∈ S1(A,B). It contradicts S1(A,B) = ∅. So
S5(A,B) = ∅. This completes the proof.

Lemma 4.13. Assume that A ∈ B(H) and B ∈ B(K ). If M0 has weak property (ω1) and σ(M0) = σFa (M0), then
S2(A,B) = S3(A,B) = ∅.

Proof. Let λ ∈ S2(A,B)∪S3(A,B). Then M0 −λI is Fredholm and ind(M0 −λI) < 0,which shows λ < σFa (M0)
or λ ∈ σFa (M0)\σFea (M0). Since M0 has weak property (ω1) and σ(M0) = σFa (M0), it follows that M0 − λI is
Browder. So A − λI and B − λI are Browder. Due to n(A − λI) = 0, it shows that A − λI is invertible. If
λ ∈ S2(A,B), then it contradicts n(B − λI) < d(A − λI). If λ ∈ S3(A,B), then it contradicts d(B − λI) > 0
because d(B − λI) = n(B − λI) = d(A − λI). So S2(A,B) ∪ S3(A,B) = ∅.

Due to S1(A,B) ⊆ S5(A,B), it follows from Theorems 3.10 and 4.8 and Lemma 4.13 that the following
corollary holds.

Theorem 4.14. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), MC has weak property (ω1)
and σ(MC) = σFa (MC) if and only if

(1) σ(M0) = σFa (M0);
(2) M0 has weak property (ω1);
(3) S5(A,B) = ∅.

From Corollary 4.6 and Theorem 4.14, we have the following conclusion.

Corollary 4.15. Assume that A ∈ B(H) and B ∈ B(K ). Then, for any C ∈ B(K ,H), MC has weak property (ω1)
and σ(MC) = σFa (MC) if and only if σFea (M0) = σb(M0) and S5(A,B) = ∅.
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