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Relative entropy in unital JB-algebras and positive linear maps on
unital JC-algebras
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aDepartment of Mathematics, Lorestan University, Khoramabad, Iran

Abstract. In this paper, we study the relative entropy in the setting of unital JB-algebras and give some
refined inequalities involving it in such algebras. We also investigate some property of positive linear maps
on unital JC-algebras.

1. Introduction and preliminary

Jordan algebras provide a foundation, for explaining the concept of an algebra of observables in quantum
mechanics. In the principles of quantum physics it is accepted that observables form a Jordan algebra. This
is mainly due to the fact that observables are usually depicted as self adjoint operators on a Hilbert space
and the collection of these operators adheres to the principles of a Jordan product, than any type. For
information readers may refer to [4].

A Jordan algebra over R is a vector space A over R equipped with a commutative bilinear product ◦
that satisfies the identity

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2,

for all x, y ∈ A.
LetA be an algebra and x, y ∈ A. Let

x ◦ y =
xy + yx

2
. (1.1)

Then ◦ defines a bilinear, commutative product onA, which is called the Jordan product. IfA is associative,
thenA becomes a Jordan algebra when equipped with the product (1.1), as does any subspace closed under
◦. Such Jordan algebras are called special Jordan algebras, all others are called exceptional. The following
algebras are examples of special Jordan algebras with product (1.1).

Example 1.1.

• The Jordan algebra of n × n self-adjoint real matrices Hn(R).
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• The Jordan algebra of n × n self-adjoint complex matrices Hn(C).

• The Jordan algebra of n × n self-adjoint quaternionic matrices Hn(H).

• The Jordan algebra of n × n self-adjoint octonionic matrices Hn(O), where n ≤ 3.

Definition 1.2. A Jordan Banach algebra is a real Jordan algebra A equipped with a complete norm
satisfying

∥A ◦ B∥ ≤ ∥A∥∥B∥, A,B ∈ A.

Jordan operator algebras are norm-closed spaces of operators on a Hilbert space which are closed under
the Jordan product.

Basic examples are real symmetric and complex hermitian matrices with the Jordan product. A JB-
algebra is a Jordan Banach algebra A in which the norm satisfies the following two additional conditions
for A,B ∈ A:

(i) ∥A2
∥ = ∥A∥2

(ii) ∥A2
∥ ≤ ∥A2 + B2

∥.

A JC-algebra is a JB-algebraA that is isomorphic to a norm closed Jordan subalgebra of B(H)sa. We will
make the convention that our JC-algebras have an identity.

LetA be a JB-algebra, we say A ∈ A is invertible if there exists B ∈ A, which is called Jordan inverse of
A, such that

A ◦ B = I and A2
◦ B = A.

The spectrum of A, denoted by Sp(A), is the set of λ ∈ R such that A − λ does not have an inverse in A.
Furthermore, if Sp(A) ⊂ [0,∞), we say A is positive, denoted A ≥ 0.
In a JB-algebra we define

UAB = {ABA} := 2(A ◦ B) ◦ A − A2
◦ B.

Note that ABA is meaningless unlessA is special (for example a JC-algebra), in which case {ABA} = ABA.
Moreover, if B ≥ 0, then UAB = {ABA} ≥ 0.

We mention some of properties of UA that we will use frequently in sequel: UA is a linear mapping and

U{ABA} = UAUBUA. (1.2)

It also satisfies the following two Lemmas:

Lemma 1.3. [1, Lemma 1.23] LetA be a JB-Banach algebra and A ∈ A. Then A is an invertible element iff UA has
a bounded inverse, and in this case the inverse map is Ua−1 i.e., U−1

A = UA−1 .

Lemma 1.4. [1, Lemma 1.24] If A and B are invertible elements of a JB-algebra, Then {ABA} is invertible with inverse
{A−1B−1A−1

}.

For more details, we refer the reader to [1, 10].

Definition 1.5. Let A be a JB-algebra or a C∗-algebra, and f : I → R be a real-valued continuous function
on a (non trivial) interval I ⊂ R.

(i) The function f is calledA-monotone if for any A,B ∈ Awith spectrum in I, we have

A ≤A B⇒ f (A) ≤A f (B). (1.3)

The function f isA-convex if for any λ ∈ [0, 1] and any A,B ∈ Awith spectrum in I, we have

f ((1 − λ)A + λB) ≤A (1 − λ) f (A) + λ f (B). (1.4)
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(ii) If A = B(H), the standard C∗-algebra of all bounded linear operators on a Hilbert space H, then a
A-monotone (resp. A-convex) function is called operator monotone (resp. operator convex) function.

(iii) If B ⊆ B(H) is a Jordan operator algebra or a C∗-subalgebra of B(H), then a B-monotone (resp.
B-convex) is called operator monotone (resp. operator convex) function on B.

(iv) IfA =Mn, the standard C∗-algebra of all complex n× n matrices or equivalently of all bounded linear
operators on an n-dimensional complex Hilbert space, then aA-monotone (resp. A-convex) function
is called matrix monotone (resp. matrix convex) function of order n.

Wang et al. [16] introduced some means for two positive invertible elements A, B in a unital JB-algebra
A and ν ∈ [0, 1], such as

• ν-weighted harmonic mean: A!νB =
(
(1 − ν)A−1 + νB−1

)−1
;

• ν-weighted geometric mean: A♯νB = {A1/2
{A−1/2BA−1/2

}
νA1/2

};

• ν-weighted arithmetic mean: A∇νB = (1 − ν)A + νB.

The following relations among them are also proved in [16].

A♯νB = B♯1−νA,

(A♯νB)−1 = A−1♯νB−1,

A!νB ≤ A♯νB ≤ A∇νB,
(αA♯νβB) = (α♯νβ)(A♯νB) (α > 0, β > 0)
{C(A♯νB)C} = {CAC}♯ν{CBC} for any invertible C ∈ A.

Wang et al. [17] introduced the relative entropy for two positive invertible elements A, B in a unital
JB-algebraA, as follows

S(A|B) =
{
A

1
2 log

({
A
−1
2 BA

−1
2

})
A

1
2

}
. (1.5)

For any λ ∈ (0, 1], the Tsallis relative entropy Tλ(A|B) in a unital JB-algebra is also defined by

Tλ(A|B) =

{
A

1
2

{
A
−1
2 BA

−1
2

}λ
A

1
2

}
− A

λ
=

A♯λB − A
λ

. (1.6)

Some property of these two topic and relation between them are also proved in [17], such as

Proposition 1.6. [17, Proposition 2.4] The relative operator entropy S(A|B) defined in unital JB-algebraA has the
following properties:

(i) S(αA|αB) = αS(A|B) for any positive number α.
(ii) If B ≤ C, then S(A|B) ≤ S(A|C).
(iii) S(A|B) is operator concave with respect to A,B individually.
(iv) S({(CAC}|{CBC}) = {CS(A|B)C}, for any invertible C inA.

Proposition 1.7. [17, Proposition 2.7] The Tsallis relative operator entropy Tλ(A|B) defined in unital JB-algebraA
has the following properties:

(i) Tλ(αA|αB) = αTλ(A|B) for any positive number α.
(ii) If B ≤ D, then Tλ(A|B) ≤ Tλ(A|D).
(iii) Tλ({CAC}|{CBC}) = {CTλ(A|B)C} for any invertible C inA.
(iv) Tλ(A|B) is concave with respect to A,B individually.
(v) lim

λ→0
Tλ(A|B) = S(A|B).

Motivated by the above studies, in this paper we extend some inequalities related to relative operator
entropy to unital JB-algebras and obtain some property of positive linear maps on unital JC-algebras.
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2. Entropy in unital JB-algebras

In 1850 Clausius[3] was the first to introduce the concept of entropy, in the field of thermodynamics. Over
time there have been modifications and updates explored in arena. The concept of relative operator entropy
S(A|B) for operators, in information theory was developed by Fujii and Kamei in their work referenced as
[5, 6]. It is defined by

S(A|B) = A
1
2 log(A

−1
2 BA

−1
2 )A

1
2 .

for invertible positive operators A and B on a Hilbert space H, as an extension of the entropy defined
by Nakamura and Umegaki [12], and the relative entropy defined by Umegaki [15]. We remark that
S(A|I) = −Alo1A is the usual well known operator entropy.
The Tsallis relative operator entropy is defined by

Tλ(A|B) =
A♯λB − A

λ
, (2.1)

since

lim
λ→0

Tλ(A|B) = S(A|B), (2.2)

the Tsallis relative operator entropy is a generalization of the relative operator entropy. For more information
on the Tsallis relative entropy the reader is referred to [6–8, 18] and the references therein.

Furuta in [9] obtained the following inequality for a > 0

(1 − log a)A −
1
a

AB−1A ≤ S(A|B) ≤ (log a − 1)A +
1
a

B, (2.3)

as a generalization of the upper and lower bounds of

A − AB−1A ≤ S(A|B) ≤ B − A, (2.4)

which was given in [5].
Zou in [19] obtained a refinement of the inequality (1.5) in the following forms:

−

(
log a +

1 − aλ

λaλ

)
A + a−λT−λ(A|B)

≤ S(A|B) ≤ Tλ(A|B) −
1 − aλ

λ
A♯λB − (log a)A. (2.5)

Soleimani and Ghazanfari in [14] give a refinment of (2.5), as follows: Let 0 < λ ≤ 1 be a real number,
n ∈N and let A and B be strictly positive operators on a Hilbert space H. Then there is an ε > 0 such that∫ 1

0
(A!tB)dt − 2−n−1A

A−1 + B−1 + 2
2n
−1∑

i=1

(
2−niB + (1 − 2−ni)A

)−1

 A

≤ S(A|B) ≤
1

λ(1 + ε)

(
aλA♯λB − εa−λA♯−λB + (ε − 1)A

)
− (log a)A (2.6)

≤ Tλ(A|B) −
1 − aλ

λ
A♯λB − (log a)A.

for all a ≥ ε
1

2λ .
In the following, we obtain improved inequalities involving the relative entropy in JB-algebras. In order

to do that, we prove two lemmas which will turn out to be useful in the proof of our results.
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Lemma 2.1. let A be a unital JB-algebra, Let 1 : R × [0, 1] → R be a continuous map and assume f (x) =∫ 1

0 1
(x, t) dµ(t) for every x on bounded and closed intervals, where µ is a bounded positive measure on [0, 1]. Then

f (A) =
∫ 1

0 1
(A, t) dµ(t) for any A ∈ A.

Proof. Function 1 is uniformly continuous on every bounded and closed subset [m,M] ⊆ R. Therefore for
every given ϵ > 0 there exist a δ > 0 such that if |x1 − x2| < δ, |t1 − t2| < δ, then |1(x1, t1) − 1(x2, t2)| < ϵ. We
define

fn(x) :=
n∑

i=1

1

(
x,

i
n

)
µ
([ i − 1

n
,

i
n

])
.

Then, for each x ∈ [m,M] and sufficiently large n

| fn(x) − f (x)| =

∣∣∣∣∣∣∣
n∑

i=1

1

(
x,

i
n

)
µ
([ i − 1

n
,

i
n

])
−

∫ 1

0
1 (x, t) dµ (t)

∣∣∣∣∣∣∣
≤

n∑
i=1

∫ i
n

i−1
n

∣∣∣∣∣1 (x, i
n

)
− 1 (x, t)

∣∣∣∣∣ dµ(t)

≤

n∑
i=1

ϵ µ
([ i − 1

n
,

i
n

])
≤ ϵ µ ([0, 1]) .

So, fn is uniformly convergent to f on [m,M]. Consequently, f (A) =
∫ 1

0 1
(A, t) dµ(t).

Lemma 2.2. LetA be a unital JB-algebra and A,B,C,D ∈ A. If A ≤ C , B ≤ D, then A !λ B ≤ C !λ D.

Proof. We start with the following relation, obtained from inequalities (1.11) in [1]:

A ≥ 0⇔ ∥∥A∥1 − A∥ ≤ ∥A∥. (2.7)

From (2.7), we get

A,B ≥ 0 and 0 ≤ λ ≤ 1⇒ (1 − λ)A + λB ≥ 0. (2.8)

Now, let A ≤ C , B ≤ D, then

A−1
≥ C−1 , B−1

≥ D−1 (by [10, Lemma (3.5.3)])

⇒ (1 − λ)A−1 + λB−1
≥ (1 − λ)C−1 + λD−1 (by (2.8))

⇒

(
(1 − λ)A−1 + λB−1

)−1
≤

(
(1 − λ)C−1 + λD−1

)−1
(by [10, Lemma (3.5.3)])

⇒ A!λB ≤ C!λD.

In the following Theorem, we show that relation (2.6) holds for unital JB-algebras.

Theorem 2.3. Let A be a unital JB-algebra and A,B be two invertible positive elements in A. Let 0 < λ ≤ 1 be a
real number and n ∈N. Then there is an ε > 0 such that∫ 1

0
(B!tA)dt − 2−n−1

A + {AB−1A} + 2
2n
−1∑

i=1

(
A!2−ni{AB−1A}

)
≤ S(A|B) ≤

1
λ(1 + ε)

(
aλA♯λB − εa−λA♯−λB + (ε − 1)A

)
− (log a)A (2.9)

≤ Tλ(A|B) −
1 − aλ

λ
A♯λB − (log a)A.

for all a ≥ ε
1

2λ .
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Proof. LetA be a unital JB-algebra. From relation (2.13) in [14], we have∫ 1

0
((1 − t)a−1 + t1)−1 dt − 2−n−1

1 + a−1 + 2
2n
−1∑

i=1

(
2−nia + (1 − 2−ni)

)−1


≤ log a. (2.10)

Using the functional calculus a = {A
−1
2 BA

−1
2 } in (2.10), and that UX is a positive linear map, we get the first

inequality in (2.9).
If 0 < λ, ε ≤ 1. From relation (2.3) in [14], we have

log x ≤
1

λ(1 + ε)

(
aλxλ − εa−λx−λ − 1 + ε

)
− log a

≤
1
λ

(
aλxλ − 1

)
− log a, (2.11)

for all a, x ≥ ε
1

2λ .
Utilizing the functional calculus x = {A

−1
2 BA

−1
2 } in (2.11), we obtain

log{A
−1
2 BA

−1
2 } ≤

1
λ(1 + ε)

(
aλ{A

−1
2 BA

−1
2 }
λ
− εa−λ{A

−1
2 BA

−1
2 }
−λ
− 1 + ε

)
− log a

≤
1
λ

(
aλ{A

−1
2 BA

−1
2 }
λ
− 1

)
− log a

Since UX is a positive linear map, we get

U
A

1
2
(log{A

−1
2 BA

−1
2 })

≤
1

λ(1 + ε)

(
aλU

A
1
2
({A

−1
2 BA

−1
2 }
λ) − εa−λU

A
1
2
({A

−1
2 BA

−1
2 }
−λ) + (ε − 1)A

)
− (log a)A (2.12)

≤
1
λ

(
aλU

A
1
2
({A

−1
2 BA

−1
2 }
λ) − A

)
− (log a)A

Relation (2.12) implies second and third inequalities in (2.9) for unital JB-algebraA, since

1
λ

(
aλA♯λB − A

)
− (log a)A = Tλ(A|B) −

1 − aλ

λ
A♯λB − (log a)A.

3. Unital positive linear maps on unital JC-algebras

In this section, we will present some properties of unital positive linear map on unital JC-algebras.
Furthermore, we will prove some results related to unital positive linear map on JB-algebras.

Theorem 3.1. LetA be a unital JC-algebra and φ : A→ B be an isomorphism onto norm closed Jordan subalgebra
B of B(H)sa. Let I be an interval in R and f : I→ R be a continuous function. Then

(i) f isA-monotone if and only if f is operator monotone on B.
(ii) f isA-convex if and only if f is operator convex on B.

Proof. (i) Suppose that f isA-monotone and C,D ∈ B , C ≤ D. There exist elements A,B ∈ A with spectra
in I such that φ(A) = C , φ(B) = D. Then A ≤ B, since φ holds positivity. This implies that f (A) ≤ f (B).
Consequently φ( f (A)) ≤ φ( f (B)). It is obvious that φ(Pn(A)) = Pn(φ(A)) for every polynomial Pn. By the
Stone-Weierstrass theorem, we get

φ( f (A)) = f (φ(A)). (3.1)
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Therefore

φ( f (A)) ≤ φ( f (B))⇒ f (φ(A)) ≤ f (φ(B))
⇒ f (C) ≤ f (D).

Now suppose that f is operator monotone on B, and A,B ∈ A. Then

A ≤ B⇒ ϕ(A) ≤ ϕ(B) (ϕ is isomorphism)
⇒ f (ϕ(A)) ≤ f (ϕ(B)) ( f is operator monotone on B))
⇒ ϕ( f (A)) ≤ ϕ( f (B)) (by(3.1))

⇒ f (A) ≤ f (B) (ϕ−1 is isomorphism).

(ii) Suppose that f isA-convex, C,D ∈ B and 0 ≤ t ≤ 1. There exist elements A,B ∈ Awith spectra in I such
that φ(A) = C, φ(B) = D. Therefore

f (tC + (1 − t)D) = f (tφ(A) + (1 − t)φ(B))
= f (φ(tA + (1 − t)B)
= φ( f (tA + (1 − t)B)) (by (3.1))
≤ tφ f (A) + (1 − t)φ f (B) ( f isA-convex and φ is positive)
= t fφ(A) + (1 − t) fφ(B) (by (3.1))
= t f (C) + (1 − t) f (D).

Consequently, f is operator convex onB. Now, let f be operator convex onB, A,B ∈ A and 0 ≤ t ≤ 1. Then

φ f ((1 − t)A + tB) = f ((1 − t)φ(A) + tφ(B)) (by (3.1))
≤ (1 − t) f (φ(A)) + t f (φ(B)) ( f is operator convex on B)
= (1 − t)φ( f (A)) + tφ( f (B)) (by (3.1))
= φ((1 − t) f (A) + t f (B)).

This implies that f ((1 − t)A + tB) ≤ (1 − t) f (A) + t f (B). Hence f isA-convex.

Lemma 3.2. LetA be a unital JC-algebra. If f is a positiveA-monotone function on (0,∞) ⊆ R. Then

f (A) =
∫ 1

0
(1!tA) dν f (t) (0 < A ∈ A), (3.2)

where ν f is a bounded positive measure on [0, 1].

Proof. By theorem 4.9 in [11], for every positive operator monotone function f on (0,∞), there exist a
bounded positive measure ν f on [0, 1] such that

f (x) =
∫ 1

0
(1!tx) dν f (t). (3.3)

By Theorem 3.1(i), the function f is operator monotone on a norm closed Jordan subalgebra B of B(H)sa.
Therefore relation (3.3) holds and applying Lemma 2.1 for positive element A ∈ A, we get

f (A) =
∫ 1

0
(1!tA) dν f (t).
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LetA be a unital JC-algebra, f a positiveA-monotone function and A,B ∈ A. We define a mean σ f onA,
as follows

Aσ f B :=
{
A

1
2 f

({
A
−1
2 BA

−1
2

})
A

1
2

}
. (3.4)

Then

Aσ f B =
{

A
1
2

(∫ 1

0

(
1!t

{
A
−1
2 BA

−1
2

})
dν f (t)

)
A

1
2

}
=

∫ 1

0

{
A

1
2

(
1!t

{
A
−1
2 BA

−1
2

})
A

1
2

}
dν f (t)

∫ 1

0

A
1
2

(
(1 − t) + t

{
A
−1
2 BA

−1
2
}−1

)−1

A
1
2

 dν f (t)

=

∫ 1

0
(A!tB) dν f (t).

Therefore

Aσ f B =
∫ 1

0
(A!tB) dν f (t) (3.5)

Wang and Wang [16, Proposition 6(iv)], proved the following inequality for ♯λ:{
C

(
A♯λB

)
C
}
= {CAC} ♯λ {CBC} .

Theorem 3.3. LetA be a unital JC-algebra. If A,B,C,D are invertible elements inA and f is a positiveA-monotone
function on (0,∞) ⊆ R. Then

(i)
{
C

(
Aσ f B

)
C
}
= {CAC} σ f {CBC}

(ii) If A ≤ C , B ≤ D, then Aσ f B ≤ Cσ f D.

Proof. (i) First, we show that

{CAC}!t {CBC} =
(
(1 − t) {CAC}−1 + t {CBC}−1

)−1

=
(
(1 − t)

{
C−1A−1C−1

}
+ t

{
C−1B−1C−1

})−1

=
{
C−1

(
(1 − t)A−1 + tB−1

)
C−1

}−1

=
{
C

(
(1 − t)A−1 + tB−1

)−1
C
}

= {C (A!tB) C} .

Then, we obtain

{
C

(
Aσ f B

)
C
}
=

{
C

(∫ 1

0
(A!tB) dν f (t)

)
C
}

=

∫ 1

0
{C (A!tB) C} dν f (t)

=

∫ 1

0
{CAC}!t {CBC} dν f (t)

= {CAC} σ f {CBC}

(ii) From Lemma (2.2), we have A !λ B ≤ C !λ D. This and relation (3.5) imply that Aσ f B ≤ Cσ f D.
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Proposition 3.4. If A,B are two unital JC-algebras and Φ : A → B is a unital positive linear map. Then
Φ(B)Φ(A)−1Φ(B) ≤ Φ

(
BA−1B

)
for every two positive invertible elements A,B ∈ A.

Proof. There exist two isomorphismsφ : A→ C, ψ : B → DwhereC ,D respectively are two closed Jordan
subalgebras of B(H)sa, and B(K)sa. Suppose that A ∈ A, then C = φ(A) ∈ C. We defineΨ := ψ ◦Φ ◦ φ−1.

A
Φ //

φ

��

B

ψ

��
C

Ψ // D

Clearly Ψ ≥ 0, and by [13, Theorem 1.17](Kadison’s Schwarz inequality), we have Ψ(C2) ≥ Ψ(C)2 and
Ψ(C−1) ≥ Ψ(C)−1. Therefore

ψ
(
Φ(φ−1(C2))

)
= Ψ(C2)

≥ Ψ(C)2 = (ψ ◦Φ ◦ φ−1(C))2

= ψ
((
Φ(φ−1(C))

)2
)
, (ψ is an isomorphism ) (3.6)

and

ψ
(
Φ(φ−1(C−1))

)
= Ψ(C−1)

≥ Ψ(C)−1 = (ψ ◦Φ ◦ φ−1(C))−1

= ψ
((
Φ(φ−1(C))

)−1
)
. (ψ is an isomorphism ) (3.7)

From (3.6), (3.7) and positivity ψ−1 (ψ−1 is an isomorphism), we obtain

Φ(A2) = Φ ◦ φ−1(C2) ≥ (Φ ◦ φ−1(C))2 = (Φ(A))2

Φ(A−1) = Φ ◦ φ−1(C−1) ≥ (Φ ◦ φ−1(C))−1 = (Φ(A))−1.

Define

Ψ(X) = Φ(B)−
1
2Φ

(
B

1
2 XB

1
2

)
Φ(B)−

1
2 .

It is obvious that Ψ(I) = Φ(B)−
1
2Φ(B)Φ(B)−

1
2 = I, therefore Ψ is a unital positive linear map. Since

Ψ
(
B−

1
2 AB−

1
2

)
= Φ(B)−

1
2Φ(A)Φ(B)−

1
2 , we obtain

Φ(B)
1
2Φ(A)−1Φ(B)

1
2 = Ψ

(
B−

1
2 AB−

1
2

)−1

≤ Ψ
((

B−
1
2 AB−

1
2

)−1
)

= Ψ
(
B

1
2 A−1B

1
2

)
= Φ(B)−

1
2Φ(BA−1B)Φ(B)−

1
2 .

Therefore Φ(B)Φ(A)−1Φ(B) ≤ Φ
(
BA−1B

)
.

Theorem 3.5. LetA be a unital JC-algebra. If f is anA-convex function on (0,∞) andΨ is a unital positive linear
map onA, then

Ψ( f (A)) ≥ f (Ψ(A)) (A ∈ A). (3.8)
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Proof. It is known that every operator convex function f on (0,∞) has a special integral representation as
follows (see [2, Prob.V.5.5])

f (t) = α + βt + γt2 +

∫
∞

0

λt2

λ + t
dµ(λ), (3.9)

where α, β are real numbers, γ ≥ 0, and µ is a bounded positive measure. Since A-convex functions are
operator convex over a norm closed Jordan subalgebra B of B(H)sa. Applying functional calculus at A to
(3.9), [1, Proposition 1.21], and evaluating the value of functionΨ on it, we obtain

Ψ( f (A)) = α1K + βΨ(A) + γΨ(A2) +
∫
∞

0
Ψ(λA2(λ + A)−1)dµ(λ).

From the functional calculus atΨ(A) to (3.9), we obtain

f (Ψ(A)) = α1K + βΨ(A) + γΨ(A)2 +

∫
∞

0
λΨ(A)2(λ +Ψ(A))−1dµ(λ).

By Proposition 3.4, we have

Ψ(λA2(λ + A)−1) = λΨ(A2(λ + A)−1) = λΨ(A(λ + A)−1A)

≥ λΨ(A)(Φ(λ + A))−1Ψ(A) = λΨ(A)(λ +Ψ(A))−1Ψ(A)

= λΨ(A)2(λ +Ψ(A))−1.

ThereforeΨ( f (A)) ≥ f (Ψ(A)), sinceΨ(A2) ≥ Ψ(A)2.

Theorem 3.6. LetA , B be two unital JC-algebras. If Φ is a unital positive linear map, and σ is a mean onA, then

Φ(A σB) ≤ Φ(A) σΦ(B) (3.10)

for every two positive invertible elements A,B ∈ A.

Proof. Φ(A) is invertible since A is invertible. Define a map

Ψ(X) = Φ(A)−
1
2Φ(A

1
2 XA

1
2 )Φ(A)−

1
2 .

ThenΨ is unital positive linear map. So we have by Theorem 3.5

Ψ
(

f (X)
)
≤ f (Ψ(X))

for every operator concave function f on [0,∞). Let f be the representing function for σ, by Theorem 3.5 f
is operator concave. Therefore it follows that

Φ(A σB) = Φ
(
A

1
2 f (X)A

1
2

)
= Φ(A)

1
2Ψ( f (X))Φ(A)

1
2

≤ Φ(A)
1
2 f (Ψ(X))Φ(A)

1
2

= Φ(A) σΦ(B)

Theorem 3.7. Let A , B be two unital JB-algebras, and Φ : A → B be a unital positive linear map, then Φ is
bounded.
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Proof. We know that positive elements in a JB-algebra A generate it, i.e. A = A+ − A+, since a =
(a + ∥a∥1) − ∥a∥1. Therfore, it is sufficient, we show that Φ is bounded on positive elements in A. If S
is a bounded subset of A+, then for a ∈ S we have ∥ a ∥≤ M. This show that 0 ≤ a ≤∥ a ∥ 1 ≤ M.
Consequently, 0 ≤ Φ(a) ≤∥ a ∥ Φ(1) =∥ a ∥ so ∥ Φ(a) ∥≤∥ a ∥ for any a ∈ S.

Theorem 3.8. LetA , B be two unital JC-algebras. If Φ is a unital positive linear map, then

Φ(S(A|B)) ≤ S(Φ(A)|Φ(B)). (3.11)

Proof. By Proposition 1.7 (v), we have

S(A|B) = lim
λ→0

Tλ(A|B) = lim
λ→0

A♯λB − A
λ

Applying Theorem 3.7 and evaluating the value of function Φ on the above equality, we obtain

Φ(S(A|B)) = Φ
(
lim
λ→0

A♯λB − A
λ

)
= lim
λ→0

Φ(A♯λB) −Φ(A)
λ

.

Now from inequality (3.10), we deduce

Φ(S(A|B)) ≤ lim
λ→0

Φ(A)♯λΦ(B) −Φ(A)
λ

= S(Φ(A)|Φ(B)).

In the following, we give a complementary inequality to inequality (3.11).

Theorem 3.9. LetA , B be two unital JB-algebras and Φ be a unital positive linear map and A,B be two invertible
positive elements inA such that A ≤ B, then there is an 0 < ε < 1 such that B ≤ 1

εA and

εS(Φ(A)|Φ(B)) ≤ ε(Φ(B) −Φ(A)) = Φ(ε(B − A)) ≤ Φ(S(A|B)). (3.12)

Proof. Using the last inequality in (2.4) for Φ(A) and Φ(B), we get

S(Φ(A)|Φ(B)) ≤ Φ(B) −Φ(A).

Now, let X be a invertible element inA. Then there exists an 0 < ε < 1 such that X ≤ ∥X∥1H ≤
1
ε1H, by

inequality (1.11) in [1]. For X = {A
−1
2 BA

−1
2 }, we have B ≤ 1

εA.
Next, we show that for all 0 < ε < 1 and 1 ≤ t ≤ 1

ε

ε(t − 1) ≤ log t. (3.13)

Define

f (t) = log t − ε(t − 1),

then f ′(x) = 1
t − ε ≥ 0, for 0 < t ≤ 1

ε . Therefore f (t) ≥ f (1) = 0 for all 1 ≤ t ≤ 1
ε . Utilizing the functional

calculus t = {A
−1
2 BA

−1
2 } in (3.13) and then multiplying both sides by A

1
2 , we obtain ε(B − A) ≤ S(A|B). Since

Φ is a positive linear map, therefore

εΦ(B − A) = Φ(ε(B − A)) ≤ Φ(S(A|B)). (3.14)

This proves the last inequality in (3.12).
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