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Abstract. The susceptible-infected-recovered (SIR) epidemic model consists of a system of non-linear
ordinary differential equations that model the spread of non-fatal disease in the human population. In this
article, the Fibonacci wavelet-based collocation method is proposed for solving the SIR epidemic model.
The proposed scheme starts with the construction of operational matrices of integration based on Fibonacci
wavelets. Operational matrices of integration are then employed to convert the given SIR epidemic model
into a system of algebraic equations. Moreover, the Jacobian technique is utilized to linearize the given non-
linear model. Furthermore, the obtained results of the SIR epidemic model are then compared with other
existing numerical methods, including the fourth-order Runge-Kutta and residual power series methods.
At the end, the numerical simulations for the susceptible, infected, and recovered populations are carried
out via graphs and tables.

1. Introduction

Epidemiology is one of the most popular research areas in the field of biological sciences, which describes
the spread of infectious diseases on a larger scale in a particular area of a given population. In particular, it
plays an important role for better understanding of infectious diseases in a defined population. Generally,
infectious diseases are caused by pathogenic organisms that infect a host organism and can spread from one
organism to another organism either directly or indirectly. Infectious diseases regularly affect a significant
number of populations across a vast geographical area and have thus attracted biologists and mathemati-
cians to carry out significant research on the mathematical models describing infectious diseases. Among
the most prevalent infectious diseases include whooping cough [1], influenza [2], rubella [3], measles [4],
tuberculosis [5] and many more.

In the current study, the entire population involved in the transition of infection is categorized into
three epidemiological classes: a susceptible class (S), an infected class (I), and a removed class (R), which
stands for persons who have been immunized and have recovered with permanent immunity from the
disease. The susceptible-infected-recovered (SIR) epidemic model was first introduced by Kermack and
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McKendrick [6] in the 19th century in order to understand the dynamic behavior of infectious diseases. It
is one of the most basic compartmental models in epidemiology. There are several articles in the literature
that investigate the transmission dynamics of viruses and are derived from the basic SIR model. For
instance, the SIR epidemic model has been employed to investigate epidemiological phenomena including
the spread of smallpox [7], influenza [8], and HIV [9]. Many researchers developed mathematical models
to describe the coronavirus pandemic’s circumstances. Mathematical modeling plays an important role in
gaining a better understanding of disease transmission and provides many techniques for preventing the
spread of disease. The SIR epidemic model is characterized by the following first-order system of non-linear
differential equations:

dS
dt
= −αSI

dI
dt
= αSI − βI

dR
dt
= βI


, (1)

with initial conditions S(0) = S0, I(0) = I0,R(0) = R0 and is assumed that the total population remains
constant N, that is; S(t) + I(t) + R(t) = N. The SIR model consists of three compartments:

• S(t) is the number of individuals in the susceptible compartment, all individuals in this group are
susceptible if they contract the disease and are immune of being infected at time t.

• I(t) is the number of individuals in the infected compartment, all individuals in this group are infected
by the disease and can transmit it to the susceptible individuals at a time t.

• R(t) is the number of individuals in the removed (recovered or dead) compartment, in this group,
either an individual has recovered from disease or has died due to disease at time t.

• α represents the population’s rate of transition from susceptible to infected.

• β represents the transition rate from infected to immune(permanent) population.

  

Figure 1: Flowchart representation of the basic compartmental SIR epidemic model.

During the culminating years of 19th century, wavelet theory and its ramifications have proven to be of
utmost significance due to its various applications in science and engineering fields, including digital sig-
nal and image processing, pattern recognition, quantum physics, and many more. Wavelets obey certain
elegant properties such as orthogonality, compact support, and good localization, which has attracted a
wider class of researchers to investigate and study diverse areas related to various wavelet-based numerical
methods [10, 11]. Wavelet-based collocation methods have achieved significant recognition in numerical
analysis, due to their straightforward implementation, efficient computation, and rapid convergence. Ad-
ditionally, these methods are particularly advantageous for computer-based applications, as they don’t
require computing the inverse wavelet matrices, thereby reducing CPU time requirements. It is notewor-
thy that researchers have obtained the numerical solution to a wide range of both linear and non-linear
differential equations by using wavelet-based methods, including the Haar wavelets, Chebyshev wavelets,
Legendre wavelets, Gegenbauer wavelets, and Fibonacci wavelets [12–15].

Keeping in view the pleasant characteristics of the Fibonacci wavelets, such as regularity, higher
degree of smoothness and compact support, the main aim of this article is to develop an efficient numerical
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technique based on Fibonacci wavelets for obtaining the numerical solution of the SIR epidemic model (1).
The motivation and philosophy behind this approach is that it converts the given model into a system of
algebraic equations that can be solved conveniently by any classical method such as Newton’s iterative
method. The operational matrices of integration based on Fibonacci and Haar wavelets are obtained by
using the machinery of Chen and Hsiao [16]. The operational matrices of integration are then utilized to
convert the given system of non-linear differential equations into a system of algebraic equations.

The remainder of the article is organized as follows: In Section 2, the Fibonacci wavelets and their basic
properties are introduced along with their operational matrices of integration that convert the SIR epidemic
model into a system of algebraic equations. The implementation of the wavelet collocation methods on
the proposed SIR epidemic model is presented in Section 3. Section 4 is the centerpiece of the article that
presents the numerical simulation and discussion of the SIR model by the proposed methods. Finally, a
conclusion is drawn in Section 5.

2. Wavelets and Function Approximation

In 1982, Jean Morlet first introduced the idea of wavelets as a family of functions obtained from dilation
and translations of a single function called mother wavelet. The formal definition of a mother wavelet is
characterized by the notion of admissibility, which allows the reconstruction of the input signal from the
transformed one. A function ψ ∈ L2(R) is said to be an admissible wavelet if the following condition holds:

Cψ = 2π
∫
R

∣∣∣ψ̂(ω)
∣∣∣2

|ω|
dω < ∞. (2)

The condition given by equation (2) is referred to as admissibility condition. From From this equation, we
deduce that ψ̂(ω) → 0 as ω → 0. Specifically, if ψ̂(ω) is continuous, then ψ̂(0) = 0; that is,

∫
R
ψ(t) dt = 0,

which implies that ψ must be an oscillatory function with zero mean. Consequently, a wavelet ψ is is
inherently an oscillating function, and in fact should have good time localization properties so that it looks
like a small wave. That is why ψ is named as a wavelet. In addition to the admissibility condition, other
properties become relevant in specific applications. For instance, restrictions on the support of ψ and its
Fourier transform ψ̂ or the requirement forψ to have a certain number of vanishing moments that represent
the regularity of the wavelet functions to capture localized information. A wavelet ψ(t) is said to have
n-vanishing moments if it satisfies the following condition:

mk =

∫
R

tkψ(t) dt = 0, k = 0, 1, . . . ,n. (3)

This property reflects the regularity of the wavelet functions and their ability to capture localized features.
Applying the translation and scaling operators to a mother wavelet ψ(t) gives rise to a family of daughter
wavelets as

ψa,b(t) = |a|−1/2ψ

(
t − b

a

)
, (4)

where a ∈ R+ and b ∈ R are the scaling and translation parameters. The scaling parameter quantifies
the level of compression or scale, while the translation parameter b specifies the temporal position of the
wavelet. For 0 < a < 1, the wavelet ψa,b(t) given by (4) is the compressed version, while for a > 1 it turns to
be relaxed version of the mother wavelet ψ(t). Typical example of a wavelet is the Haar wavelet, which is
in fact the simplest and oldest orthonormal wavelet with compact support. Other examples of prominent
wavelets include the Morlet, Mayer, Shannon, Mexican hat and Fibonacci wavelets [17].

In the sequel, we aim to construct the operational matrices of integration based on Fibonacci and Haar
wavelets for obtaining the numerical solution of the SIR epidemic model. To begin with, we present an
overview of the fundamental notion of wavelets
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2.1. Fibonacci Wavelets and Function Approximation

This subsection is proposed for the construction of Fibonacci wavelets by utilizing the Fibonacci Polynomi-
als. For any t ∈ R+, the Fibonacci are recursively defined by:

Fm+2(t) = tFm+1(t) + Fm(t), (5)

with F0(t) = 0 and F1(t) = 1. Equivalently, the Fibonacci polynomials can be defined in closed form as:

Fm−1(t) =
λm
− µm

λ − µ
, m ≥ 1, (6)

where λ and µ are the roots of the companion polynomial η2
− tη − 1 of the recursion. Moreover, they can

be slo represented in the power form as [18]:

Fm(t) =
⌊m/2⌋∑

i=0

(
m − i

i

)
tm−2i, m ≥ 0. (7)

The Fibonacci wavelets on the interval [0, 1] are defined by [19]:

ψn,m(t) =


2(k−1)/2

√
Wm

Fm

(
2k−1t − n + 1

)
,

(n − 1
2k−1

≤ t <
n

2k−1

)
0, otherwise,

(8)

where k and n represent the resolution and translation parameters respectively, with k = 1, 2, . . . , n =
1, 2, . . . , 2k−1. In equation (8), Fm(t) denotes the mth degree Fibonacci polynomial that can be calculated by
using equation (7). The factor 1/

√
Wm appearing in (8) is the normalization coefficient and can be computed

as:

Wm =

∫ 1

0
Fm(t)Fm(t) dt, m = 0, 1, . . . ,M − 1.

=

⌊m/2⌋∑
i=0

⌊m/2⌋∑
j=0

(
m − i

i

)(
m − j

j

)(
2(−i − j) + n +m + 1

)−1
. (9)

For instance, if we choose k = 2,M = 3, the following Fibonacci wavelet family is obtained:

ψ1,0(t) =
√

2,

ψ1,1(t) = 2
√

6 t,

ψ1,2(t) =
√

15
14 (1 + 4t2),

 x ∈
[
0,

1
2

)
ψ2,0(t) =

√
2,

ψ2,1(t) =
√

6 (2t − 1),

ψ2,2(t) =
√

30
7

(
2t2
− 2t + 1

)
 x ∈

[1
2
, 1

)


. (10)

Any square integrable function 1(t) can be expanded in terms of Fibonacci wavelets as:

1(t) ≈ 1k,M(t) =
2k−1∑
n=1

M−1∑
m=0

hn,m ψn,m(t), (11)
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where hn,m denotes the Fibonacci wavelet coefficient vector and is given by

hn,m =
〈
1, ψn,m

〉
=

∫ 1

0
1(t)wn,m(t)dt. (12)

The matrix representation of equation (11) is expressed as

G = HTΨ(t), (13)

where HT denotes the transpose of the vector H and is of the form:

H =
[
h1,0, h1,1, · · · , h1,M−1, h2,0, h2,1, · · · , h2,M−1, · · · , h2k−1,0, h2k−1,1, · · · , h2k−1,M−1

]T
. (14)

The matrixΨ(x) referenced in equation (13) is the Fibonacci wavelet matrix of size 1 × 2k−1M defined as

Ψ(t) =
[
ψ1,0, ψ1,1, · · · , ψ1,M−1, ψ2,0, ψ2,1, · · · , ψ2,M−1, · · · , ψ2k−1,0, ψ2k−1,1, · · · , ψ2k−1,M−1

]T
. (15)

The following collocation points are taken into consideration for obtaining the Fibonacci wavelet approxi-
mations:

tℓ =
2ℓ − 1
2kM

, ℓ = 1, 2, . . . , 2k−1M. (16)

2.2. Operational Matrices of Integration via Fibonacci Wavelets

In this subsection, we will construct the operational matrices of integration associated with Fibonacci
wavelets (8) by following the Chen and Hsiao technique [16]:∫ t

0
Ψn,m(s) ds � QΨn,m(t), (17)

where Q signifies the Fibonacci wavelet operational matrix with a specific order 2k−1M × 2k−1M. For the
choice k = 2,M = 3, we can perform integration on equation (10) at the collocation points specified in
equation (16) thereby accomplishing:∫ t

0
ψ1,0(x) dx =

(
0,

√
3

6
, 0,

1
2
, 0, 0

)T

Ψ6×6(t),∫ t

0
ψ1,1(x) dx =

(
−

√
3

4
, 0,

√
35

10
,

√
3

4
, 0, 0

)T

Ψ6×6(t),

∫ t

0
ψ1,2(x) dx =

−29
√

105
1680

,

√
35

35
,

1
4
,

√
5
21
, 0, 0

T

Ψ6×6(t),

∫ t

0
ψ2,0(x) dx =

(
0, 0, 0, 0,

√
3

6
, 0

)T

Ψ6×6(t),∫ t

0
ψ2,1(x) dx =

(
0, 0, 0,−

√
3

4
, 0,

√
35

10

)T

Ψ6×6(t),∫ t

0
ψ2,2(x) dx =

(
0, 0, 0,−

29
√

105
1680

,

√
35

35
,

1
4

)T

Ψ6×6(t).
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Subsequently from equation (17), we have∫ t

0
Ψ6×1(x) dx � Q6×6Ψ6t), (18)

where

Ψ6×6 =



0
√

3
6 0 1

2 0 0

−

√
3

4 0
√

35
10

√
3

4 0 0

−
29
√

105
1680

√
35

35
1
4

√
5

21 0 0

0 0 0 0
√

3
6 0

0 0 0 −

√
3

4 0
√

35
10

0 0 0 −
29
√

105
1680

√
35

35
1
4


. (19)

2.3. Haar Wavelets and Function Approximation

For any t ∈ [0, 1], the Haar wavelet family is defined by [11]:

hi(t) =


1, t ∈ [α, β)

−1, t ∈ [β, γ)

0, elsewhere,

(20)

where

α =
k
2 j , β =

k + 0.5
2 j , γ =

k + 1
2 j , (21)

i = 0, 1, . . . ,m − 1,m = 2p+1, p = 0, 1, . . . , J and J, a positive integer representing the maximum level of
resolution, the parameters j and k denote the integer decomposition of the index i. Specifically, i is
expressed as k + 2 j

− 1, where 0 ≤ j < i, and k ranges from 1 to 2 j. Any function 1(t) ∈ L2[0, 1] can be

expanded in Haar wavelet series as:

1(t) = b0h0(x) + b1h1(t) + b2h2(t) + · · · =
∞∑

i=0

bihi(t), (22)

where bi, i = 0, 1, 2, . . . , denotes the Haar wavelet coefficients and are given by

bi =
〈
1, hi

〉
=

∫ 1

0
1(t)hi(t) dt, (23)

If 1(t) is approximated as a piece-wise constant function in each sub-interval, then the infinite series given
by (22) will be written in truncated series, as a result we may write the discrete form of 1(t) in matrix form
as:

G = BT
mHm, (24)

where G and BT
m = [b0(t), b1(t), b2(t), · · · , bm−1(t)] represent vectors of dimensions 1 × m and Hm denotes the

Haar wavelet matrix of orde m = 2p+1, defined as

Hm =


h0
h1
...

hm−1

 =


h0,0 h0,1 . . . h0,m−1
h1,0 h1,1 . . . h1,m−1
...

...
...

...
hm−1,0 hm−1,1 . . . hm−1,m−1

 . (25)
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For obtaining the Haar wavelet approximations, the following collocation points are taken into considera-
tion:

tℓ =
ℓ − 0.5

m
, ℓ = 1, 2, . . . ,m. (26)

2.4. Operational Matrices of Integration via Haar Wavelets

Invoking the Haar wavelets as defined in (20), we construct the operational matrices of integration corre-
sponding to Haar wavelets by following the Chen and Hsiao strategy [16]:

SP1
ℓ(t) =

∫ t

0
hi(s) ds

P2
ℓ(t) =

∫ t

0
P1
ℓ(s) ds

P3
ℓ(t) =

∫ t

0
P2
ℓ(s) ds


. (27)

By virtue of Haar wavelets (20), the integrals in (27) can be evaluated analytically. As a result, we obtain
the following equations:

P1
ℓ(t) =


t − α, t ∈ [α, β)

γ − t, t ∈ [β, γ)

0, elsewhere,

(28)

P2
ℓ(t) =



0, t ∈ [0, α)
1
2

(t − α)2, t ∈ [α, β)

1
4m2 −

1
2

(γ − t2), t ∈ [β, γ)

1
4m2 , t ∈ [γ, 1),

(29)

P3
ℓ =



1
6

(t − α)2, t ∈ [α, β)

1
2

(t − β) +
1
6

(γ − t)3, t ∈ [β, γ)

1
4m2 (x − β), t ∈ [γ, 1)

0, elsewhere.

(30)

For instance, if we choose m = 4 and m = 8, respectively, then the Haar coefficient matrix H and its
corresponding operational matrix of integration P are expressed as :

H4 =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 , P4 =
1
8


1 3 5 7
1 3 3 1
1 1 0 0
0 0 1 1

 .
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H8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


,P8 =

1
64



32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 4 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 − 1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0


.

3. Method of Solution

In this section, we shall employ the Fibonacci wavelet method (FWM) and Haar wavelet method (HWM) for
obtaining the approximate solution of the SIR epidemic model. First, we linearize the given SIR epidemic
model and then we will apply both the proposed methods for obtaining the numerical solution. For solving
the SIR epidemic model, it is imperative to recall the non-linear SIR model epidemic as:

dS
dt
= −αSI

dI
dt
= αSI − βI

dR
dt
= βI


, (31)

with initial conditions(
S(0), I(0),R(0)

)
=

(
S0, I0,R0

)
. (32)

The linearized form of the non-linear model (31) at any general equilibrium point (S∗, I∗,R∗) is given by

dY
dt
= JY, (33)

where J represents the Jacobian of the model (31) at (S∗, I∗,R∗) and is given by

J(S∗, I∗,R∗) =


−αI

∣∣∣∣
(S∗,I∗,R∗)

−αS
∣∣∣∣
(S∗,I∗,R∗)

0

αI
∣∣∣∣
(S∗,I∗,R∗)

(
− αS − β

)∣∣∣∣
(S∗,I∗,R∗)

0

0 β 0

 . (34)

Consequently, the linearized version of the non-linear model (31) at the general equilibrium point (S∗, I∗,R∗)
is given by

dS
dt

=
(
− αI

∣∣∣∣
(S∗,I∗,R∗)

)
S −

(
αS

∣∣∣∣
(S∗,I∗,R∗)

)
I

dI
dt

=
(
αI

∣∣∣∣
(S∗,I∗,R∗)

)
S +

((
− αS − β

)∣∣∣∣
(S∗,I∗,R∗)

)
I

dR
dt

= βI


. (35)

3.1. Solution of SIR Epidemic Model via Fibonacci Wavelets



N. A. Nayied et al. / Filomat 39:18 (2025), 6185–6198 6193

Approximating the highest derivatives in the model (35) in terms of Fibonacci wavelet basis as:

dS
dt

=

2k−1M∑
ℓ=1

a1ψℓ(t)

dI
dt

=

2k−1M∑
ℓ=1

a2ψℓ(t)

dR
dt

=

2k−1M∑
ℓ=1

a3ψℓ(t)


, (36)

where ar =
[
h1,0, h1,1, · · · , h1,M−1, h2,0, h2,1, · · · , h2,M−1, · · · , h2k−1,0, h2k−1,1, · · · , h2k−1,M−1

]T
, r = 1, 2, 3 are the un-

known Fibonacci wavelet coefficients. Differentiating equation (36), both sides with respect to t and using
(32), we have

S(t) = S(0) +
2k−1M∑
ℓ=1

a1Q1
ℓ(t)

I(t) = I(0) +
2k−1M∑
ℓ=1

a2Q1
ℓ(t)

R(t) = R(0) +
2k−1M∑
ℓ=1

a3Q1
ℓ(t)


, (37)

where the only unknowns are a1, a2 and a3. Substituting (36) and (37) in equation (35), we get a system
of algebraic equations. By solving the algebraic equations at the predefined collocation points (16) by
Newton’s method in MATLAB software, we will obtain the unknown Fibonacci wavelet coefficients a1, a2
and a3. Thereafter, substituting ar, r = 1, 2, 3 in equation (37), we will get the required solutions of S(t), I(t)
and R(t) via Fibonacci wavelets.

3.2. Solution of SIR Epidemic Model via Haar Wavelets

Expanding the highest derivatives present in the model (35) in terms of Haar wavelet basis as:

dS
dt

=

m∑
ℓ=1

B1Hm(t)

dI
dt

=

m∑
ℓ=1

B2Hm(t)

dR
dt

=

m∑
ℓ=1

B3Hm(t)


, (38)

where Br =
[
b0(t), b1, b2(t) . . . , bm−1(t)

]
, r = 1, 2, 3 are the unknown Haar wavelet coefficients and H is given

by equation (25). Next, differentiating equation (38) both sides with respect to t and using (32), we obtain

S(t) = S(0) +
m∑
ℓ=1

B1P1
ℓ(t)

I(t) = I(0) +
m∑
ℓ=1

B2P1
ℓ(t)

R(t) = R(0) +
m∑
ℓ=1

B3P1
ℓ(t)


. (39)
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In equation (39), the only unknowns are Br, r = 1, 2, 3. Now, by substituting (38) and (39) into (35) and
taking the collocation points (26) into consideration, we obtain a system of algebraic equations. By solving
the system of algebraic equations via Newton’s method in MATLAB software, we will attain the values of
unknown vectors B1, B2, and B3. Next, substituting the wavelet coefficients B1, B2, and B3 in equation (39),
we will get the desired solutions S(t), I(t), and R(t) via Haar wavelets.

4. Numerical Results and Discussion

In this section, we will carry out numerical simulation and analyze the behaviors of the susceptible, infected,
and recovered by utilizing the operational matrices based on Fibonacci and Haar wavelets as discussed in
Section 2, which converts the given model into a system of algebraic equations. The numerical simulation
and behaviors of the susceptible, infected, and recovered people of the SIR epidemic model are depicted
by means of Figures 2-7.

dS
dt
= −0.001SI

dI
dt
= 0.001SI − 0.072I

dR
dt
= 0.072I


, (40)

with initial conditions S(0) = 620, I(0) = 10 and R(0) = 70. From Figures 2-4, it is pertinent to mention that
the numerical outcomes obtained by FWM and HWM for susceptible, infected, and recovered populations
are almost identical at K = 3,M = 4 and J = 3. Figure 2 shows that the rate of susceptible population is
decreasing with respect to time t. Figure 3 depicts that the population of the infected class is increasing
with respect to time t. Also from Figure 4, we infer that the recovered population is increasing over time
t. Furthermore, the results obtained SFWM(t) (susceptible by FWM), IFWM(t) (infected by FWM), RFWM(t)
(recovered by FWM) along with SHWM(t) (susceptible by HWM), IHWM(t) (infected by HWM), and RHWM(t)
(recovered by HWM) are almost similar.

Moreover, to show the accuracy between the proposed methods, we have computed the absolute
error and relative error in Figures 5-7. The absolute error and relative error between the solutions SFWM(t),
IFWM(t), RFWM(t) along with SHWM(t), IHWM(t), and RHWM(t), where the absolute error and relative error are
characterized as follows:

AE =
∣∣∣SHWM − SFWM

∣∣∣, Rel(t) =
∣∣∣∣∣SHWM − SFWM

SHWM

∣∣∣∣∣ , (41)

AE =
∣∣∣IHWM − IFWM

∣∣∣, Rel(t) =
∣∣∣∣∣ IHWM − IFWM

IHWM

∣∣∣∣∣ , (42)

AE =
∣∣∣RHWM − RFWM

∣∣∣, Rel(t) =
∣∣∣∣∣RHWM − RFWM

RHWM

∣∣∣∣∣ . (43)

In addition, we have also compared the solutions of susceptible, infected, and recovered populations
obtained through the Fibonacci wavelet with the Haar wavelet in tabular form. From the Tables 1-3, we
conclude that both methods are close to each other.



N. A. Nayied et al. / Filomat 39:18 (2025), 6185–6198 6195

0 0.2 0.4 0.6 0.8 1

t

612

613

614

615

616

617

618

619

620

S(
t)

Fibonacci

Haar

Figure 2: Plot of susceptible people at time t by Fibonacci and Haar wavelets at K = 3,M = 4 and J = 3.
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Figure 3: Plot of infected people with respect to time by Fibonacci and Haar wavelets at K = 3,M = 4 and J = 3.
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Figure 4: Plot of recovered people at time t by Fibonacci and Haar wavelets at K = 3,M = 4 and J = 3.
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Figure 5: Relative and absolute error between FWM and HWM for the class S(t).
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Figure 6: Comparison of relative error and absolute between FWM and HWM for the class I(t) .
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Figure 7: comparison of the relative error and absolute error between proposed methods for the class R(t).
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t ↓ FWM RK4[20] RPS[20]

0.1 619.3630333045 619.3630315796 619.3630315791

0.2 618.6909398455 618.6909370609 618.6909370597

0.3 617.9818662901 617.9818692109 617.9818692025

0.4 617.2338998682 617.2338939798 617.2338939757

0.5 616.4449824427 616.4449876950 616.4449876822

0.6 615.6130332236 615.6130341588 615.6130341421

0.7 614.7358218885 614.7358219653 614.73582195284

0.8 613.8110448211 613.8110418712 613.8110418536

0.9 612.8362800988 612.8362842538 612.836284225

Table 1: Comparison of FWM with the RK4 and RPS for susceptible at K = 3,M = 4.

t ↓ FWM RK4[20] RPS[20]

0.1 10.5629569164 10.5629598705 10.5629598709

0.2 11.1568891861 11.1568820133 11.1568820144

0.3 11.7833841048 11.7833849513 11.7833849586

0.4 12.4441608259 12.4441620994 12.4441621031

0.5 13.1409856662 13.1409840323 13.1409840435

0.6 13.8757021034 13.8757008108 13.8757008253

0.7 14.6502449588 14.6502440931 14.6502441041

0.8 15.4666220146 15.4666291698 15.4666291853

0.9 16.3269598710 16.3269568911 16.3269569155

Table 2: Comparison of FWM with the RK4 and RPS for infected individual at K = 3,M = 4.

t ↓ FWM RK4[20] RPS[20]

0.1 70.0740088587 70.0740085497 70.0740085498

0.2 70.1521889611 70.1521809256 70.1521809257

0.3 70.2347439430 70.2347458376 70.2347458387

0.4 70.3219450324 70.3219439206 70.3219439211

0.5 70.4140292273 70.4140282725 70.4140282742

0.6 70.5112639211 70.5125663085 70.5112650324

0.7 70.6139358387 70.613933941 70.6139339429

0.8 70.7223209258 70.7223289588 70.7223289610

0.9 70.8367585498 70.8367588550 70.8367588586

Table 3: Comparison of the solutions acquired via FWM for the recovered class with RK4 and RPS at K = 3,M = 4.
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5. Conclusion

In the present article, we developed a new wavelet-based numerical technique involving the Fibonacci
wavelets to solve the SIR epidemic model, which is governed by a system of non-linear first order differential
equations. The operational matrix based on the Fibonacci wavelets are employed to convert the SIR
epidemic model into a system of algebraic equations. The system of algebraic equations can be solved
by different numerical techniques, including Newton’s method, Broyden’s method, fsolve command in
MATLAB, and many more. The behaviors of susceptible, infected and recovered populations are also
illustrated graphically. The obtained results are compared with the Haar wavelet method to show the
accuracy and efficacy of the Fibonacci wavelet method. The numerical simulations suggests that both
the methods are very close to each other, thus verifying the authenticity of the Fibonacci wavelet-based
collocation method.
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