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Improved geometric properties of unified Struve function

Naveen Kumari®*, Jugal Kishore Prajapat?

*Department of Mathematics, Central University of Rajasthan, Bandarsindri, Kishangarh-305817, Dist.-Ajmer, Rajasthan, India

Abstract. In this article, we prove certain improved geometric properties like univalence, starlike, convex,
close-to-convex, and strongly starlike of order a for the unified Struve function in the open unit disk. We
present new procedures to prove these results, which rely on differential inequalities for normalized analytic
functions. Additionally, we have established inclusion relations for the unified Struve function, and results

on univalency of integral operators containing unified Struve function. Finally, we obtain certain special
cases to demonstrate the improvement in the existing results.

1. Introduction

It is well known that special functions, such as Bessel, Struve, Lommel, Mittag-Leffler, and Wright
functions, have many beautiful geometric and monotonicity properties. Among these, the Struve function,
which is associated with the Bessel functions, appears in various applications. While it is not feasible to
mention all existing applications of Struve function, some include beamforming, Wave problem, describing
the effect of confining interface on Brownian motion of colloidal particles at low Reynolds numbers, leakage
inductance in transformer winding, efc.; see the papers [4, 8, 27] and the references therein. In recent years,
the geometric and monotonicity properties of the Struve functions were investigated in a series of papers
[6,17].

Now we present some basic concepts of geometric function theory. Let H denote the class of analytic
functions in the unit disk D := {z € C : |z| < 1}, Hy € H contains functions f such that f(0) = 0, and A € Hy
contains functions f such that f(0) = 1. Let f,g € H, then the function f is subordinate to g, written as
f(z) < g(z) (z € D), if there exist a Schwartz function w, with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).
If g is univalent, then (e.g., [10, vol.1, p.85])

f(2) < g9(z) = [f(0) = g(0) A f(D) C g(D)].

Also, let f, g € H defined as f(z) = Zrnz” and g(z) = anz”, then the convolution of f and g (denoted by
n=1 n=1
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f *g) is defined as follows:
(f+9)@) =Y rusuz".
n=1
A function f € A is said to be starlike (with respect to the origin 0), denoted by f € &, if tw € f(ID)
whenever w € f(ID) and t € [0, 1]. More generally, for a given « (0 < a < 1), a function f € A is said to be
starlike function of order « in D, denoted by f € S*(a), if

x (£

f@)
A function f € A is said to be convex, denoted by f € K if f(ID) is starlike with respect to each point in ID.
More generally, for a given 0 < a < 1, a function f € A is called a convex function of order «, denoted by

feK(a),if
Zf”(Z)

/'@
A function f € Ais said to be close-to-convex, denoted by f € C, if C\ f(ID) can be represented as a union

of non-crossing half lines. More generally, for a given 0 < a < 1, a function f € A is called a close-to-convex
function of order a, denoted by f € C(a), if there exists a convex function g in ID (which is not necessarily

normalized) and
% ( ei@ f/ (Z)

9'(2)
It is well known that close-to-convex functions are univalent in ID, but not necessarily the converse. A
function f € A is said to be strongly starlike of order g (0 < g < 1), denoted by f € S:(B), if zf'(z)/ f(z) is
subordinate to the function [(1 + z)/(1 — 2)]?, which is equivalent to

)>a, (zeD;0<a<l).

‘R(1+ )>a, (zeD;0<a<1).

)>a, (zeD;peR;0<a< ).

‘arg{zﬁg)}' < E,B, (zelD; 0<p <.

Furthermore, a function f € A is strongly convex of order g (0 < § < 1), denoted by f € K,(p), if zf(z) is
strongly starlike of order 5. Furthermore, we have the following relationships:

S0):=8, C0):=C, KO0 =% S@1):=8, and Ki(l):=%X.

For more details about the subclasses of A, we refer to [10].
Recently, Peng and Zhong [21] defined a subclass of A by

Qz{feﬂ: 2f () - f) < % zeD},

and proved that functions in Q are starlike in D, and convexin Dy, = {z : |z| < 1/2}. Furthermore, Mahzoon
and Kargar [15] proved that functions in € are close-to-convex, also proved a sharp result that, if f € A
and |( f(2)/z)| <1/2(z€ D, z #0), then f € Q. Earlier, Tuneski [28] defined another subclass of A by

Ap={feA: |f'(2)<n 0<n<ly,

2(1-a)

and proved that functions in A, are univalentif n = @ (0 < a < 1), starlike of order a if = O0<a<

2—«a -
1 —
1), and convex of order o if n = ¢ (0 < a < 1). An infinite sequence {r,},>1 of complex numbers is called
1 ’_a q p

(o)

a subordination factor sequence if for every convex univalent function f(z) = anz” (z € D), we have

n=1
{Zrnsnz" 1z € ID} C f(D).

n=1
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It is well known that the sequence of complex numbers {b,},>1 is a subordination factor sequence, if

1 T
§+‘R[;bnz ]>0, VzeD.

(see [29]).
A unified form of Struve and modified Struve functions can be defined by
R —o) z 2n+p+1 b +1
Wp,p,e(2) = Z 9 (—) , (z eDp—-— ¢ ]N) (1)

nZOF(n+§)F(p+n+b+—2) 2

where all b,c,p,z € C. This function unifies certain functions of Bessel’s family; for example, the function
Wy, Teduces to the Struve function H, on taking b = ¢ = 1; reduces to the modified Struve function L,
on taking b = 1, ¢ = —1; and reduces to the Bessel function i, on taking b = —2,p = 1. Further, for a
non-negative integer 1, we have H_n_%,m (z) = (—1)”]n+%(z), and H_n_%,lr_l(z) = In+%(z), where [, and [, are
Bessel and modified Bessel functions, respectively. These unifying properties of function wj ;. motivate us
to refer to this as the Unified Struve function. In addition, we can find easily that the function w, ;. is a
solution of the Bessel type differential equation

4 Z\P+1
2w’ b -p=-0-1 =] . 2
(@) + bz () + (22 = p* = (b = Do) = ﬁr(p+%)() @

For recent results on geometric properties of unified Struve functions, one can refer to [6, 17].
Clearly, wp(z) ¢ A, thus it is natural to consider the following normalization of the function w ;. in
D:

(e8]

2\ 1» (=c/4)" n+
)Z > Wype(Vz) = ;mz !
2/n 2 J/n

b+2 b+2
lez(, 5Pt —%), (ZG]D pEeER; p——g?_]NU{})

b+
!]p,h,c(z) 2v \/EF(P +

®)

where (a), is the Pochhammer symbol defined as ap = 1, (@), = a(a +1)---(a + n — 1) with n > 1, and
function 1 F; is a special case of well known generalized hypergeometric function. In addition, we define

AI;,,b,C(z) = Gpp,c(2)/z. A further normalization of the function wy . is defined as follows:

L . (-1)"c" b+2
Lipe =272 2Pw, . Z", zeD;peR;, -p— —= ¢ INU({0}).
p.b P,b ;22n+1rn+3)r(n+p+b+2) ( P P 2 {})

In view of [16, Chapter 11], we observe that g,,. contains many well-known functions as its special
case, for example

3 cz),

J1,-1,(2) = 0F1(—; -=

Sim5 ) 911@=2i6inVz), gy, 4(2) =2 (sinh V),

(1 + 2) %(Sin\E+ coz_\/i)]'

zZ

9111(2) =201 = cosVz), g1, 4(2) = 2(coshVz—1), g3,,(2) = 42

b+2

Furthermore, taking b € R, ¢ = -1, p + — = 1, and using duplication formula for Gamma function

I'(2z) = % 2271T(2)T (z + %) , We obtain

Jpp,-1(2) = zE2p(2) = Vz sinh(z),
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where E, 4(z) is well known Mittag-Leffler function.

Moreover, suppose that the function y, ;. defined by 7, (z) = A;,,b,c(z2), where p,b,c € C. In particular,
we denote the following functions

Yp1,1(z) = Hy(z) = 2P \/nl (p + %)z‘p_al(z), zeD, (4)

Vora(2) = Ly(2) = 2 VAT (p + g)z_”_le(z), zeD. 5)

Recently, many mathematicians have obtained the univalence criteria of several integral operators that
preserve the class S. In this context, many results are available in the literature such as, Srivastava et al.
[23-26] studied univalency of certain generalized integral operators, Kanas and Srivastava [12] studied
univalence criteria for analytic functions defined in ID by using the Loewner chains method, Baricz and
Frasin [2] studied some integral operators involving Bessel functions, Frasin [9] studied the convexity
and strong convexity of the integral operators defined in [2], Din et al. studied some integral operators
involving Struve functions [6], and Park et al. [18] studied some integral operators involving Lommel
function. Motivated by the work of the above authors, we contribute to this univalence theory by studying
the univalence of integral operators involving Struve functions. Using the Struve functions g, »., we define

(K;’}Zi annand.ﬁp”gZ K :D—>C

the following class preserving operators J"' 7> st for Py

1,02, 00551, B2, Y
as follows:

P1,P2s+Pn .
111 .., an;ﬁl,ﬁz,...,ﬁ,,;n;y(z) = «7a1,az,,..,an;ﬁl,ﬁz,...,ﬁn;n;y [gpl,b,c/ Ipabere -+ /gp”,b,c] (Z)

1/y
Yo j gpj,b,C(t) & )
L H Tyt )) r) ©
7(51 Zil,'.'.'./i’,zl 1(2) 1= Koy, . [gm,b,u Ipabiere-+r gp,,,b,c] (2)

i {[1 ' Zn: ijJ fz ﬁ (gpf,h,c(t)e’\gpj,b,c(t))“;‘ it
j=1 0 G

}1/(1{7_1 a;)

and

P1/P2,+1Pn o—
Lal az,. a,,;ﬁl,ﬁz,...,ﬁ,l;n;y(z) T ‘Ealﬂz,mﬂn;ﬁuﬁz,m,ﬁn;n;y [gm,b,cr Ipabecre-r gpn,b,C]

, 1y
Z B , aj o B
=17 J, o T enae0) “’)]dt] - ®
j=1

In particular, if we consider @; = 0 (1 < j < n) in equation (6) , @ = a (1 < j <n), A = 0in equation (7), and
n =1with a; =0, p1 = fin equation (8), we obtained the operators studied in [6].

In this paper, we improve the following results studied by Orhan and Yagmur [17]:
Lemma 1.1. [17, Theorem 2.1] Let b,p,c € Randk =p + (b + 2)/2.
TM+2+ VM? +12M + 4

(i) If k > |c|, where M is the solution of the equation cosx = x, then the function

Gp,c(2) is univalent in D.

(ii) Ifk > ot \/_|c| then g, ,.(2) is starlike in ID.
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13 . .
(iii) Ifk > ﬁlcl, then gy ,(z) is convex in ID.

7
(iv) Ifk > Elcl, then g, ,0(z) is convex in Dy 5.

Lemma 1.2. [17, Theorem 3.3] Let b,p,c € R, k=p + (b +2)/2 and a € [0, 1).
9—-7a+ Va2 —14a + 17

(i) Ifk > 11— Icl, then g, 1,(2) is starlike of order a.
g 13 -7« .
(ii) Ifk > mlcl, then g, 4,0(z) is convex of order a.

Remark 1.3. The result of Lemma 1.2(i) is corrected version of [17, Theorem 3.3].

Lemma 1.4. [17, Theorem 4.1] Let b,p,c e R, k =p+ (b+2)/2and a € [1/2,1). If k >

close-to-convex of order a.

The following lemmas will be required to get the main results:

6203

lcl, then gy pc(2) is

2
Lemma 1.5. [17] Suppose that p,b e R,c € Cand k =p + bL, then gy, satisfies the following inequalities:

2x

2
0 |gy,,0- 229N < S (zepes M)
Tpbe z |~ 3@k —d)’ )
o il P (z eD,k> E)
7,42 |~ 12k=7Icl’ T 2)
“pe?) cl(6k — Icl) c
(i) |22 1] < , (zemi>%)
Ipb,e(2) 3(4k = |cl)(3k = Icl) 3
. ) 12k + |c| ( Il )
(iv) ng,b,c(z)' < 3@k - 1) zeD, k> )
) . 3 1
Lemma 1.6. [13]If y > x > xo, where xo = 2.089... is the unique root of —Inx + — + o = 0. Then
o _x
I'y) "y

Lemma 1.7. [7] Let {r,},>0 be a sequence of real numbers such that ro =1, 1, — 2ty + rye2 2 0and vy, — 1441 > 0

(o8]

forall n € N U{0}, then the inequality R [1 + Zrnz"] > %, z € D holds.

n=1

Lemma 1.8. [11] Let M(z) be convex and univalent in ID with M(0) = 1. If F(z) be analytic in ID with F(0) = 1 and

F<MinD, then

Z Z
”+1f t”F(t)dt<n+1f M@, VneNU {0}
Zn+1 0 Zn+1 0
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Lemma 1.9. [19] Let n € C and t € C be such that R(n) > 0and |t| < 1 (t # —1). If f € A satisfies the following
inequality:

Tz + (1 - |z|2v) %‘ <1 (zeD),

then the integral operator F,(z) € S, where F,, is defined by

z 1/n
F,I(z):(n fo gt f’(t)dt) . )

Lemma 1.10. [20] Let u € C be such that R(u) > 0. If f € A satisfies the following inequality:

(1 - Izlz’““)) zf"(2)
R(w) f'(2)

then for all n € C such that R(n) = R(u), the integral operator F,(z) € S, where F, is given by (9).

<1 (zeD),

2. Improved Geometric Properties

For convenience throughout the sequel, we use the following notations for a € [0,1) and § € (0, 1]:

£= pe 22 pbew, =91 ceo),
o = i[m _ 12+ 14+ 49)P + 24|c|], &= 21—4[7|c| _12— 14+ P + 24|c|],
6 = m :(7 — 5a)l — 12(1 — a) + \/ (1201 - @) = (7 = 5a)iel)” + 12(1 = @)(2 - @)lcl(8 + |c|)],
& = a7 50l 120 )~ (1200 ~0) -7 50kl + 1201 - )2 - el + e,
& = m i(11 —7a)ld - 12(1 — a) + \/ (1201 = &) - (11 = 7)lel) + 24(1 - @)(2 — )cl(8 + |c|)],
& = m :(11 ~7a)l] - 12(1 — o) - \/ (1201 - @) = (11 = 7a)lel) +24(1 = A)(2 - @)[cl(8 + |c|)],
i = gyl =126+ 12— 4+ 3R + 240l + )]

4 = ﬁ[(él + 3B)Ic| — 128 - \/(12ﬁ — (4 + 3pB)lcl)? + 24pIc|(8 + |c|)_.

Our first result of the paper is provided below.
Theorem 2.1. Suppose that p,b € R, ¢ € C, and c; is unique non-negative root of (k) = 0 for all c € C, where
Ty(k) = 12K* + (12 = 7|c|)k — 4lc].

If k > ¢y, then gyp(z) € Q. In particular g,,(2) is starlike, univalent and close-to-convex in D. Also, gy (2) is
convex in Dy .



N. Kumari, ]. K. Prajapat / Filomat 39:18 (2025), 6199-6214 6205

Proof. We require the following inequalities, which can be demonstrated by using mathematical induction:

(5) 2 3i+1), O 2 k(k+1)" (neNUIO).

2 2
We have

Jpb,e(2) - (1 + D(=c/4™ | ldx( e\ 20+ 1)

‘( )‘ Z | < 6 _0(4<k+1>) = kD -y < o el

which is less than 1/2 if (k) > 0.

The equation [i4(k) = 0 has two roots, ¢; > 0 and ¢; < 0 for any complex number c. Moreover, if
k > (7|c| = 12)/24, then I (k) strictly increases. We have ¢; = max{0,co,c1} > (7|c| — 12)/24. Therefore,
Iiq(k) > 0 for k > ¢1. Thus, we can conclude that g, (z) € Q, which completes the proof. [

TM+2+ YM2+12M + 4

Remark 2.2. (i) For c € C, the inequality A c| > c1 holds, where M is the solution of the

equation cos x = x. This indicates that when ¢ € C, Theorem 2.1 improves Lemma 1.1(i). In particular, for ¢ = 100,
Lemma 1.1(i) shows that if k > 61.09, then g, .(z) is univalent. However, Theorem 2.1 shows that if k > 57.9, then

Gppc(2) is univalent.
! 9 + r ] . e
(ii) If c € C and |c| < 10.685, then lc| > ¢1. This shows that Theorem 2.1 improves Lemma 1.1(ii) for

lc| < 10.685. In particular, for ¢ = 2, Lemma 1.1(ii) shows that if k > 1.094, then g, (z) is starlike. However,
Theorem 2.1 shows that, if k > 0.904, then g, (z) is starlike.

7
(iii) Theorem 2.1 improves Lemma 1.1(iv) in ID1,, as for ¢ € C, we have E|C| > .

Now taking b = c =1and b = —c = 1 in Theorem 2.1, we obtain the following results, respectively:
-5+ v217 3 . .
Corollary 2.3. If p € R such thatp > ————— — 3~ —1.0945, then zH,(Vz) € Q. In particular zH,(z) is
starlike, univalent and close-to-convex in ID, and convex in Dy 5.

5+ V217 3

Corollary 2.4. If p € R such that p > _T -5~ —1.0945, then zL,(\z) € Q. In particular zL,(z) is

starlike, univalent and close-to-convex in ID, and convex in IDy ;.

Remark 2.5. The Corollary 2.3 improves the result presented in [17, Corollary 2.2 (iii)], which states that if p >

#ﬁ ~ —0.9532, then zH, \z is starlike in the unit disk D. Additionally, the findings regarding the

univalence of zH, \z in ID and its convexity in Dy 5 are further improved in comparison to the results [17, Corollary
2.2 (i) and (vi)]. Furthermore, results established in the Corollary 2.4 for the univalence, starlikeness of zL,(Vz) in
D, and convexity in 1Dy, are improved than the results obtained by Orhan and Yagmur in [17, Corollary 2.3 (ii), (iii)
and (vi)], respectively.

Theorem 2.6. Suppose that p,b € R, c € C\{0}, p € (0,1] and « € [0, 1).
(i) Let cy is unique positive root of Ji,«(k) = 0, where
Jiea(k) = 48(1 — a)k? + (48(1 —a)— (28— ZOa)Icl)k - (2= a)lcl(8 + [c]).

Ifk > co, then g, ,(2) is starlike of order a in ID.
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(ii) Let c3 is unique positive root of Mg« (k) = 0, where
Mig.a(K) = 24(1 - @) + (24(1 - @) = (22 - 14a)|cl )k — (2 = )Ic|(8 + [cl).
Ifk > c3, then gy ,(2) is convex of order a in ID.
(iii) Let c4 is unique positive root of Niqg(k) = 0, where
Nias(k) = 24BK” + (248 = 6lclf = Blel)k — Icl(8 + Iel).
Ifk > cy, then g, ,.(2) is close-to-convex of order f in D.

Proof. By applying the triangle inequality and the following set of inequalities:

(3) >R o ks 1) eN),
n+1

2 2 '
we obtain
B (=c/4)" Y (n + 1)(n + 2)z"
5@ = |5 Z G721 M
lel el el \'_ 8k + Dl +[cP
3k 2k (4(k n 1)) = SkAk 1) ey 1), k> maxi0, ol
HIfn< %, then |g;',blc(z)| <21-a)/2-a),ie,
Jida(k) = 48(1 — a)k? + (48(1 - @) = (28 — 20a)cl )k — (2 = )Ic(8 + Icl) 2 0. (10)

The equation (k) = 0 has roots ¢; > 0 and ¢; < 0. Besides, Jiqq(k) is strictly increasing for k >
((7 = Ba)lcl = 12(1 — @))/(24(1 — a)) and ¢; = max{0, ¢y, 2} > ((7 = 5a)lc| — 12(1 — a))/(24(1 — @)). Therefore,
Jicha(k) = 0 for k > c,. Hence, g,(2) is starlike of order a for k > c,.

(i) If n < ; - Z then g, (2] < (1 - @)/Q2 - a), i,

Mig,a(K) = 24(1 - a)k® + (24(1 - ) - (22 - 14a)lcl )k = (2 = @)|cl(8 + Ic]) = 0. (11)

The equation Mg (k) = 0 has roots ¢3 > 0 and ¢3 < 0. Moreover, Miq,(k) is strictly increasing if k >
(11 = 7a)lel — 12(1 — a))/(24(1 — @)), and c3 = max{0, ¢, c3} > (11 — 7a)lc] — 12(1 — @))/(24(1 — «)). Hence,
Mqa(k) = 0 for k > c3. Therefore, g,4,(z) is convex of order «a for k > c3.

(iii) Suppose 1 < 8, then Ig;’, b BN < B, ie.
Nig,p(k) = 24Bk* + (24P — 6|clB — 8lcl)k — |cl(8 + Icl) > 0. (12)

The equation N (k) = 0 has two roots, ¢4 > 0 and ¢ < 0. Furthermore, Niq,(k) is strictly increasing if
k> ((4 + 3B)lc| — 12B)/12B, and ¢4 = max{0, co, c4} > ((4 + 3B)lc| — 12B)/12B. Therefore, Niq (k) > 0 for k > c4.
This means that g, (z) is close-to-convex of order f fork > cy. O

Taking a = 0 in Theorem 2.6(i), we obtain

Corollary 2.7. Ifp,b € R and ¢ € C\{0} such that k > dy, where

1
di = ﬂ[7|c| — 12+ \73|cP + 24|cl + 144], (13)

then gy,0(2) is starlike in D.
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Remark 2.8. (i) When ¢ € C\{0} and |c| < 3.463, the inequality 9+ V17

Corollary 2.7 improves Lemma 1.1(ii), specifically when |c| < 3.463, c¢ € C\{0}. For instance, if c = 1.5, Lemma
1.1(ii) states that g,,.(z) is starlike if k > 0.82. However, Corollary 2.7 indicates that g,,(z) is starlike if k > 0.71.

(ii) Moreover, we observe that for any non-zero ¢ € C, the result yielded by Theorem 2.1 is significantly stronger than
the result obtained by Corollary 2.7 in terms of the starlikeness of g, ,(2).

lc| > dq holds true. This means that

Taking a = 1/2 in Theorem 2.6(i), we obtain
Corollary 2.9. Ifp,b € R and ¢ € C\{0} such that k > d,, where

dy = %[4.5|c| — 6+ 1/29.25|c]2 + 18| + 36J, (14)
then g,,0(2) is starlike of order 1/2 in ID.
Remark 2.10. If « = 1/2 and c € R, Lemma 1.2(i) proves gy ,(z) is starlike of order 1/2 for k > %lcl. For
c € C\{0} and |c| < 2.795, if %lcl > dy, then Corollary 2.9 is a better version of Lemma 1.2(i) with o = 1/2.
Taking a = 0 in Theorem 2.6(ii), we obtain
Corollary 2.11. Ifp,b € R and ¢ € C\{0} such that k > d3, where
ds = i[lllcl —12 + 169\ + 120|c| + 144], (15)

then gy ,0(2) is convex in ID. In particular 1, (z) is convex in D.

Remark 2.12. We observe that the inequality glcl > d3 holds true for c € C\{0}. This implies that when c € C\{0},

Corollary 2.11 improves on Lemma 1.1(iii). In particular, if c = 100, Lemma 1.1(iii) shows that g,},(z) is convex if
k >108.33. However, Corollary 2.11 demonstrates that g, ,(z) is convex if k > 99.69.

Taking a = 1/2 in Theorem 2.6(ii), we obtain
Corollary 2.13. Ifp,b € Rand c € C\{0} such that k > dy, where

1
dy = E[7'5|C| — 6+ /74.25|c|]? + 54]c| + 36J, (16)
then gy ,0(z) is convex of order 1/2 in D.
Remark 2.14. Taking & = 1/2 and ¢ € R in Lemma 1.2(ii), we obtain that g,(z) is convex of order 1/2 for

k > %lcl. Further, if c € C\{0}, the inequality %Icl > dy holds true. Hence, Corollary 2.13 is an improvement of
Lemma 1.2(ii) for « = 1/2 and c € C\{0}.

Taking § = 1/2 in Theorem 2.6(iii), we obtain

Corollary 2.15. Ifp,b € Rand c € C\{O} such that k > d3, where d5 is given by (15). Then gy, ,.(2) is close-to-convex
of order 1/2 in D.

. . . 9 .
Remark 2.16. (i) For y = 1/2 in Lemma 1.4, we note that if c € R and k > Z'Cl' then gy (z) is close-to-convex of

order 1/2. Further, if c € C\{0}, the inequality Zlcl > ds holds true. This shows that when c € C\{0}, Corollary 2.15
is an improvement of Lemma 1.4 for y = 1/2.

(i1) Theorem 2.6(iii) states that for B € (0,1], the function g, (z) is close-to-convex of order f in ID. On the other
hand, Lemma 1.4 shows that for f in the interval [1/2,1), g,1(2) is close-to-convex of order B in ID. This implies
that the result obtained by Theorem 2.6(iii) holds for a larger domain of values of B.
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3. Inclusion relation, Strong Starlikeness and Strong Convexity

Theorem 3.1. Let p,q,b € R, ¢ € C such that p + b ; 2 >q+ b ; 2 > max{xo - 1,d3}, where xy ~ 2.089 is the
unique root of —In(x) + 2 + B =0, and ds is given by (15). Then the following inclusion holds

12x2
lp,b,c(][)) C lq,b,c(D)r

forallz € D.

Proof. To prove the inclusion relation, firstly we define a sequence {r,,},,>1 of real numbers by

T(n+q+ %2
- e,
In+p+37)

and prove that {r,},>1 is a subordination factor sequence. For this, it is enough to show that the inequality

% + ‘P\Zrnz” > 0 holds for all z € ID. Now, suppose 1y = 1. Then by using Lemma 1.6, we have

ru+q+bﬂ) T+g+42

b b
T(1+p+ +2) 1+p+%2

fo—r =

= Y

forp+b+2 >q+b%22x0_1. Also,fornZl,

Tn+q+%2) Th+1+q+%) Tn+q+22) n+q+ %2
Tn = Tpt1 = - = 1- >

Tn+p+%2) Th+1l+p+82) Tn+p+22) n+p+ B2
Further, we prove the inequality 7, — 2¥,,11 + 442 = 0 for all n > 0. By using Lemma 1.6, we have
Fl+q+%%) TQ+q+%2)
Tl+p+%2) TQ+p+22)

(1+q+2HI1 +q+ 22) _21"(1+q+l%2)
Q+p+ B +p+ 52 T+p+82)

) I(1+gq+ %2 1+q+ 22 I(1+q+ %2 0
= — >
TA+p+22)| V1+p+ 22 TA+p+%82) ]~

forp+ 22 >q+ %2 >x—1,andforn > 1,

ro—2r1+r=1-2

1\
N

Ty — 2rn+1 + 2 2

T(n+q+ %2) 1+(n+q+b+72)(n+q+’%2+1) 2n+q+1%2
T(n+p+52)

21"(n+q+bﬂ) (n+q+b%2)(n+q+l%2+1) n+q+ %2 N
T T+p+2)

(n+p+h%2)(n+p+b%2+1)_ n+p+ B2

n+p+22)n+p+22+1) n+p+ 2

forp + 1%2 >q+ “72 > xg — 1. Thus, by using Lemma 1.7, we conclude that {r,},>1 is a subordination factor
sequence. This means that

lp,h,c(z) = lq,b,c(z) * ¢(Z) < lq,b,c(z)/
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[

where ¢(z) = Zrnz", z € D. Additionally, Corollary 2.11 shows that the function /,;.(z) is convex and
n=1

univalent in D for g + szrz ds, and l;p(0) = I,;(0). Therefore, the subordination I,;(z) < I;5(2) is

equivalent to ,;(ID) C I, 5(ID). This proves the result. ]

4
Theorem 3.2. Letp,b € R, c € C\{0} such that k > §|C|/ then g, ,.(2) is strongly convex of order o, where

2 2|c|
= — —_—— —_— 2
a narcsm [C 1 + \/ —-C J 3k o

Proof. By using the following inequalities:

n+1)<4", (K, >k, (g) 5 er D wneny,
we obtain
. > (-5) PSSy o
|(Z!7p,b,c(z)) -1 = ;(%)n—k)n ;( ) 3= 20 = C (say). 17)

4
Since, k > §|C|/ therefore 0 < C < 1. So by using equation (17), we get (zg;,brc(z))’ < 1+ Cz, which implies that

arg (zg;,blc(z))" < arcsin(Q), z € D. (18)
We can use Lemma 1.8 by setting n = 0, where F(z) = (zg;,blc(z)), and M(z) = 1+Cz. This gives g;/brc(z) < 1+%z,
which is equivalent to
|ar ( ! (z))| < arcsin ¢ zeDD (19)
g gp,b,c 2 ’ :

Now using (18) and (19), we obtain

[(zg;,,b,c(z))'
arg| ————

)

]‘ < |arg (zg;,,blc(z)),| + |W!7 (g;y,h,c(z))|

< arcsin(C) + arcsin (%) = qrcsin [C 1-= + = \/1 - CZ]

which implies that g, 5(z) is strongly convex of order a. [J

In the same way, we can obtain the following result:

Theorem 3.3. Letp,b € R, c € C\{0} such that k > 3\c|, then Gpb,c(2) is strongly starlike of order a, where

lel’

a= %arcsin [C 1-= + = \/1 CZJ and (= 4k2|_C|
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4. Univalency of Integral operators

In this section, we determine the univalency of integral operators defined by (6), (7), and (8). Our first
result is given below.

Theorem 4.1. Letp; e R(1<j<n),beR,ceCandk;>7|cl/12withk; =p;+ (b+2)/2forall1 < j<n. Also
let y, 7, a; and B be in C such that R(y) > 0, |t| < 1(t # -1), a;, B; # 0. Suppose the following inequality holds

1{ 6l cl6k=lc) v
11<1 2
oI+ [12k 7 |Z' M 3@ = )Gk o) ;W =l (20)
where k = mintky, ky, . .., k,}. Then the integral operator P12 _isin the class S.

1,0, Otn BB By

Proof. Let us define a function i by

N 3 z 1 , aj gﬁ/,b,C(t) Fi d 21
IP(Z) jal 02 e O3 P1, B2 e i1 (Z) - 0 H gp//b'c(t) t E ( )
-1

Since gy, 5 € Aforall 1 < j < n, therefore i(z) € A. Now differentiating equation (21), we have

lebll(z) _ - gp,bc( ) - gp bc( )
TER e Zﬁ[gp,bm -

j=1

Using the inequalities (if) and (iif) of Lemma 1.5, we have

@)y [, |eee®] e : 6lc el(6k; — Ic)
LA O (] e ] e Z(l g + I
ve |1~ ,@ e L\ "k - 3(3k; — DBk~ 1eD) )
. . @+ V2l _ lel(6k —c]) L
Now, define a function N : [ Rl R by N(k) = 3@k — DGk —T)° Then it is easy to show that N

is strictly decreasing function on ((2 + \/E)Icl/ 12, oo). Therefore

|cl(6k; — |cl) < |cl(6k — |cl)
3(4k; — Icl)(Bki — lcl) ~ 3(4k — Icl)(Bk — )

which implies

zU" (z) 6] |cl(6k — |cl)
V' (2) Z(' k=710 * Pl3@k— 1oy -1 ) @)
Further, using Lemma 1.9, inequality (22) and the triangle inequality, we have
2 - w”( )\ 1{ 6l cl(6k — Ie)
o™ + {1~ el <l 27 |Z' I 3@ DGk — ) ZW’
if the inequality (20) holds. Hence, the integral operator J7" "> €S O

1,02, 0551, B2 1Y

Theorem 4.2. Letp; e R(1<j<n),beR,ceCandk;>7|cl/12withk; =p;+ (b +2)/2forall1 < j<n. Also
let y,aj and B;j be in C such that R(y) > 0and a;, B; # 0. Suppose the following inequality holds

6lc| 6k~ i)
R() 2 [uk 7”2| ]|+3(4k_|cl)(3k_lc|);|ﬁj|]/ (23)

where k = miniky, ka, . .., ko). Then the integral operator jsl fé ’;” B frrsfaity

is in the class S..
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Proof. Let us define the function i as in (21). Then using the inequality (22), we have

1 - 2P0 29" (z) 6lc lel(6k — |c|
P 20 Z(' S S Ll N DY
) 1y Q%(7/) 12k = 7|l 3(4k — lel)(3k — lel)
if the inequality (23) holds. Thus in view of Lemma 1.10, the integral operator 7, ’; v Z z P i forfrity € S O

By substitutingn = b =c=1, p = -1/2in Theorem 4.1, andn = b = ¢ = 1, p = 1/2 in Theorem 4.2, we
obtain the following results respectively:

Corollary43 Let y,t,a,f € C such that R(y) > 0, |tf| < 1 (t # -1), a,p # 0. Suppose the inequality
IT| + — 5 ( la] + —Iﬁl) < 1 holds, then the integral

1
[4—a)/ f r-ila+p)-1 (2 Vtcos Vt + sin \/Z)a (sin \/Z)ﬁ dt]} €S.
0

Corollary 44. Lety,a, € Csuchthat R(y) > 0, o, B # 0. Suppose the inequality R(y) > (ilal + ﬁlﬁl) holds,

then the integral

[Zﬁy fo S by (sin V)" (1 = cos \/Z)ﬁ ] €S

Theorem 4.5. Letp; € R(1<j<n),bA€R, ceCandk;>|c|/3withk;=p;+(b+2)/2forall1l<j<n. Also
let T and &j be in C such that |t| <1 (t # —1) and R (1 + X aj) > 0. Suppose the following inequality holds

2 - - 2\ Y lajl
et o,
where k = minfky, ky, . .., k,}. Then the integral operator 7(5; Zi ., 1s in the class S.

Proof. Consider the function & defined by

T js ,c(t)eAgn,-,b,((t) a;
- :f H[‘%bf dt. (25)
0 =1

Since gy, 1, € Aforall 1 < j < n, therefore &(z) € A. Now on differentiating equation (25), we have

28'@) N (Fpp®
7@ _Z“](gpj,b,m " A 1)

=1

Using the inequalities (iif) and (iv) of Lemma 1.5, we have

si|a,-|[

=1

2" (z)
&' (2)

2G5,5,:2) lcl(6k; — Icl) 12k; + || )
+|A| |z z +A
e MU '“f'( 30k — )Gk 1) T2k, — 30

z cl(6k = [e]) 12k + |c| _ (3614 + 3lclk(2 ~ 31A) — (1 + [AD[cf?
< .
<) lal (3(4k ~iek—T) T TR =3 3(12K2 — 7lclk + IcP) Z gl

(26)
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Therefore, we get
(1= P o))z )
(1+X5a) &0

z&"(z)
(1+Xfa)E0

i lajl (36|)\|k2 + 3|clk(2 = 3A]) = (1 + |A]]cl?
n 2 _ 2
'(1 F YL a,)| 3(12k2 — 7|clk + |c2)

T|Z|2(1+Z;l:1 @) 4 <7+

<|t| +

<1,

if the inequality (24) holds. Thus in view of Lemma 1.9 with n = 1 + ¥/, a;, the integral operator
Kb €S, 0O

Theorem 4.6. Letp; e R(1<j<n),bA€R,ceCandk;>|c|/3withk;=p;+{b+2)/2forall1<j<n. Also
let o be in C such that R(aj) > 0. Suppose the following inequality holds

2 2
(36I/\Ik + 3lclk(2 = 3IA]) = (1 + [A]]c] )Zl al<1, 27)

3(12K2 = 7|clk + |cl?)

where k = miniky, ky, ..., ky). Then the integral operator K 72" is in the class S.

Proof. Let us define the function & as in (25). Then using the inequality (26), we have

(=

if the inequality (27) holds. Thus in view of Lemma 1.10 with y =land n =1+ 27=1 «aj, the integral operator
Kb €S, 0O

z£"(2)
&' (2)

2 _ 2
< (362 + 3ick(2 = 3IAD — (1 + 1A Z' a<1,
3(12K2 = 7|clk + |cP?)

By substitutingn =b=A=1, p=-1/2, c = =1 in Theorem 45, andn =b=A =1, p=1/2, c=-11in
Theorem 4.6, we obtain the following results respectively:

Corollary 4.7. Let t,a € Csuch that R(1+a) > 0and |t| < 1 (t # —1). Suppose the inequality |t|+ iglg |1|_c:|a| <

holds, then the integral

+a

Z 1 1. a T+a
[(1 +0) f (£ (sinn V) T) dt] es.
0
4 . 136 ,
Corollary 4.8. Let a € C such that R(a) > 0. Suppose the inequality ﬁlal < 1 holds, then the integral

[(1 + a)f 24 cosh\/_ ) 20 cosh ‘f‘l)dt] : €S

Theorem 4.9. Letp; e R(1<j<n),beR,ceCandk;>7|c[/12withk; =p;+ (b+2)/2forall1 < j<n. Also
let y, 7, aj and B; be in C such that R(y) > 0, |t1] <1 (1 # -1), aj, f; # 0. Suppose the following inequality holds

6lc| ‘ 12k+|c|
|T|+| |Z(12k 7|c| T2k —3)c |'ﬁf ) (28)

_ . P1/P274+Pn
where k = minfky, ky, . .., k,}. Then the integral operator La B B iy

is in the class S.
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Proof. Consider the function © defined by

00 = [ T1(#.0) () a )
j=1

Since gy, € Aforall 1 < j <n, therefore ©(z) € A. Now on differentiating equation (29), we have
Z@“(Z) n P] bC( ) 1
— = E aj——— + E z (2).
@ &'y, ,06 P20

Using the inequalities (if) and (iv) of Lemma 1.5, we have

20" (2) be 6lc| 12k; + |c|
@ Z[' Ll e C( + 11|z, bc(z)'] (' Yok — 710 Pk, 3
6|c| 12k + ||
(' ]|12k 7lc| 1B 12k = 3|c| | (30)
Therefore, we get
@”(z)‘ 1y 6lc] 12k + |c]
2y 12y z < - <
R 7 | ; 5155k =716 PlTar =g | <
if the inequality (28) holds. Thus in view of Lemma 1.9, the integral operator .EZ 11'; Z;::jZln;ﬁT/ﬁZ,---,ﬁn;n}V €S O

Theorem 4.10. Let p; € R(1<j<n), beR,ce Candk;>7|cl/12withk; =p;j+ (b +2)/2forall1 < j<n
Also let y, aj and B be in C such that R(y) > 0 and aj, f; # 0. Suppose the following inequality holds

S 6l 12k+ |c|

— . . P1,P2,++Pn
where p = min{p1,pa, ..., pn}. Then the integral operator ‘Eal,az,u.,an;ﬁl,ﬁz,...,/i,,;n;y

is in the class S.
Proof. Let us define the function © as in (29). Then using the inequality (30), we have

1 — |zPR0
R(y)

z0®" (2)
©'(2)

1 - 6lc| 12k + [c|
< <1,
= ‘R()/);(l f|12k 7lcl * 1Bl 12k = 3|¢|

if the inequality (31) holds. Thus in view of Lemma 1.10, the integral operator £L'7>"" €S O

01,02 e, 0531 B2 By

Finally, substituting n = b = c = 1, p = 3/2 in Theorem 4.9, we obtain the following result:
Corollary 4.11. Let y,7,a,f € C such that R(y > 0), |tf| < 1, (t # -1), a,p # 0. Suppose the inequality

Il + |1_| (%l |+ _|ﬁ|) <1 holds, then the integral

[7/ fz proiot (‘/Z(t — 10sin Vt - 6) +2(2t — 5)cos ‘/Z)a 64&%((“%)%(5{" i €S

0
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